
Low-Communication Parallel Quantum
Multi-Target Preimage Search

Gustavo Banegas1(B) and Daniel J. Bernstein2(B)

1 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
gustavo@cryptme.in

2 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. The most important pre-quantum threat to AES-128 is the
1994 van Oorschot–Wiener “parallel rho method”, a low-communication
parallel pre-quantum multi-target preimage-search algorithm. This algo-
rithm uses a mesh of p small processors, each running for approximately
2128/pt fast steps, to find one of t independent AES keys k1, . . . , kt, given
the ciphertexts AESk1(0), . . . ,AESkt(0) for a shared plaintext 0.

NIST has claimed a high post-quantum security level for AES-128,
starting from the following rationale: “Grover’s algorithm requires a long-
running serial computation, which is difficult to implement in practice. In
a realistic attack, one has to run many smaller instances of the algorithm
in parallel, which makes the quantum speedup less dramatic.” NIST has
also stated that resistance to multi-key attacks is desirable; but, in a real-
istic parallel setting, a straightforward multi-key application of Grover’s
algorithm costs more than targeting one key at a time.

This paper introduces a different quantum algorithm for multi-target
preimage search. This algorithm shows, in the same realistic parallel set-
ting, that quantum preimage search benefits asymptotically from having
multiple targets. The new algorithm requires a revision of NIST’s AES-
128, AES-192, and AES-256 security claims.

Keywords: Quantum cryptanalysis · Multi-target preimages
Parallel rho method · Grover’s algorithm

This project has received funding under the European Union’s Horizon 2020
research and innovation programme (grant agreement 645622 PQCRYPTO and
Marie Sk�lodowska-Curie grant agreement 643161 ECRYPT-NET); from the Nether-
lands Organisation for Scientific Research (NWO grant 639.073.005); and from the
U.S. National Science Foundation (grant 1314919). “Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.” Per-
manent ID of this document: 564c02527d5562810a43e02ec640d604e13a9910. Date:
2017.08.18.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 325–335, 2018.
https://doi.org/10.1007/978-3-319-72565-9_16



326 G. Banegas and D. J. Bernstein

1 Introduction

Fix a function H. For any element x in the domain of H, the value H(x) is called
the image of x, and x is called a preimage of H(x).

Many attacks can be viewed as searching for preimages of specified functions.
Consider, for example, the function H that maps an RSA private key (p, q) to
the public key pq. Formally, define P as the set of pairs (p, q) of prime numbers
with p < q, and define H : P → Z as the function (p, q) �→ pq. Shor’s quantum
algorithm efficiently finds the private key (p, q) given the public key pq; in other
words, it efficiently finds a preimage of pq.

As another example, consider a protocol that uses a secret 128-bit AES key
k, and that reveals the encryption under k of a plaintext known to the attacker,
say plaintext 0. Define H(k) as this ciphertext AESk(0). Given H(k), a simple
brute-force attack takes a random key x as a guess for k, computes H(x), and
checks whether H(x) = H(k). If H(x) �= H(k) then the attack tries again, for
example replacing x with x + 1 mod 2128.

Within, e.g., 2100 guesses the attack has probability almost 2−28 of successfully
guessing k. We say “almost” because there could be preimages of H(k) other than
k: i.e., it is possible to have H(x) = H(k) with x �= k. This gives the attack more
chances to find a preimage, but it means that any particular preimage selected as
output is correspondingly less likely to be k. Typical protocols give the attacker
a reasonably cheap way to see that these other preimages are not in fact k, and
then the attacker can simply continue the attack until finding k.

This brute-force attack is not specific to AES, except for the details of how
one computes AESk(0) given k. The general strategy for finding preimages of a
function is to check many possible preimages. In this paper we focus on faster
attacks that work in the same level of generality. Some specific functions, such as
the function (p, q) �→ pq mentioned above, have extra structure allowing much
faster preimage attacks, but we do not discuss those special-purpose attacks
further.

1.1. Multiple-Target Preimages. Often an attacker is given many images,
say t images H(x1), . . . , H(xt), rather than merely a single image. For example,
x1, . . . , xt could be secret AES keys for sessions between t pairs of users, where
each key is used to encrypt plaintext 0; or they could be secret keys for one user
running a protocol t times; or they could be secrets within a single protocol run.

