
Dynamic Hand Gesture Recognition for Mobile
Systems Using Deep LSTM

Ayanava Sarkar1, Alexander Gepperth2(B), Uwe Handmann3,
and Thomas Kopinski4

1 Computer Science Department, Birla Institute of Technology and Science,
Pilani, Dubai Campus, Dubai, UAE

2 Computer Science Department, University of Applied Sciences Fulda,
Fulda, Germany

alexander.gepperth@cs.hs-fulda.de
3 Computer Science Department, University of Applied Sciences Ruhr West,

Mülheim, Germany
4 Computer Science Department, University of Applied Sciences South Westphalia,

Iserlohn, Germany

Abstract. We present a pipeline for recognizing dynamic freehand ges-
tures on mobile devices based on extracting depth information coming
from a single Time-of-Flight sensor. Hand gestures are recorded with a
mobile 3D sensor, transformed frame by frame into an appropriate 3D
descriptor and fed into a deep LSTM network for recognition purposes.
LSTM being a recurrent neural model, it is uniquely suited for classify-
ing explicitly time-dependent data such as hand gestures. For training
and testing purposes, we create a small database of four hand gesture
classes, each comprising 40× 150 3D frames. We conduct experiments
concerning execution speed on a mobile device, generalization capabil-
ity as a function of network topology, and classification ability ‘ahead of
time’, i.e., when the gesture is not yet completed. Recognition rates are
high (>95%) and maintainable in real-time as a single classification step
requires less than 1 ms computation time, introducing freehand gestures
for mobile systems.

Keywords: Mobile computing · Gestural interaction · Deep learning

1 Introduction

Gestures are a well-known means of interaction on mobile devices such as smart
phones or tablets up to the point that their usability is so well-integrated into
the interface between man and machine that their absence would be unthink-
able. However, this can only be stated for touch gestures as three-dimensional
or freehand gestures have to yet find their way as a means of interaction into
our everyday lives. While freehand gestures are steadily being included as an
additional means of control in different various fields (entertainment industry,

c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 19–31, 2017.
https://doi.org/10.1007/978-3-319-72038-8_3



20 A. Sarkar et al.

infotainment systems in cars), within the domain of mobile devices a number of
limitations present obstacles to be overcome in order to make this an unequivo-
cally seamless interaction technique.

First and foremost, data has to be collected be in an unobtrusive man-
ner, hence no sensors attached to the user’s body can be utilized. As mobile
devices have to remain operable independent of the user’s location the number
of employable technologies is drastically reduced. Eligible sensor technology is
mainly limited to Time-of-Flight (TOF) technology as it is not only capable
to provide surrounding information independent of the background illumination
but moreover can do so at high frame rates. This is the presupposition to realize
an interface incorporating freehand gesture control as it allows for the system’s
reaction times to remain at a minimum. TOF technology has to yet be estab-
lished as a standard component in mobile devices (as e.g. in the Lenovo PHAB2
Pro) and it moreover suffers from a comparatively small resolution, potentially
high noise and heat development. Despite these drawbacks it is a viable choice
since the benefits outweigh the disadvantages as will be presented in this con-
tribution. Realizing freehand gestures as an additional means of control not
only overcomes problems such as usage of gloves or the occlusion of the screen
interface during touch gesture interaction. It moreover also allows for increased
expressiveness (with additional degrees of freedom) which in turns allows for a
completely new domain of novel applications to be developed (especially in the
mobile domain). This can be corroborated by the fact that car manufacturers,
which have always been boosting innovations by integrating new technologies
into the vehicle, have recently begun incorporating freehand gestures into the
vehicle interior (e.g. BMW, VW etc.). The automotive environment faces the
same problems such as stark illumination variances, but on the other hand can
compensate difficulties such as high power consumption.

In this contribution we present a light-weight approach to demonstrate how
dynamical hand gesture recognition can be achieved on mobile devices. We col-
lect data from a small TOF sensor attached to a tablet. Machine Learning models
are created by training from a dynamic hand gesture data base. These models
are in turn used to realize a dynamic hand gesture recognition interface capable
of detecting gestures in real-time.

