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Abstract. In recent years, unmanned aerial vehicles have received a sig-
nificant attention in the research community, due to their adaptability in
different applications, such as surveillance, disaster response, traffic mon-
itoring, transportation of goods, first aid, etc. Nowadays, even though
UAVs can be equipped with some autonomous capabilities, they often
operate in high uncertainty environments in which supervisory systems
including human in the control loop are still required. Systems envisaging
decision-making capabilities and equipped with flexible levels of auton-
omy are needed to support UAVs controllers in monitoring operations.
The aim of this paper is to build an adjustable autonomy system able to
assist UAVs controllers by predicting mental workload changes when the
number of UAVs to be monitored highly increases. The proposed sys-
tem adjusts its level of autonomy by discriminating situations in which
operators’ abilities are sufficient to perform UAV supervision tasks from
situations in which system suggestions or interventions may be required.
Then, a user study was performed to create a mental-workload predic-
tion model based on operators’ cognitive demand in drone monitoring
operations. The model is exploited to train the system developed to infer
the appropriate level of autonomy accordingly. The study provided pre-
cious indications to be possibly exploited for guiding next developments
of the adjustable autonomy system proposed.
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1 Introduction

In recent years, the field of aerial service robotics applications has seen a rapidly
growing interest in the development of Unmanned Aerial Vehicles (UAVs) equip-
ped with some autonomous capabilities. However, since UAVs often operate in
high uncertainty and dynamic scenarios characterized by unpredictable failures
and parameter disturbances, no totally-autonomous control system has emerged
yet [1]. Supervisory systems including human in the control loop are required to
both monitor UAV operations and assist UAV controllers when critical situations
occur [2,3].

Systems equipped with flexible levels of autonomy (LOAs) and decision-
making capabilities in uncertain environments may be exploited to dynamically
allocate human-machine functions by discriminating situations where operators’
skills are sufficient to perform a given task from situations where system sugges-
tions or interventions may be required [4-6]. The assessment of operator multi-
tasking performance as well as the level of his/her mental effort for monitoring
UAVs, generally termed as “cognitive or mental workload” [7], may be used to
determine which LOA is needed for the system.

By leveraging the above considerations, this paper reports on the activi-
ties that have been carried out at Politecnico di Torino and at TIM JOL Con-
nected Robotics Applications LaB (CRAB) to develop, through an assessment
of humans’ mental workload, an adjustable autonomy system equipped with
some decision-making capabilities in UAV-traffic monitoring scenarios. The sys-
tem, later referred to as “control tower”, was devised to autonomously infer the
appropriate level of autonomy by exploiting a mental workload prediction model
built on operators’ cognitive demand in monitoring a growing number of UAVs
with an increasing level of risk.

A simulation framework was developed to reproduce both swarm of
autonomous drones flying in a 3D virtual urban environment and critical con-
ditions they could be involved into. Afterwards, a user interface showing the
2D map of the city was developed to both display drones’ positions and drones’
flight information and allow human operators to monitor and intervene when
critical conditions occur. A Bayesian Network (BN) classifier was exploited in
this work to build the mental workload prediction model described above. This
classifier was also leveraged as learning probabilistic model due to its capability
to solve decision problems under uncertainty [8].

A user study was carried out with several volunteers, who were asked to
perform some supervision and monitoring tasks of a variable number of drones
with a growing level of risk. During each experiment, participants were asked to
evaluate their perceived mental workload in order to train the system developed
inferring the appropriate level of autonomy accordingly.

The rest of the paper is organized as follows. In Sect. 2, relevant literature in
the area of adaptive autonomy systems is reviewed. In Sect. 3, the architecture of
the system proposed in this study is described. Section 4 provides an overview of
the user interface exploited in this study. Section 5 introduces the methodology
that has been adopted to perform the experimental tests and discusses results
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obtained. Lastly, Sect. 6 concludes the paper by providing possible directions for
future research activities in this field.

2 Related Work

Many studies in aerial robot applications domain have investigated the evalua-
tion and classification of cockpit operator’s workload.

A number of studies have revealed the advantages in exploiting dynamic
function allocations for managing operator workload and maintaining him or
her focused in control loops [9,10]. In literature, several criteria have been inves-
tigated to evaluate human’s cognitive load. The main measurement techniques
have been historically classified into three categories: physiological, subjective,
and performance-based [11]. Different techniques for mental workload assessment
and classification have been proposed in this field.