The t-target preimage problem is the problem of finding a preimage of at
least one of y1, . . . , yt; i.e., finding x such that H(x) ∈ {y1, . . . , yt}. A solution
to this problem often constitutes a break of a protocol; and this problem can be
easier than the single-target preimage problem, as discussed below.

Techniques used to attack the t-target preimage problem are also closely
related to techniques used to attack the well-known collision problem: the
problem of finding distinct x, x′ with H(x) = H(x′).

The obvious way to attack the t-target preimage problem is to choose a ran-
dom x and see whether H(x) ∈ {y1, . . . , yt}. Typically y1, . . . , yt are distinct, and



Low-Communication Parallel Quantum Multi-Target Preimage Search 327

then the probability that H(x) ∈ {y1, . . . , yt} is the sum of the probability that
H(x) = y1, the probability that H(x) = y2, and so on through the probability
that H(x) = yt. If x is a single-target preimage with probability about 1/N then
x is a t-target preimage with probability about t/N .

Repeating this process for s steps takes a total of s evaluations of H on dis-
tinct choices of x, and has probability about st/N of finding a t-target preimage,
i.e., high probability after N/t steps. This might sound t times faster than finding
a single-target preimage, but there are important overheads in this algorithm,
as we discuss next.

1.2. Communication Costs and Parallelism. Real-world implementations
show that, as t grows, the algorithm stated above becomes bottlenecked not by
the computation of H(x) but rather by the check whether H(x) ∈ {y1, . . . , yt}.

One might think that this check takes constant time, looking up H(x) in a
hash table of y1, . . . , yt, but the physical reality is that random access to a table
of size t becomes slower as t grows. Concretely, when a table of size t is laid out
as a

√
t × √

t mesh in a realistic circuit, looking up a random table entry takes
time proportional to

√
t.

Furthermore, for essentially the same cost as a memory circuit capable of
storing and retrieving t items, the attacker can build a circuit with t small parallel
processors, where the ith processor searches for a preimage of yi independently of
the other processors. Running each processor for N/t fast steps has high success
probability of finding a t-target preimage and takes total time N/t, since the
processors run in parallel.

The “parallel rho method”, introduced by van Oorschot and Wiener in 1994
[13], does better. The van Oorschot–Wiener circuit has size p and reaches high
probability after only N/pt fast steps (assuming p ≥ t; otherwise the circuit
does not have enough storage to hold all t targets, and one must reduce t). For
example, with p = t, this circuit has size t and reaches high probability after
only N/t2 steps.

There are p small parallel processors in this circuit, arranged in a
√

p ×√
p square. There is also a parallel “mesh” network allowing each processor to

communicate quickly with the processors adjacent to it in the square. Later, as
part of the description of our quantum multi-target preimage-search algorithm,
we will review how these resources are used in the parallel rho method. The
analysis also shows how large p and t can be compared to N .

1.3. Quantum Attacks. If a random input x has probability 1/N of being a
preimage of y then brute force finds a preimage of y in about N steps. Quantum
computers do better: specifically, Grover’s algorithm [7] finds a preimage of y in
only about

√
N steps.

However, increased awareness of communication costs and parallelism has
produced increasingly frequent objections to this quantitative speedup claim.
For example, NIST’s “Submission Requirements and Evaluation Criteria for the



328 G. Banegas and D. J. Bernstein

Post-Quantum Cryptography Standardization Process” [11] states security levels
for AES-128, AES-192, and AES-256 that provide

substantially more quantum security than a näıve analysis might suggest.
For example, categories 1, 3 and 5 are defined in terms of block ciphers,
which can be broken using Grover’s algorithm, with a quadratic quantum
speedup. But Grover’s algorithm requires a long-running serial computa-
tion, which is difficult to implement in practice. In a realistic attack, one
has to run many smaller instances of the algorithm in parallel, which makes
the quantum speedup less dramatic.

Concretely, Grover’s algorithm has high probability of finding a preimage if it
uses p small parallel quantum processors, each running for

√
N/p steps, as in

[8]. The speedup compared to p small parallel non-quantum processors is only√
N/p, which for reasonable values of p is much smaller than

√
N .

Furthermore, when the actual problem facing the attacker is a t-target preim-
age problem, the parallel rho machine with p small parallel non-quantum pro-
cessors reaches high success probability after only N/pt steps. This extra factor
t can easily outweigh the

√
N/p speedup from Grover’s algorithm.