The approach presented in this contribution can be set apart from other work
in the field of Human Activity Recognition (HAR) by the following aspects:
We utilize a single TOF camera in order to retrieve raw depth information
from the surrounding environment. This allows for high frame rate recordings of
nearby interaction while simultaneously making the retrieved data more robust
vs. nearby illumination changes. Moreover, our approach is viable using only
this single sensor, in contrast to other methodology where data coming from
various kinds of sources is fused. Furthermore, data acquired in a non-intrusive
manner allows for full expressiveness in contrast to data coming from sensors
attached to the user’s body. The process as a whole is feasible and realizable in
real-time insofar as that once the model is generated after training, it can be
simply transferred onto a mobile device and utilized with no negative impact on



Dynamic Hand Gesture Recognition for Mobile Systems Using Deep LSTM 21

the device’s performance. The remaining sections are organized as follows: Work
presented in this contribution is contrasted to state of the art methodology within
the domain of dynamic freehand gesture recognition (Sect. 1.1). The Machine
Learning models are trained on a database described in Sect. 2.1. Data sample/s
are transformed and presented to the LSTM models in the manner outlined in
Sect. 2.2. The LSTM models along with the relevant parameters are subsequently
explained in Sect. 2.3. The experiments implemented in this contribution are laid
out in Sect. 3 along with the description of the parameter search (Sect. 3.1) and
model accuracy (Sect. 3.3). The resulting hand gesture demonstrator is explained
in Sect. 5 along with an explanation of its applicability. Section 6 sums up this
contribution as a whole and provides a critical reflection on open questions along
with an outlook on upcoming future work.

1.1 Dynamic Hand Gesture Detection - An Overview

Recurrent Neural Networks (RNNs) are employed for gesture detection by fus-
ing inputs coming from raw depth data, skeleton information and audio infor-
mation [4]. Recall (0.87) and Precision rates (0.89) peak, as expected, when
information is fused from all three channels. The authors of [5] present DeepCon-
vLSTM, a deep architecture fusing convolutional layers and recurrent layers from
an LSTM for Human Activity Recognition (HAR). Data is provided by attaching
several sensors to the human body and therewith extracting accelerometric, gyro-
scopic and magnetic information. Again, recognition accuracy improves strongly
as more data is fused. Their approach demonstrates how HAR can be improved
with the utilization of LSTM as CNNs seem not to be able to model temporal
information on their own. The authors of [6] utilize BLSTM-RNNs to recog-
nize dynamic hand gestures and compare this approach to standard techniques.
However, again body-attached sensors are employed to extract movement infor-
mation and results are comparatively low regarding the fact that little noise is
present during information extraction. No information is given with regard to
execution time raising the question of real-time applicability.

2 Methods

2.1 The Hand Gesture Database

Data is collected from a TOF sensor at a resolution of 320× 160 pixels. Depth
thresholding removes most of the irrelevant background information, leaving
only hand and arm voxels. Principal-Component Analysis (PCA) is utilized to
crop most of the negligible arm parts. The remaining part of the point cloud
carries the relevant information, i.e., the shape of the hand. Figure 1 shows the
color-coded snapshot of a hand posture.



22 A. Sarkar et al.

Fig. 1. Data and data generation. Left: Sample snapshot of a resulting point cloud
after cropping from the front (left) and side view (right) during a grabbing motion.
The lower snapshot describes the hand’s movement for each viewpoint (left and right
respectively). Right: The Setup - tablet with a picoflexx (indicated with yellow circle).
(Color figure online)

We recorded four different hand gestures from a single person at one location
for our database: close hand, open hand, pinch-in and pinch-out. The latter
gestures are performed by closing/opening two fingers. For a single dynamic
gesture recording, 40 consecutive snapshots (no segmentation or sub-sampling)
are taken from the sensor and cropped by the aforementioned procedure. In this
manner, 150 gesture samples at 40 frames per gesture are present per class in
the database, summing up to a total of 24.000 data samples.

2.2 From Point Clouds to Network Input

Description of a point cloud usually is implemented by so-called descriptors
which, in our case, need to describe the phenomenology of hand, palm and fin-
gers in a precise manner at a certain point in time. The possibilities of describing
point cloud data are confined to either utilizing some form of convexity measure
or calculating the normals for all points in a cloud. Either way, it has to remain
computationally feasible in order to maintain real-time capability. In this con-
tribution, the latter methodology is implemented: for a single point cloud, the
normals for all points are calculated. Then, for two randomly selected points in
a cloud, the PFH metric is calculated [7,8]. This procedure is repeated for up to
5000 randomly selected point pairs extracted from the cloud. Each computation
results in a descriptive value which in turn is binned into a 625-dimensional his-
togram. Therefore, one such histogram provides a description of a single point
cloud snapshot at a single point in time. These histograms form the input for
training and testing the LSTM models.



