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Abstract. Haze affects the quality and visibility of the image. Many
dehazing algorithms have been developed in recent years. However, the
evaluation for the performance of the dehazing method is still not solved.
The assessment is not easy to achieve since the reference image is not
available. In this paper, a no reference image quality evaluation indica-
tor is proposed to assess the visibility of a dehazed image. A multi-scale
contrast feature is designed to measure the image sharpness. Consider-
ing some dehazing methods often cause under-dehazing results, a dark
channel feature is employed to describe the haze residual degree of the
restored image. Fusing the two features together, the final indicator that
can measure the image visibility is obtained. Experimental results show
that the assessment results are highly correlated with human visual per-
ceptions and objective quality scores, which demonstrate the effective-
ness and robustness of the proposed approach.
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1 Introduction

Outdoor images captured from natural scenes are inevitably degraded under
foggy weather, causing reduced contrast and faded vividness of the image [1].
Hazy images cannot meet the requirement of consumer photography and com-
puter vision applications (e.g., object recognition, video surveillance). To address
this problem, much work has been carried out to restore the image visibility. In
particular, some significant progresses have been achieved in recent years. He et
al. [2] proposed a dark channel prior to remove haze, which achieved impres-
sive results. Tang et al. [3] trained a regression model to estimate the medium
transmission map by extracting a set of haze-relevant features and training with
Random Forest.

Despite of the remarkable progresses of image dehazing, the method of evalu-
ating the performance of the dehazing algorithm is addressed very little. Nishino
et al. [4] and Meng et al. [5] adopted the widely-used subjective analysis to con-
duct assessment according to their own judgements. When conducting the sub-
jective evaluation, evaluators were more inclined to their own advantages, making
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it tough to reach a unified evaluation result. Dai and Tarel [6] invited seven stu-
dents to evaluate 1500 dehazed images through visual judgements, which reduced
the personal subjectivity to a certain degree.

In order to make quantitative analysis, Wu et al. [7] and Mai et al. [8]
employed traditional reference Image Quality Assessment (IQA) indicators to
evaluate dehazing performances, such as Mean Squared Error (MSE), Peak Sig-
nal to Noise Ratio (PSNR), and Structural Similarity (SSIM) [9]. Since haze-free
images were unavailable, these metrics can only be calculated with original hazy
images, leaving the evaluation results unconvincing and unreliable. To make
the reference assessment feasible, Zhu et al. [10] synthesized hazy images and
calculated these IQA indicators between dehazed and clear images. The same
assessment manner can be seen in [3,11–13]. However, such IQA indicators are
mainly used to evaluate typical image distortions, like blurring and compression.
They are not specially designed for haze removal, which cannot effectively and
reasonably evaluate dehazing algorithms.

Hautiere et al. [14] paid attention to the contrast enhancement evaluation
for restoration algorithms, which is a close work to dehazing evaluation. In their
method, three different descriptors were developed based on the gradient of
visible edges, which can be used to measure the image visibility. Fang et al. [15]
designed an exclusive indicator for haze removal assessment, which measured the
image visibility through the local band-limited contrast. However, the gradient
and contrast information is very sensitive to noise. These indicators cannot give
robust and accurate evaluation results in some cases.

The image visibility is an important factor for the evaluation of dehazing
algorithms. In this paper, we put emphasis on the measurement of image visi-
bility from two aspects: image sharpness and haze residual degree. The image
sharpness is measured with a proposed multi-scale contrast feature, and the haze
residual degree is described using the dark channel feature. Fusing the two fea-
tures together, an indicator is derived to evaluate the visibility of the restored
image. Experimental results demonstrate the effectiveness and robustness of the
proposed method.

The remainder of the paper is organized as follows. In Sect. 2, we present
the specially designed indicator to measure the visibility of the restored image.
Section 3 gives the experimental results and analysis. Finally, we summarize this
paper in Sect. 4.

2 The Proposed Approach

A clear restored image should have enhanced contrast and no haze disturbance.
In this paper, two features are designed to describe the image sharpness and
haze residual degree, respectively. With the combination of the two features, a
visibility indicator is derived to rate the image clarity level.
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2.1 Multi-scale Contrast Feature

Images with higher contrast are sharper in human visual perceptions. There-
fore, the measurement of image contrast can indicate the image sharpness to
a certain degree. Weber contrast and Michelson contrast are two popular con-
trast definitions, which reflect the global contrast of the whole image. Since the
restoration is usually spatial-variant, global contrast cannot make use of local
information and will lead to inaccurate measurement. Local variance can aggre-
gate information of all pixels and attenuate the disruption of extreme noise,
which tends to be a good contrast indicator. To avoid expanding magnitude, the
Root Mean Square (RMS) is more common to be used [16]. However, local RMS
is sensitive to the window size selected, leading to unfixed results under different
windows. To solve this problem, in this paper, a multi-scale contrast descriptor
is developed, which can give stable and unified results.