For example, a parallel rho machine of size p finds collisions in only
√

N/p
steps. This is certainly better than running Grover’s algorithm for

√
N/p steps.

Brassard, Høyer, and Tapp [5] claimed a faster quantum algorithm to find
collisions. Their algorithm chooses t ≈ N1/3, takes t random inputs x1, . . . , xt,
computes the corresponding images y1, . . . , yt, and then builds a new function
H ′ defined as follows: H ′(x) = 0 if H(x) ∈ {y1, . . . , yt}, otherwise H ′(x) = 1. A
random input is an H ′-preimage of 0 with probability approximately 1/N2/3, so
Grover’s algorithm finds an H ′-preimage of 0 after approximately N1/3 steps.

However, Bernstein [4] analyzed the communication costs in this algorithm
and in several variants, and concluded that no known quantum collision-finding
algorithms were faster than the non-quantum parallel rho method.

1.4. Contributions of This Paper. This paper introduces a quantum algo-
rithm, in the same realistic model mentioned above (p small parallel proces-
sors connected by a two-dimensional mesh), that finds a t-target preimage using
roughly

√
N/pt1/2 fast steps. If communication were not an issue then t1/2 would

improve to t. See Fig. 1.4.
Taking t = 1 produces a single-target preimage using roughly

√
N/p steps, as

in Grover’s algorithm running on p processors. To save time for larger values of
t we combine Grover’s algorithm with the parallel rho method offering a speed
up on the quantum attacks. This requires a reversible version of the parallel
rho method. Reversibility creates a further tε cost explained below compared
to pre-quantum attacks. Communication inside the parallel rho method raises
further issues that do not show up in simpler applications of Grover’s method;
this creates the gap between t1/2 and t.

NIST has stated that resistance to multi-key attacks is desirable. Our results
show that simply using Grover’s algorithm for single-target preimage search is



Low-Communication Parallel Quantum Multi-Target Preimage Search 329

not optimal in this context. NIST’s post-quantum security claims for AES-128,
AES-192, and AES-256 assume that it is optimal, and therefore need to be
revised.

1.5. Open Questions. Our analysis is asymptotic. In this paper we suppress
constant factors, logarithmic factors, etc. and focus on asymptotic exponents.
We plan to increase the precision of the analysis of the algorithm by measur-
ing the costs (qubits and gates) of an implementation. One major issue is the
implementation of AES in a quantum computer; see the cost estimates from
[6]. Another major issue is the sorting implementation. Both stages can be effi-
ciently simulated and tested in a non-quantum computer, since both stages are
reversible computations without superposition.

Fig. 1.4. Overview of costs of pre-quantum and post-quantum attacks. Circled blue
items are new results in this paper. Lower-order factors are omitted. Pre-quantum
single-target preimage attacks: brute force plus simple parallelization. Post-quantum
single-target preimage attacks: Grover’s algorithm [7] plus simple parallelization [8].
Pre-quantum multi-target preimage attacks: brute force and the parallel rho method
[13]. Post-quantum multi-target preimage attacks: [9] for oracle calls, this paper for
parallel methods. Pre-quantum collision attacks: the rho method and the parallel
rho method. Post-quantum collision attacks: [5] for oracle calls, plus the parallel rho
method. (Color figure online)



330 G. Banegas and D. J. Bernstein

2 Reversible Computation

A Toffoli gate maps bits (x, y, z) to (x, y, z + xy), where + means exclusive-or.
A reversible n-bit circuit is an n-bit-to-n-bit function expressed as a com-

position of a sequence of Toffoli gates on selected bits. We assume that adjacent
Toffoli gates on separate bits are carried out in parallel: our model of time for
a reversible circuit is the depth of the circuit rather than the total number of
gates. To model realistic communication costs, we lay out the n bits in a square,
and we require each Toffoli gate to be applied to bits that are laid out within a
constant distance of each other.

Let H be a function from {0, 1}b to {0, 1}b, where b is a nonnegative integer.
An a-ancilla reversible circuit for H is a reversible (2b + a)-bit circuit that,
for all b-bit strings x and y, maps (x, y, 0) to (x, y + H(x), 0). The behavior of
this circuit on more general inputs (x, y, z) is not relevant.