Dynamic Hand Gesture Recognition for Mobile Systems Using Deep LSTM 23

2.3 LSTM Model for Gesture Recognition

In our model for dealing with the video frames sequentially, we use a deep RNN
with LSTM model neurons, where the LSTM term for neurons is “memory cell”
and the term for hidden layer is “memory cell”. At the core of each memory cell
is a linear unit supported by a single self-recurrent connection whose weight is
initialized to 1.0. Thus, in the absence of any other input, this self-connection
serves to preserve the cell’s current state from one moment to the next. In
addition to the self-recurrent connection, cells also receive input from input
units and other cell and gates. The key component of a LSTM cell inside the
memory block is its cell state, referred to as Ct or the cell state at time step t.
This cell state remains unique for a cell and any change to the cell state is done
with the help of gates - input gate, output gate and the forget gate. The output
of the gates is a value between 0 and 1, with 0 signifying not “let anything
through the gate” and 1 signifying “let everything through the gate”. The input
gate determines how much of the input to be forwarded to the cell, then the
forget gate calculates how much of the cell’s previous state to keep depending
on how much to let the input affect the cell state, thus, the extent to which a
value remains in the cell state and finally, the output gate computes the output
activation, thereby, determining how much of the activation of the cell to be
output.

At a time step t, the input to the network is xt and ht−1, where the former
is the input and the latter is the output at time step t− 1. For the first time
step, the ht−1 is taken to be 1.0. In the hidden layers or the memory blocks, the
output of one memory block forms the input to the next block. The following
are the equations revolving around the inner complexities of an LSTM model,
where W refers to the weights, b refers to the biases and the σ refers to the
sigmoidal function, outputting a value between 0 and 1:

it = σ(Wixxt + Wihht−1 + bi) (1)

Equation 1 refers to the calculation of the input gate. Final output of the input
gate is a value between 0 and 1.

ft = σ(Wfxxt + Wfhht−1 + bf ) (2)

Equation 2 refers to the calculation of the forget gate. Final output of the forget
gate is a value between 0 and 1.

ot = σ(Woxxt + Wohht−1 + bo) (3)

Equation 3 refers to the calculation of the output gate. Final output of the output
gate is a value between 0 and 1.

gt = tanh(Wgxxt + Wghht−1 + bg) (4)



24 A. Sarkar et al.

Equation 4 refers to the calculation of gt that gives a value between −1 and 1,
specifying the amount of importance of the input that is relevant to the cell
state, where the tanh function outputs a value between −1 and 1. Here, gt refers
to the new candidate values that must be added to the existing or the previous
cell state.

ct = ftct−1 + itgt (5)

Equation 5 refers to the calculation of the new cell state, replacing the old one.

ht = tanh(ct)ot (6)

Equation 6 refers to the calculation of the hidden state or the output of that
particular memory block, which then serves as the input to the next memory
block. The tanh function allows it to output a value between −1 and 1. Further
information about these equations can be found in [1].

The final output of the LSTM network is produced by applying a linear
regression readout layer that transforms the states Ct of the last hidden layer into
class membership estimates, using the standard softmax non-linearity leading to
positive, normalized class membership estimates.

3 Experiments and Observations

The implementation has been done in TensorFlow using Python. There is a total
150 video files for each of the 4 classes of hand gestures. The model is trained on
Ntr = 480 total samples, with 120 samples belonging to each of the 4 classes of
hand gestures. The model is then evaluated using a total of Nte = 120 samples,
with 30 samples belonging to each of the 4 classifying classes. The three parts of
the experiment adhere to this partitioning of the data. In our implementation,
each gesture is represented by a tensor of 40× 625 numbers, while the input of
the deep LSTM network corresponds to the dimension of a single frame, that is
625 numbers.

3.1 Model Parameters

Network training was conducted using the standard tools provided by the Ten-
sorFlow package, namely the Adam optimization algorithm [2,3]. Since the per-
formance of our deep LSTM network depends strongly on network topology and
the precise manner of conducting the training, we performed a search procedure
by varying the principal parameters involved here. These are given in Table 1,
as well as the range in which they were varied.