For an image I, we define its contrast map as the local RMS under a non-
overlapping sliding window, described as:

CM(u, v) =

√
√
√
√

1
k2

k∑

x=1

k∑

y=1

[

I(k(u − 1) + x, k(v − 1) + y) − μ(u, v)
]2 (1)

where k is the local window size, and μ is the local average value:

μ(u, v) =
1
k2

k∑

x=1

k∑

y=1

I (k(u − 1) + x, k(v − 1) + y) (2)

We adopt down-sampling to generate image pyramid, denoted as
I(0), I(1), . . . , I(n), where I(0) is the initial image, I(j+1) is the down-sampled result
of I(j). We call each down-sampled image a layer. In order to guarantee the image
size big enough for the subsequent operations, the last layer I(n) should meet to:

min
(

h(n), w(n)
)

≥ ξ (3)

where h(n) and w(n) represent the height and width of the image I(n), respec-
tively. In this paper, ξ is fixed to 200.

Within one pyramid layer I(j), a set of contrast maps are generated with
different window size ki, which is defined as:

k
(j)
i =

⌊
i

m(j + 1)
min

(
h(j)

10
,
w(j)

10

)⌋

i = 1, 2, . . . ,m (4)

where m is the number of scales in one pyramid layer, and �·� indicates rounding
down. In this paper, m is fixed to 3. For each image I(j), we produce three
contrast maps, marked as CM(j)

1 , CM(j)
2 , CM(j)

3 , which consist of one octave.
Note that

⌊
1

(j+1)min
(

h(j)

10 , w(j)

10

)⌋

is the max size of local window, which ensures
that the smallest size of the contrast map is at least 10 × 10.
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Fig. 1. An illustration for the computing of multi-scale contrast descriptor.

Since the sizes of three contrast maps in one octave are different, we resize
CM(j)

2 and CM(j)
3 by nearest-neighbor interpolation to keep the same size with

CM(j)
1 . In each pixel position, the largest value of three contrast maps is selected.

Then, a new map is generated as:

CMap(j)(u, v) = max
(

CM(j)
1 (u, v),CM(j)

2 (u, v),CM(j)
3 (u, v)

)

(5)

Once we obtain the CMap(j) for the jth pyramid layer, the other layers’
maps can be generated in the same way. Computing each map’s average value
and integrating them with L2 norm, the multi-scale contrast descriptor can be
derived, formally defined as:

Cm =
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(6)

A detailed illustration for the computing of multi-scale contrast descriptor is
shown in Fig. 1. This descriptor integrates multi-scale information through the
image pyramid, which is scale-invariant along with a certain anti-noise ability.

At last, a multi-scale contrast feature that describes the contrast enhance-
ment for a restored image is defined as:

MC =
Cd

m

Ch
m

(7)

where Cd
m and Ch

m stand for the multi-scale contrast descriptor of the dehazed
image and hazy image, respectively. The multi-scale contrast feature MC can
reflect the sharpness of a restored image. The larger the MC, the clearer the
restored image.

2.2 Dark Channel Feature

The contrast feature can reflect image sharpness to some extent. However, when
the restored images are under-dehazed, the difference of their contrast is small,
and the contrast feature cannot give distinguishing measurement results.
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A highly relevant feature with haze is the dark channel prior introduced
by He et al. [2]. The prior reveals that except for the sky area, some pixels in
a local haze-free region have at least one color channels with low intensities.
In contrast, hazy regions do not meet this principle and have high minimum
intensities among three color channels in a local patch. For a dehazed image, the
more haze is removed, the more pixels meet the dark channel prior. Thus, we
utilize the dark channel feature to measure the haze residual degree for under-
dehazed cases.

The minimum intensity map for an image is defined as:

Im(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

(Ic(y))) (8)

where I represents the image, Ic is one of the color channels of I, and Ω(x) is a
local patch centered at pixel x. The patch size is 15 × 15.

The average of minimum intensity map can reflect the haze residual degree
for a restored image. To reduce the effect of brightness, the minimum intensity
map is normalized by the sum of RGB channels. Since sky regions do not fit
the dark channel prior that always have high intensities for all channels, using
the minimum intensity map in sky regions will lead to wrong evaluations. Thus,
we define the average of the normalized minimum intensity map in the non-sky
region as the dark channel feature to describe the haze residual degree, formally
described as:

DC =
1

‖S‖
∑

x∈S

Im(x)
∑

c∈{r,g,b}
Ic(x) + ε

(9)

where S is the non-sky region of the image, ε is a small value to prevent the
denominator from being zero, which is set to 10−6 in this paper. With the dark
channel feature DC, under-dehazed images can be identified and evaluated. The
larger the DC, the more remaining haze in the restored image.