Grover’s method, given any reversible circuit for H, produces a quantum
preimage-search algorithm. This algorithm uses s serial steps of H computation
and negligible overhead, and has probability approximately s2/N of finding a
preimage, if a random input to H has probability 1/N of being a preimage.

In subsequent sections we convert the reversible circuit for H into a reversible
circuit for a larger function H ′ using approximately

√
t steps on t small parallel

processors. H ′ is designed so that

• a random input to H ′ has probability approximately t5/2/N of being an H ′-
preimage and

• an H ′-preimage produces a t-target H-preimage as desired.

Applying Grover’s method to H ′, with s ≈
√

N/pt3/2, uses overall
√

N/pt1/2

steps on t small parallel processors, and has probability approximately t/p of
finding a preimage. A machine with p/t parallel copies of Grover’s method has
high probability of finding a preimage and uses

√
N/pt1/2 steps on p small

parallel processors.

3 Reversible Iteration

As in the previous section, let H be a function from {0, 1}b to {0, 1}b, where b is
a nonnegative integer. Assume that we are given a reversible circuit for H using
a ancillas and gate depth g (see, e.g., the circuit in [6]). This section reviews the
Bennett–Tompa technique [3] to build a reversible circuit for Hn, where n is a
positive integer, using a + O(b log2 n) ancillas and gate depth O(gn1+ε). Here ε
can be taken as close to 0 as desired, although the O constants depend on ε.

As a starting point, consider the following reversible circuit for H2 using a+b
ancillas and depth 3g:

time 0: x y 0 0
time 1: x y H(x) 0
time 2: x y + H2(x) H(x) 0
time 3: x y + H2(x) 0 0



Low-Communication Parallel Quantum Multi-Target Preimage Search 331

Each step here is a reversible circuit for H, and in particular the last step
adds H(x) to H(x), obtaining 0 (recall that + means xor).

More generally, if H uses a ancillas and depth g, and H ′ uses a′ ancillas and
depth g′, then the following reversible circuit for H ′ ◦ H uses max{a, a′} + b
ancillas and depth 2g + g′:

time 0: x y 0 0
time 1: x y H(x) 0
time 2: x y + H ′(H(x)) H(x) 0
time 3: x y + H ′(H(x)) 0 0

Bennett now substitutes Hm and Hn for H and H ′ respectively, obtaining the
following reversible circuit for Hm+n using max{am, an} + b ancillas and depth
2gm + gn:

time 0: x y 0 0
time 1: x y Hm(x) 0
time 2: x y + Hm+n(x) Hm(x) 0
time 3: x y + Hm+n(x) 0 0

Bennett suggests taking n = m or n = m + 1, and then it is easy to prove by
induction that an = a + 
log2 n�b and gn ≤ 3�log2 n�g ≤ 3nlog2 3g. For example,
computing H2k(x) uses a + kb ancillas and depth 3kg.

More generally, with credit to Tompa, Bennett suggests a way to reduce the
exponent log2 3 arbitrarily close to 1, at the expense of a constant factor in front
of b. For example, one can start from the following reversible circuit for H3 using
a + 2b ancillas and depth 5g:

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Generalizing straightforwardly from H3 to H ′′ ◦ H ′ ◦ H, and then replacing
H,H ′,H ′′ with H�,Hm,Hn, produces a reversible circuit for H�+m+n using
max{a� + b, am + 2b, an + 2b} ancillas and depth 2g�+2gm+gn. Splitting evenly
between �,m, n reduces log2 3 ≈ 1.58 to log3 5 ≈ 1.46. (An even split is not
optimal: for a given ancilla budget one can afford to take a� larger than am

and an. See [10] for detailed optimizations along these lines.) By starting with
H4 instead of H3 one reduces the exponent to log4 7 ≈ 1.40, using, e.g., a + 9b
ancillas and depth 567g to compute H64. By starting with H8 one reduces the
exponent to log8 15 ≈ 1.30; etc.

4 Reversible Distinguished Points

As above, let H be a function from {0, 1}b to {0, 1}b, where b is a nonnegative
integer; and assume that we are given an a-ancilla depth-g reversible circuit
for H.



332 G. Banegas and D. J. Bernstein

Fix d ∈ {0, 1, . . . , b}. We say that x ∈ {0, 1}b is distinguished if its first d
bits are 0.