Dynamic Hand Gesture Recognition for Mobile Systems Using Deep LSTM 25

Table 1. Principal parameter for network topology and training. The last column
indicated the range of values that were exhaustively tested for these parameters.

Symbol Meaning Variability

B Batch size 2, 5, 10

M # of Memory Blocks (MB) 1–4

C # of LSTM Cells per MB 128, 256, 512

I SGD training iterations A = 100, B = 500, C = 1000

η Learning rate 0.1, 0.001, 0.0001, 0.00001

3.2 Deep LSTM Parameter Search

Initially with B = 2, 5, 10, M is varied from 1 to 4 for each value of B, C is
varied with 128, 256 and 512 for each value of B and M , and I has been varied
between 100, 500 and 1000 for each value of the other three parameters. The
learning rate is kept constant at 0.0001. Thus, for all combinations of the B, M,
C and I, a total of 108 experiments has been carried out.

Now let the predictions for each sample data entered into the model be
denoted by Pi , where i refers to the index of the sample data in the test data.
Pi is calculated for all frames of a test sample i, where the prediction obtained
at the last frame defines Pi . It is also possible to consider Pi for frames <40,
achieving ahead-of-time guesses at the price of potentially reduced accuracy. Pi

is a vector of length 4, since there are 4 classes for classification in the experiment.
We take the argmax of these 4 elements to indicate the predicted class as shown
in Eq. 7. Now to test if the prediction is correct or not it is compared with the
label of the data sample, li.

p̃i = argmax(Pi ) (7)

ξ = 100
#(p̃i = li)

Nte
(8)

Equation 8 refers to the simple formula used for calculating the accuracy.

3.3 Measuring Accuracy as a Function of Observation Time

In the second part of our experimentation, we train the model similar to
Sect. 3.2, however in the testing phase, we calculate the predictions at differ-
ent in-gesture time steps (frames) t. Let Pi,t denote the prediction for sam-
ple i at t < 40. In order to obtain an understanding of how the prediction
varies more frames are processed, we calculate the predictions Pi,t at time steps
t = {10, 20, 25, 30, 39, 40}. Here, we perform class-wise analysis to determine
which classes lend themselves best to ahead-of-time “guessing” which can be
very important in practice.



26 A. Sarkar et al.

3.4 Speedup and Optimization of the Model

The implementation shown so far is focused on accuracy alone. Since mobile
devices in particular lack faster and more capable processing units, the aim of
this part of the article is to speed-up gesture recognition as much as possible
by simplifying the LSTM model, if possible without compromising its accuracy.
To this end, B has been kept constant at 2, while M is taken to be 1 in all the
experiments. The number of memory cells in the single memory block is taken as
either 8 or 10. Now, with such a small network, we are able to greatly speed up
the system as well as minimize the computation complexities involved regarding
the entire model.

4 Experimental Results

4.1 Deep LSTM Parameter Search

With the 108 experiments conducted by varying B, M , C and I, 20 accuracies
have been reported in Table 2, with the idea of covering the diversity of the
experimental setup of 108 experiments.

From the observations, it can be concluded that for a given M , C and I,
the accuracy improves with the increase in the value of B. Thus, B = 10 will
have a greater accuracy on the test data as compared to B = 2 or B = 5. This
can be explained by the fact that for a given I, the model undergoes a total
of (I X B) times of training in this experimental setup. Thus, as the number
of B increases, so does the value (I X B) and consequently the accuracy of
prediction. Now, for a given B, C and I, if M is varied between 1 to 4, it has
been observed that with the increase in the number of hidden layers or M , the
accuracy of prediction improves significantly. This is because, as the number of
layers increases, the network becomes more complex with the ability to take
into account more complex features from the data and hence, account for more
accurate predictions. Similarly, when keeping B, M and I constant and varying
C between 128, 256 and 512, we observe that accuracy increases with the increase
in the number of memory cells in each memory block, thereby bearing a directly
proportional relationship. Similar results were observed when I is varied, keeping

Table 2. Results for exhaustive parameter search in topology space. In total, we con-
ducted 108 experiments by varying the network topology and training parameters. The
best 18 results are shown here. The column headings correspond to the symbols defined
in Table 1.