2.3 The Proposed Visibility Indicator

The restored image should have enhanced contrast and no haze disturbance.
Higher MC indicates more contrast enhancement and lower DC represents less
remaining haze. Hence, the combination of the two features can reflect the visi-
bility for a restored image. We define the visibility indicator as:

VI = MC − αDC (10)

where α is a parameter used to control the relative importance between the
contrast feature and the dark channel feature. Bigger α gives more relative
importance to DC than MC, which should happen when the restored image is
under-dehazed. From this perspective, we make the parameter α self-adaptive,
described as below.

Generally, dense hazy is difficult to be removed and much possible to be
under-dehazed. Hence, the more dense haze pixels, the more likely the image
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is to be under-dehazed. According to the statistics of abundant hazy images’
minimum intensity maps, the dense haze pixel should satisfy the following con-
straint:

Im(x) > 0.6 (11)

A hazy image with more dense haze pixels should adopt higher α, and less
dense pixels should use lower α. Letting r denotes the proportion of dense hazy
pixels in the entire image, the parameter α is decided according to:

α =

{

1 r < 0.4
2 r ≥ 0.4

(12)

Another key point for the designed indicator is the calculation in sky regions.
In general, sky is a challenging region to be restored by dehazing algorithms,
which will introduce extra noise and halo artifacts. These introduced distortions
will inevitably cause high local RMS and further lead to high MC. In addition,
the sky region is also not applicable to DC feature. Therefore, to guarantee the
robustness of the indicator, both MC and DC should be calculated in a non-sky
mask. An automatic sky detection approach proposed in [6] is adopted here, and
manual segmentation is also feasible.

The designed indicator can measure the visibility for a dehazed image. A
bigger VI indicates more contrast improvement and less remaining haze, reveal-
ing a clearer dehazing result. The effectiveness and robustness of the designed
indicator will be demonstrated by the following experiment section.

3 Experiments and Analysis

In order to verify the effectiveness of our proposed indicator, we col-
lect dehazed image samples from http://www.cs.huji.ac.il/∼raananf/projects/
dehaze cl/results/ by the state-of-the-art algorithms including He et al.’s [2],
Nishino et al.’s [4], Meng et al.’s [5], Fattal’s [11,17], Gibson and Nguyen [18]
and Kim et al.’s [19] methods. Figure 2 presents some dehazing instances along
with their corresponding hazy images. For each hazy image, four dehazing results
with different clarity are given. Their clarity decreases gradually from left to
right.

In this paper, the visibility indicator VI is proposed to assess the visibility
of the dehazed image, which is the combination of multi-scale contrast feature
MC and dark channel feature DC. Higher MC denotes more contrast enhance-
ment and a sharper restored result. Lower DC indicates less remaining haze.
The indicator VI can reflect the image visibility. The higher the VI, the clearer
the dehazed result. Table 1 gives MC, DC and VI values for the dehazed images
in Fig. 2. As can be seen, the results of the visibility indicator VI decrease pro-
gressively from (b) to (e) for all images, which give consistent evaluation results
with visual judgements. Note that all the calculations are under a non-sky mask
for the Buildings image in the first row, which avoids the improper increment of
MC caused by noise in the sky region. For the Farmland and Red House images,

http://www.cs.huji.ac.il/~raananf/projects/dehaze_cl/results/
http://www.cs.huji.ac.il/~raananf/projects/dehaze_cl/results/


670 M. Qin et al.

B
ui

ld
in

gs

Input Fattal 14 Gibson et al. Kim et al. Meng et al.

Fa
rm

la
nd

R
ed

 H
ou

se
C

ity

Input

Input

Fattal 14 Kim et al. Fattal 08 Gibson et al.

Fattal 14 Fattal 08 He et al. Kim et al.

(a) (b) (c) (d) (e)

Input Fattal 14 He et al. Gibson et al.Kim et al.

Fig. 2. (a) Hazy image. From (b) to (e) are dehazing results obtained by the method
given in the bottom-right corner. Their clarity decreases gradually from left to right.