Many research studies have focused on physiological measurements for assess-
ing operator cognitive load in real time. For instance, Scerbo et al. [12] pro-
posed the EEG power band ratios as example of workload measurement in
adaptive automation. Wilson et al. [13] exploited EEG channels, electrocardio-
graphic (ECG), electrooculographic (EOG), and respiration inputs as cognitive
workload evaluation and an Artificial Neural Network (ANN) as classification
methodology. Magnusson [14] examined the pilots’ Heart Rate (HR), Heart Rate
Variability (HRV), and eye movements in simulator and real flight.

Despite these studies have provided evidences in merging more than one
physiological measurements to improve the accuracy of workload classification
[13,15], such approaches have proved to be very infeasible from a measurement
perspective, affected by the emotional state of the operator and impractical in
aircraft cockpits application due to the need of wearing different devices at the
same time [16].

In parallel to these studies, other approaches were investigated involving
physiological measures in combination with other classes of workload assess-
ment techniques. As a matter of examples, in [8] the authors performed opera-
tor’s workload evaluation in piloting a flying aircraft by using EEG signal with
NASA-TLX questionnaire as subjective measure and a Bayesian Network as
classification method. Di Nocera et al. in [17] have investigate operator’s work-
load evaluation engaged in simulated flight employing the eye fixations measure
and NASA-TLX questionnaire as assessment methodology and Nearest Neigh-
bor algorithm (NN) as classification method. In [16], the authors investigated
different classes of cognitive workload measures by merging cardiovascular activ-
ity and secondary task performance (a performance-based technique), as inputs
to an Artificial Neural Network (ANN) for operator cognitive state classification
during a simulated air traffic control task.

Based on the short but representative review above, it can be observed
that the panorama of mental workload assessment and classification techniques
in aerial robotics applications is quite heterogeneous. By taking into account
advantages and drawbacks of the above solutions, the system proposed in this
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paper combines subjective workload assessment techniques with a probabilistic
Bayesian Network classifier to support UAV controllers in monitoring operations
by autonomously inferring the appropriate LOA for the specific situation.

3 Proposed System

In the following, the adjustable autonomy system will be introduced, by provid-
ing also some implementation details.

3.1 Architecture Overview

The Adjustable Autonomy System Architecture (AASA) implementing the basic
idea inspiring the present paper is illustrated in Fig. 1. It consists of three main
components: UAVs Simulator (left), Bandwidth Simulator (right) and Adjustable
Autonomy Control Tower (down). More specifically, the UAVs Simulator is the
block devoted to load the 3D urban environment and execute the 3D drones
flight simulation in it. A 3D physics engine was also exploited to test different
flying scenarios in conditions as similar as possible to a realistic environment. The
Bandwidth Simulator block was used to reproduce the network transmission rate
of the simulated city. Since drones communicate or send information through the
network, a low bandwidth connection could lead to critical conditions for UAV
controllers. The Adjustable Autonomy Control Tower hosts Alert and Decision
modules. The former determines the state for each drone by mapping the set of
information collected by UAVs and Bandwidth Simulators, i.e., drones’ battery
level, their distance from obstacles, with different levels of risk, later referred
to as “Alert”. Three different levels are used to discriminate the drone’s level
of risk, namely: “Safe”, “Warning” and “Danger”. The latter is responsible for
establishing the appropriate level of autonomy by elaborating both the operator’s
mental workload and his performances via the “Alert” level of each drone.

UAVs Simulator Bandwidth Simulator
Physics Simulation [ Population |
Cazens) HOSI/ls?zeho Map Coverage Density
PUOINS Tu0e | yavproxy 2 GCS
L T
I ]i, Ardupilot: UAV Firmware
Ardupllot SITL_Gazebo_plugin <5~ | AUTOPILOT Bandwidth
Estimation
UAVs Data Network|
Control Tower (RosBridge) Data
Adjustable Autonomy Module User Interface
Alert Module Warning ‘
Y —Alert o 4
Decision-making system
Training— DCN Suggestion
ot Operator

Fig. 1. Adjustable autonomy system architecture.
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3.2 TUAVs Simulator

The UAVs Simulator is the module responsible for performing the 3D drones’
simulation in an urban environment. It consists of three different modules namely
Autopilot, Physics Simulation and Ground Control Station (GCS).

The Autopilot module contains the flight software allowing drones to fly sta-
ble during the flight. More specifically, the Software-In-The-Loop (SITL)! sim-
ulator was exploited to run the UAV flight code without any specific hardware.
Within this simulation tool, the un-compiled autopilot code, which normally
runs on the drone’s onboard computer, is compiled, simulated and run by the
SITL simulation software itself. In the specific case, the SITL software was used
to run the PX4 Autopilot Flightcode?, an open source UAV firmware of a wide
range of vehicle types.