B 2 5 10 10 5 2 10 5 5 10 10 5 2 5 2 5 5 2

M 1 1 4 3 2 1 3 2 4 1 2 1 4 4 2 4 2 1

C 512 256 128 512 128 256 256 512 128 128 128 512 128 512 512 256 128 128

I C C B B B C B C C B C C C B C C C C

ξ 100 96.7 100 98.3 100 95 96.7 96.7 100 97.5 99.2 100 100 99.2 100 100 95.8 96.7



Dynamic Hand Gesture Recognition for Mobile Systems Using Deep LSTM 27

Fig. 2. Left: accuracy of prediction of a single test data sample, with B = 2, M = 1, C
= 512 and I = 1000, at different in-gesture time steps t. Right: accuracy of prediction
(taken at the end of a gesture) depending on training iterations for a small LSTM
network size.

B, M and C as constant parameters, which can be explained by the fact that the
model has more time or iterations to adjust its weight in order to bring about
the correct prediction. Further, Table 2 shows the accuracies for the different
combinations of the network parameters.

4.2 Measuring Accuracy as a Function of Observation Time

In this part we calculate different quality measures as a function of the frame t
they are obtained. The graph in Fig. 2 shows that as the number of time steps
increases, the accuracy increases until the maximum accuracy is reached in the
last 5 time steps. Furthermore, we can also evaluate the confidence of each clas-
sification: as classification of test sample i is performed by taking the argmax of
the network output Pi , the confidence of this classification is related to max Pi .
We might expect that the confidence of classification increases with t < 40 as
well as more frames have been processed for higher t. Now, Fig. 3a and b depicts
the average maxima plus standard deviations (measured on test data) as a func-
tion of their class. We observe that, in total coherence to the increase in accuracy
over in-gesture time t, the certainty of predictions increases as well, although we
observe that this is strongly depending on the individual classes, reflecting that
some classes are less ambiguous than others.

4.3 Speedup and Optimization of the Model

We observe that as the size of the network is greatly reduced comprising a single
memory block and the number of memory cells being either 8 or 10, the accuracy
is not as great as observed in Sect. 4.1. Hence, in order to accomplish the same
level of accuracy as obtained in Sect. 4.1, the number of iterations for the training
process was increased. The performances can be referred to in Fig. 2, showing



28 A. Sarkar et al.

(a) Average and standard devia-
tions of prediction maxima plotted
against in-gesture time for classes
1 and 2

(b) Average and standard devia-
tions of prediction maxima plotted
against in-gesture time for classes
3 and 4

Fig. 3. “Ahead of time” classification accuracy for classes 1 and 2 (left) as well as 3
and 4 (right).

that 100% accuracy can be achieved even with small networks, although training
time (and thus the risk of overfitting) increases strongly.

5 System Demonstrator

5.1 Hardware

The system setup consists of a Galaxy Notepro 12.2 Tablet running Android
5.02. A picoflexx TOF sensor from PMD technologies is attached to the tablet
via USB. It has an IRS1145C Infineon 3D Image Sensor IC chip based on pmd
intelligence which is capable of capturing depth images with up to 45 fps. VCSEL
illumination at 850 nm allows for depth measurements to be realized within a
range of up to 4 m, however the measurement errors increase with the distance
of the objects to the camera therefore it is best suited for near-range interac-
tion applications of up to 1 m. The lateral resolution of the camera is 224× 171
resulting in 38304 voxels per recorded point cloud. The depth resolution of the
picoflexx depends on the distance and with reference to the manufacturer’s spec-
ifications is listed as 1% of the distance within a range of 0.5–4 m at 5 fps and 2%
of the distance within a range of 0.1–1 m at 45 fps. Depth measurements utiliz-
ing ToF technology require several sampling steps to be taken in order to reduce
noise and increase precision. As the camera allows several pre-set modes with a
different number of sampling steps we opt for 8 sampling steps taken per frame
as this resulted in the best performance of the camera with the lowest signal-
to-noise ratio. This was determined empirically in line with the positioning of
the device. Several possible angles and locations for positioning the camera are
thinkable due to its small dimensions of 68 mm× 17 mm× 7.25 mm. As we want
to setup a demonstrator to validate our concept the exact position of the camera



Dynamic Hand Gesture Recognition for Mobile Systems Using Deep LSTM 29

Fig. 4. Graph plotting the time required to crop the hand and reduce the number of
relevant voxels with respect to the number of total points in the cloud.

is not the most important factor however should reflect a realistic setup. In our
situation we opted for placing it at the top right corner when the tablet is placed
in a horizontal position on the table. However, it should be stated here that any
other positioning of the camera would work just as well for the demonstration
presented in this contribution.