The rho method iterates H until finding a distinguished point or reaching
a prespecified limit on the number of iterations, say n iterations. The resulting
finite sequence x,H(x),H2(x), . . . , Hm(x), either

• containing exactly one distinguished point Hm(x) and having m ≤ n or
• containing zero distinguished points and having m = n,

is the chain for x, and its final entry Hm(x) is the chain end for x.
This section explains a reversible circuit for the function that maps x to the

chain end for x. This circuit has essentially the same cost as the Bennett–Tompa
circuit from the previous section.

Define Hd : {0, 1}b → {0, 1}b as follows:

Hd(x) =

{
x if the first d bits of x are 0
H(x) otherwise.

A reversible circuit for Hd is slightly more costly than a reversible circuit for H,
since it needs an “OR” between the first d bits of x and a selection between x
and H(x).

If the chain for x is x,H(x),H2(x), . . . , Hm(x) then the iterates

x,Hd(x),H2
d(x), . . . , Hm

d (x),Hm+1
d (x), . . . , Hn

d (x)

are exactly x,H(x),H2(x), . . . , Hm(x),Hm(x), . . . , Hm(x). Hence the chain end
for x, namely Hm(x), is exactly Hn

d (x). We compute Hn
d reversibly by substi-

tuting Hd for H in the previous section.
If x is chosen randomly and H behaves randomly then one expects each

new H output to have chance 1/2d of being distinguished. To have a reasonable
chance that the chain end is distinguished, one should take n on the scale of 2d:
e.g., n = 2d+1. If n and d are very large then chains will usually fall into loops
before reaching distinguished points, but we will later take small n, roughly

√
t

for t-target preimage search.

5 Reversible Parallel Distinguished Points

Define b,H, a, g, d, n as before, and let t be a positive integer. This section
explains a reversible circuit for the function that maps a vector (x1, . . . , xt)
of b-bit strings to the corresponding vector (Hn

d (x1), . . . , Hn
d (xt)) of chain ends.

This circuit is simply t parallel copies of the circuit from the previous section,
where the ith copy handles xi. The depth of the circuit is identical to the depth
of the circuit in the previous section. The size of this circuit is t times larger
than the size of the circuit in the previous section.

Communication in this circuit is only inside the parallel computations of H
etc. There is no communication between the parallel circuits, and there is no
dependence of communication costs upon t.



Low-Communication Parallel Quantum Multi-Target Preimage Search 333

6 Sorting on a Mesh Network

Define S(c1, c2, . . . , ct), where c1, c2, . . . , ct are b-bit strings, as (d1, d2, . . . , dt),
where d1, d2, . . . , dt are the same as c1, c2, . . . , ct in lexicographic order.

This section presents a reversible computation of S using O(t(b + (log t)2))
ancillas and O(t1/2(log t)2) steps. Each step is a simple local operation on a
two-dimensional mesh, repeated many times in parallel. We follow the general
sorting strategy from [2] but choose different subroutines.

We start with odd-even mergesort [1]. This algorithm is a sorting network:
i.e., a sequence of comparators, where each comparator sorts two objects. Odd-
even mergesort sorts t items using O((log t)2) stages, where each stage involves
O(t) parallel comparators. For comparison, [2, Table 2] mentions bitonic sort,
which is slower than odd-even mergesort, and AKS sort, which is asymptotically
faster as t → ∞ but slower for any reasonable size of t.

To make odd-even mergesort reversible, we record for each of the O(t(log t)2)
comparators whether the inputs were out of order, as in [2, Sect. 2.1]. This uses
O(t(log t)2) ancillas. The comparators themselves use O(tb) ancillas.

The comparators in odd-even mergesort are not local when items are spread
across a two-dimensional mesh. We fix this as in [2, Sect. 2.3]: before each stage,
we permute the data so that the stage involves only local comparators. Each
of these permutations is a constant determined by the structure of the sorting
network; for odd-even mergesort each permutation is essentially a riffle shuffle.

The permutation strategy suggested in [2, Sect. 2.3] is to apply any sorting
algorithm built from local operations. For a two-dimensional mesh, [2, Table 2]
suggests “Bubble/Insertion sort”, but it is not at all clear which two-dimensional
algorithm is meant here; the classic forms of bubble sort and insertion sort are
not parallelizable. The same table also says that these are “sorting networks”,
but most of the classic forms of bubble sort and insertion sort include conditional
branches. We suggest using the Schnorr–Shamir algorithm [12], which has depth
approximately 3

√
t. It seems likely that an ad-hoc riffle algorithm would produce

a better constant here.