The Physics Simulation module is responsible for replicating the real world
physics of drones’ flight. In this work, Gazebo® was exploited as a real-time
physics engine in order to emulate the 3D models of UAVs, their physic properties
and constraints and their sensors (e.g. laser, camera) in a 3D urban environment.
Gazebo runs on Robot Operating System (ROS)*, which is a software framework
developed for performing robotics tasks.

The Ground Control Station (GCS) module contains the software needed
to setup drones’ starting GPS locations, get real-time flight information, plan
and execute drones’ missions. The communication between the PX4 Autopilot
Flightcode and the GCS module is provided by the Micro Air Vehicle ROS
(MAVROS) node with the MAVLink communication protocol. As illustrated in
Fig. 1, MAVProxy node acts as an intermediary between the GCS and UAVs
supporting MAVLink protocol.

Lastly, as illustrated in Fig.1, this module provides UAVs information data
to the Adjustable Autonomy Module by means of the RosBridge Protocol®. More
specifically, these information regarding drones’ battery level, later abbreviated
b and their distance from obstacles (e.g. buildings), later abbreviated o, are
gathered from the Alert Module to determine the status of each drone.

3.3 Bandwidth Simulator

In this work, the network transmission rate was assumed to depend on two
different variables: population density of the city sites (parks, stadiums, schools,
etc.) and the network coverage. Three different values, in the range [1;3] - where
1is “Low”, 21is “Medium” and 3 is “High” - were used to describe the population
density and network coverage levels of the city according to daily time slots and
OpenSignal® data respectively. A grid on the map was created by storing in

! http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html.
2 https://px4.io.

3 https://gazebosim.org.

* https://www.ros.org.

5 https://wiki.ros.org/rosbridge_suite.

5 https://opensignal.com.
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each cell the population density and coverage values described above in order to
calculate the bandwidth in the considered area. The resulting transmission rate
for each cell was computed according to a linear polynomial function y of the
above values as follow:

High if y<0.5
Bandwidth = { Medium if 0.5 >y < 1.5
Low if y>15

As illustrated in Fig. 1, the three different calculated bandwidth levels (later
abbreviated n) are sent to the Adjustable Autonomy Module in order to deter-
mine the transmission rate around the drone’s position on the map.

3.4 Adjustable Autonomy Control Tower

The Adjustable Autonomy Control Tower consists of two submodules namely:
Alert Module and Decision Module.

The Alert Module, as illustrated in Fig. 1, receives data from the UAVs and
Bandwidth Simulators as inputs. Each input is associated to three different vari-
ables, namely “High”, “Medium” and “Low” according to Table 1 and each vari-
able is matched with a numeric value in the range [1; 3] - where 1 is “Low” and
3is “High”.

Table 1. Drones’ information association to variables

Input variables| Description Variables/numeric values
o Drone’s distance from an |Low = [5—25] m;
obstacle Medium = [25-50] m;
High = [50-100] m
b Drone’s battery level Low = [0-20]%;

Medium = [21-60]%;
High = [61-100]%

n Transmission rate around |Output of the bandwidth

drone’s position simulator

The mathematical formula described in (1) was exploited to compute the
Alert:

1 1 1
b—1 o—1 n-1 (1)

where b, o, n, represent the three inputs listed in Table1 and y represents the
drone’s level of risk. Thus, the resulting Alert was calculated as follows:

y:

Danger if b=1 Vo=1vn=1
Alert = { Warning if 0.15 < y < 1.5
Safe if y>15
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It can be observed in (1) that when one of the input variables value is “Low”,
the Alert assumes the “Danger” value. When the input variables values increase,
then the Alert decreases from “Danger” to “Safe” through the “Warning” level.

The Decision Module represents the core of the devised architecture. It is
responsible for inferring the appropriate level of autonomy by elaborating both
operators’ mental workload and mission outcomes via the number of UAVs
divided by “Alert” state.

A Bayesian Network (BN) classifier, which is a learning probabilistic model
from data, was selected for representing both all variables involved in the study
and their relationships in order to infer conclusions when some variables are
observed. The structure of this model where the estimate LOA of the system is
a direct child of the mission outcomes node via workload node is illustrated in
Fig. 2. It was considered that the probability of changes in operators’ workload
is conditioned on changes in the number of drones in “Alert” state. Thus, the
probability to successfully complete missions is influenced by operators’ cognitive
workload.