5.2 System Performance

One classification step of our model takes about [1.6e−05, 3.8e−05] of compu-
tation time (in s). As Fig. 4 indicates, the time required to crop the cloud to its
relevant parts is linearly dependent on the number of points within the cloud.

This is the main bottleneck of our approach as all other steps within
the pipeline are either constant factors or negligible w.r.t. computation time
required. During real-time tests our systems achieved frame rates of up to 40 fps.

6 Conclusion

We presented a system for real-time hand gesture recognition capable of run-
ning in real time on a mobile device, using a 3D sensor optimized for mobile
use. Based on a small database recorded using this setup, we prove that high
speed and an excellent generalization capacity are achieved by our combined pre-
processing+deep RNN-LSTM approach. As LSTM is a recurrent neural network
model, it can be trained on gesture data in a straightforward fashion, requiring
no segmentation of the gesture, just the assumption of a maximal duration cor-
responding to 40 frames. The preprocessed signals are fed into the network frame
by frame, which has the additional advantage that correct classification is often



30 A. Sarkar et al.

achieved before the gesture is completed. This might make it possible to have an
“educated guess” about the gesture being performed very early on, leading to
more natural interaction, in the same way that humans can anticipate the reac-
tions or statements of conversation partners. In this classification problem, it is
easy to see why “ahead of time” recognition might be possible as the gestures
differ sufficiently from each other from a certain point in time onwards.

A weak point of our investigation is the small size of the gesture database
which is currently being constructed. While this makes the achieved accuracies
a little less convincing, it is nevertheless clear that the proposed approach is
basically feasible, since multiple cross-validation steps using different train/test
subdivisions always gave similar results. Future work will include performance
tests on several mobile devices and corresponding optimization of the used algo-
rithms (i.e., tune deep LSTM for speed rather than for accuracy), so that 3D
hand gesture recognition will become a mode of interaction accessible to the
greatest possible number of mobile devices.

References

1. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

2. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

3. Bengio, Y.: Practical recommendations for gradient-based training of deep architec-
tures. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of
the Trade. LNCS, vol. 7700, pp. 437–478. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35289-8 26

4. Neverova, N., et al.: A multi-scale approach to gesture detection and recognition. In:
Proceedings of the IEEE International Conference on Computer Vision Workshops
(2013)

5. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks
for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

6. Lefebvre, G., Berlemont, S., Mamalet, F., Garcia, C.: BLSTM-RNN based 3D
gesture classification. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa,
A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 381–
388. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40728-4 48

7. Rusu, R.B., et al.: Aligning point cloud views using persistent feature histograms.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2008. IEEE (2008)

8. Caron, L.-C., Filliat, D., Gepperth, A.: Neural network fusion of color, depth and
location for object instance recognition on a mobile robot. In: Agapito, L., Bronstein,
M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8927, pp. 791–805. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16199-0 55

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-642-40728-4_48
https://doi.org/10.1007/978-3-319-16199-0_55


Dynamic Hand Gesture Recognition for Mobile Systems Using Deep LSTM 31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Dynamic Hand Gesture Recognition for Mobile Systems Using Deep LSTM
	1 Introduction
	1.1 Dynamic Hand Gesture Detection - An Overview

	2 Methods
	2.1 The Hand Gesture Database
	2.2 From Point Clouds to Network Input
	2.3 LSTM Model for Gesture Recognition

	3 Experiments and Observations
	3.1 Model Parameters
	3.2 Deep LSTM Parameter Search
	3.3 Measuring Accuracy as a Function of Observation Time
	3.4 Speedup and Optimization of the Model

	4 Experimental Results
	4.1 Deep LSTM Parameter Search
	4.2 Measuring Accuracy as a Function of Observation Time
	4.3 Speedup and Optimization of the Model

	5 System Demonstrator
	5.1 Hardware
	5.2 System Performance

	6 Conclusion
	References