7 Multi-target Preimages

Fix images y1, . . . , yt. We build a reversible circuit that performs the following
operations:

• Input a vector (x1, . . . , xt).
• Compute, in parallel, the chain ends for x1, . . . , xt: i.e., Hn

d (x1), . . . , Hn
d (xt).

• Precompute the chain ends for y1, . . . , yt.
• Sort the chain ends for x1, . . . , xt and the chain ends for y1, . . . , yt.
• If there is a collision, say a collision between the chain end for xi and the

chain end for yj : recompute the chain for xi, checking each chain element to
see whether it is a preimage for yj .

• Output 0 if a preimage was found, otherwise 1.



334 G. Banegas and D. J. Bernstein

This circuit uses O(a+b log2 n+tb+t(log t)2) ancillas. The chain computation has
depth O(gn1+ε), and the sorting has depth O(t1/2(log t)2 log b), where O(log b)
accounts for the cost of a b-bit comparator.

If a chain for xi ends with a distinguished point, and the chain includes
a preimage (before this distinguished point) for yj , then the chain for yj will
end with the same distinguished point. The recomputation will then find this
preimage. The number of such chains is proportional to t (with a constant-factor
loss for chains that end before a distinguished point), so the number of elements
in the chains is proportional to nt (with a constant factor reflecting the length
of chains before distinguished points); the chance of a particular preimage being
one of these elements is 1/N ; and there are t preimages, for an overall chance
roughly nt2/N .

We take n ≈ √
t, so the circuit uses O(a+tb+t(log t)2) ancillas and has depth

O(gt1/2+ε/2+t1/2(log t)2 log b); one can also incorporate b, g, ε into the choice of n
to better balance the two terms in this depth formula. The chance that the circuit
finds a preimage is roughly t5/2/N , as mentioned earlier. Finally, we apply p/t
parallel copies of Grover’s method to this circuit, each copy using approximately√

N/pt3/2 iterations, i.e., depth O(
√

N/pt1/2(gtε/2 + (log t)2 log b)), to reach a
high probability of finding a t-target preimage.

References

1. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
Spring Joint Computer Conference, AFIPS 1968 (Spring), 30 April–2 May 1968,
pp. 307–314. ACM, New York (1968)

2. Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd,
D., Stather, M.: Efficient distributed quantum computing. Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci. 469(2153), 20120686, 20 (2013). ISSN: 1364-5021

3. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

4. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? In: SHARCS 2009 Special-purpose Hardware for Attacking
Cryptographic Systems, p. 105 (2009)

5. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

6. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

7. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp.
212–219. ACM (1996)

8. Grover, L., Rudolph, T.: How significant are the known collision and element dis-
tinctness quantum algorithms? arXiv preprint arXiv:quant-ph/0309123 (2003)

https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
http://arxiv.org/abs/quant-ph/0309123


Low-Communication Parallel Quantum Multi-Target Preimage Search 335

9. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

10. Knill, E.: An analysis of Bennett’s pebble game. CoRR, abs/math/9508218 (1995)
11. NIST: Submission requirements and evaluation criteria for the post-quantum cryp-

tography standardization process (2016). http://csrc.nist.gov/groups/ST/post-
quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

12. Schnorr, C.-P., Shamir, A.: An optimal sorting algorithm for mesh connected com-
puters. In: Hartmanis, J. (ed.) Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, 28–30 May 1986, Berkeley, California, USA, pp. 255–263.
ACM (1986)

13. Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash
functions and discrete logarithms. In: Proceedings of the 2nd ACM Conference on
Computer and Communications Security, pp. 210–218. ACM (1994)

https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

	Low-Communication Parallel Quantum Multi-Target Preimage Search
	1 Introduction
	1.1. Multiple-Target Preimages.
	1.2. Communication Costs and Parallelism.
	1.3. Quantum Attacks.
	1.4. Contributions of This Paper.
	1.5. Open Questions.

	2 Reversible Computation
	3 Reversible Iteration
	4 Reversible Distinguished Points
	5 Reversible Parallel Distinguished Points
	6 Sorting on a Mesh Network
	7 Multi-target Preimages
	References