The LOAs proposed in this work, were namely: “ Warning”, “Suggestion” and
“Autonomous” where the system warns the operator if critical situations occur,
suggests feasible actions to him or monitors and performs actions autonomously
without any human intervention respectively.

HUAVsin
\_ Safe Alert

¢ MissionOutct;}hé)
—
(LOA)

Fig. 2. Bayesian Network model inferring the LOA from drones missions outcomes
thus from subjective mental workload features via number of UAVs divided by “Alert”
state.

4 User Interface

In this section, a user interface showing the 2D map of the city for display-
ing drones’ positions and useful information for the human operator is pre-
sented. The devised interface allows the human operator to take control of drones
through different flight commands. Depending on the current LOA of the sys-
tem, the number or type of flight commands displayed dynamically changes thus
defining the “Warning” or “Suggestion” interface.

A wide region of the operator’s display is covered with the 2D map of the city
in which drones are shown in real time. A colored marker on the map is used to
indicate both the drone’s GPS position and its current “Alert” (Fig. 3a). Three
different color are used to depict the drone’s level of risk: green ( “Safe”), yellow
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(d)

Fig. 3. Warning interface (a), UAVs data summary (b), flight commands in Suggestion
interface (c) and control and display information buttons (d). (Color figure online)

(“Warning”) and red ( “Danger”). Drone’s marker color changes from green to
red according to the linear interpolation described in (1). An extensive visual
summary of data about each drone is shown on the panel in the right side of the
interface (Fig. 3b). For each drone is reported its unique name, its battery level,
the bandwidth coverage of the area around its location and its flying altitude.
Right below the map are five controls buttons by which the operator can either
issue flight commands or show information about the map or UAVs are placed
(Fig.3d). The “Start” button is used to run the UAVs simulation, whereas the
“Options” button is used to show or hide the bandwidth coverage grid of the
city and the drones’ paths. The other three buttons namely, “Land”, “Hovering”,
and “Change_Path” are only available in the “Warning” interface and are used
by the human operator to take direct control of the drone. In this modality, the
UAV controller can land, hover or change the drone’s assigned path by defining
the next waypoint with respect to the drone’s current position. On the contrary,
in the “Suggestion” interface, the operator can only select actions among those
suggested from the system in the summary panel on the right of the interface
(Fig. 3c), according to Table 2. The replanning action implemented in this work
provides an alternative path from the actual position of the drone to its target
location by exploiting the Bing Map REST API” with a route planning request.

5 Experimental Results

As anticipated, the goal of this paper is to build an adjustable autonomy system
exploiting decision-making capabilities able to assist control tower operator by

" https://msdn.microsoft.com /it-it/library /ff701713.aspx.
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Table 2. System suggested actions for each drone.

Alert’s input variables | Variables values | Feasible actions
distanceObstacle Medium V Low | Hovering, Replanning, Land
levBattery Medium V Low | Land, Return to Launch (RTL)
levBandwidth Medium V Low | Replanning, Land

predicting mental workload changes or overload when the number of UAVs to
be monitored highly increases. To this aim, a BN probabilistic model classifier
was defined in this work to learn from data collected through a user study,
how to infer the appropriate level of autonomy in drone-traffic-control tasks.
Participants involved in the study (6 males and 2 females, aged between 24
to 27), were selected from the students of Politecnico di Torino in order to
gather data needed for developing a first prototype of the system. A preliminary
experiment with 4 participants was conducted to establish a prior subdivision
of the number of drones in three different ranges, namely: “Low”, “Medium”,
and “High”. In order to do this, participants were invited to monitor from 1 to
6 UAVs characterized by a level of risk linearly proportional to the number of
drones. Results obtained showed that a number of drones in “Low”, “Medium”
and “High” ranges consists in 1, 2 and from 3 up UAVs respectively.

Afterwards, a brief training phase was performed to instruct participants to
act as a real UAVs controller by performing some supervision and monitoring
tasks of a growing number of drones. They were invited to monitor and eventually
intervene on drones’ behavior by exploiting flight commands showed in the user
interface when critical conditions were warned by the UAVs through an alert.

The experiment was organized in six sessions (1 practice and 5 tests) of two
trials, one in “Warning” mode and the other in “Suggestion” mode by exploiting
the related interface. The above modalities were chosen in a random order so
that to limit the effect of learning. Each trial lasted approximately 4 min.

The first test (labeled T1), consisted of a single flying drone whose path was
designed for avoiding obstacles on its route. The other two tests T2 and T3 were
meant to evaluate the operator’s performance in monitoring two drones flying
in a medium bandwidth zone and at risk of colliding, respectively. The fourth
test (labeled T4) consisted of three drones, two of which at high risk of colliding
and one with a medium battery level. The other test T5 consisted of five drones,
three of which at high risk of colliding. Lastly, T6 consisted of six drones, each
of which required operator’s interventions to successfully complete the mission.
The outcome of each test may be “successfully completed” - if all drones land
correctly in the intended positions - or “failed” - if at least one drone crashes.
Such tasks have been specifically designed to test the operator’s performance in
the possible scenarios he could be involved into in air-traffic management.

During each trial, quantitative data about number of unmanaged drones thus
the outcome of each mission as well as information about the “Alert” status of
each drone were recorded. At the end of each trial, participants were asked to fill
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a NASA Task Load Index (TLX) questionnaire [18] for each action performed on
the drones. This questionnaire was exploited to evaluate operators’ self-assessed
workload on a six-dimensions scale regarding: mental demand, physical demand,
temporal demand, performance, effort, and frustration, with a score from 0 to
100. A global score is then calculated by a weighting procedure to combine
the six individual scale ratings. At the end of each session (after two trials),
participants were also asked to indicate which LOA of the system they preferred
in performing the test. For each participant, the execution of the tests and the
compilation of the questionnaires took about 2 h.
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Fig. 4. Results in terms of (a) percentage of participants able to succeed missions and
(b) NASA-TLX average score in the considered missions.

Results obtained in terms of number of completed missions as well as per-
centage of participants able to complete such missions are reported in Fig. 4a.
Whereas results concerning average values of the operators’ perceived workload
scores are illustrated in Fig.4b. It can be observed that the percentage of par-
ticipants able to complete mission T1 is significantly greater compared to the
missions TH and T6. Concerning operators’ self-assessed mental workload, the
NASA-TLX average score of mission T6 appeared to be considerably higher
than the others. Moving from these findings, operators’ mental workload score
in managing 1, 2 or more than 3 UAVs may be labeled as “Low”, “Medium”
and “High” workload respectively. These findings corroborate the preliminary
results obtained above by confirming the previous subdivision into three ranges
according to the number of drones.

Results obtained were then exploited to train the Bayesian Network classifier
to learn how to determine the appropriate level of autonomy for the system.
Evaluation from the point of view of accuracy was then performed. For this
purpose, a cross validation technique was used to test the classification model
performance and its ability to predict LOAs on unseen data. According to this
validation methodology, data collected were divided into two different groups,
namely training set - for training the BN - and wvalidation set - for accuracy
validation - as follows: 80% and 20% of the data respectively. Overall data set
contains as many rows as the actions carried out by participants on drones. Each
row consists of the number of UAVs in the three “Alert” states, the operator’s
mental workload level, the outcome of the mission and his/her preferred LOA
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in that situation. An example of a test result is shown in Table3. Then the
corresponding line for building both training and wvalidation sets is shown in
Table 4. The Bayesian Network training phase was performed by exploiting the
Netica Software® then the validation methodology was performed by obtaining a
classification LOA accuracy equal to 83.44%. Table 5 shows the confusion matrix
for each level of autonomy considered in this study.

Table 3. Example of a test result with 3 UAVs.

Drone 1 | Drone 2 | Drone 3 | Workload | MissionOutcome | Decision

Safe Safe Warning | 15.36 Success Warning

Table 4. Example of a row in the training or validation set.

#UAVs “Safe” | #UAVs “Warning” | #UAVs “Danger” | Workload | MissionOutcome | Decision

Medium Low Null Low Success Warning

Table 5. Confusion matrix

TrueWarning | TrueSuggestion | TrueAutonomous | ClassPrecision
Pred. warning 15 1 0 93.75%
Pred. suggestion 1 30 7 78.95%
Pred. autonomous| 0 4 19 82.61%
Class recall 93.75% 85.71% 73.08%

6 Conclusions and Future Work

In this work, an adjustable autonomy system exploiting decision-making capa-
bilities was developed to assist UAV operators by predicting the appropriate
LOA relying on operators’ mental workload measurements in drone monitoring
scenarios. A Bayesian Network (BN) classifier was exploited as learning proba-
bilistic model and the NASA-TLX questionnaire as subjective workload assess-
ment technique. Obtained results show the proposed model is able to predict the
appropriate LOA with an accuracy of 83.44%. Future work will focus on alter-
native workload assessment techniques, such as physiological measurements, to
capture cognitive information in real-time and continually with higher reliability
in the measurements.

8 https://www.norsys.com.
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