Table 1. Results of MC, DC and VI on the four groups of images in Fig. 2

Image MC DC VI

Buildings (b) 2.1064 0.0174 2.0890

Buildings (c) 1.5253 0.0311 1.4942

Buildings (d) 1.2511 0.0329 1.2182

Buildings (e) 1.0122 0.0378 0.9744

Farmland (b) 4.4615 0.0018 4.4580

Farmland (c) 2.6687 0.1101 2.4486

Farmland (d) 2.3973 0.2399 1.9175

Farmland (e) 2.3166 0.3778 1.5611

Red House (b) 1.3443 0.0025 1.3418

Red House (c) 1.3410 0.0117 1.3293

Red House (d) 1.2194 0.0372 1.1822

Red House (e) 1.2088 0.1139 1.0949

City (b) 4.1607 0.0989 3.9629

City (c) 3.0824 0.1680 2.7464

City (d) 3.1116 0.2264 2.6588

City (e) 2.5960 0.2895 2.0169
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MC and VI values are increasing and DC values are decreasing gradually from
(b) to (e), which is consistent with the visual assessment. For the City image
in the last row, MC values are not gradually decreasing, which give the wrong
evaluation of image sharpness for (c) and (d). DC gives the right measurement
for haze residual degree and corrects the error, leading to accurate assessment
results of the final visibility indicator VI. Therefore, the dark channel feature
DC can compensate the wrong evaluation of the contrast feature MC in some
cases to a certain degree, which demonstrates the reasonability and effectiveness
of our designed indicator.

The approach is compared with existing evaluation metrics that can measure
the visibility of the dehazed image, including the image visibility descriptors e, r,
σ [14], and the image contrast metric C values [15]. Higher values of these met-
rics indicate clearer results. Table 2 reports the results of these metrics on images
shown in Fig. 2. According to the subjective assessment, the three descriptors e,
r, σ and the contrast metric C values should decrease strictly from (b) to (e).
However, most of their results give inconsistent evaluation results with visual per-
ceptions. Especially for the Buildings image with noise in the sky region, these
metrics’ results are seriously deviated from visual observations. Compared with
them, our indicator presents completely right assessment results (see Table 1),
demonstrating the advantage and robustness of our approach.

Table 2. Results of e, r, σ and C values on the four groups of images in Fig. 2

Image e r σ C values

Buildings (b) −0.0881 2.9334 7.1217 1.5703

Buildings (c) 0.0165 1.6504 4.0450 2.2721

Buildings (d) 0.0788 1.3564 0.4675 1.3585

Buildings (e) 0.3127 1.8495 0.0854 0.4557

Farmland (b) 4.3691 7.6557 5.5811 12.6983

Farmland (c) 4.9449 3.0805 0.0261 12.5452

Farmland (d) 2.9840 2.8258 0.1737 14.4442

Farmland (e) 2.7556 3.0554 0.0010 3.1626

Red House (b) 0.0789 1.8712 2.0359 2.4420

Red House (c) 0.0986 1.7776 4.3237 2.6174

Red House (d) 0.0791 1.4288 3.4712 2.8832

Red House (e) 0.0758 1.2735 0.0015 0.2963

City (b) 3.5716 5.6675 0 12.0396

City (c) 3.3414 4.0438 0.0070 5.3268

City (d) 3.3155 3.8587 0.0050 5.6014

City (e) 2.8500 3.1268 0.0160 5.1776



672 M. Qin et al.

(b)(a)

(c) (d) (e) (f)

Fig. 3. (a) Reference image. (b) Synthetic hazy image. (c) Fattal’s result. (d) He et
al.’s result. (e) Cai et al.’s result. (f) Kim et al.’s result.

Table 3. Results of LCC and SROCC on 160 images

e r σ C values BIQME BRISQUE VI

LCC 0.4212 0.6864 0.2228 0.3050 0.7682 0.4257 0.8704

SROCC 0.4166 0.6497 0.0273 0.3201 0.6963 0.3552 0.8667

To quantitatively assess the performance of the proposed approach, we test
our indicator and some compared metrics using synthetic images, which include
the image visibility descriptors e, r, σ [14], the image contrast metric C values
[15], the image enhancement metric BIQME [20], and the general IQA metric
BRISQUE [21]. We synthesize 40 hazy images using the method in [3]. Using
He et al.’s [2], Fattal’s [11], Cai et al.’s [13] and Kim et al.’s [19] methods to
dehaze, 40 × 4 = 160 dehazed images are obtained. Figure 3 gives a dehazing
instance, where (a) is the clear image (reference image), (b) is the synthetic
hazy image, from (c) to (f) are the dehazing results by Fattal’s [11], He et al.’s
[2], Cai et al.’s [13] and Kim et al.’s [19] methods respectively. For a dehazed
image, MSE between it and the corresponding reference image can be used as the
quality ground truth for the visibility assessment. We then use two evaluation
criteria to measure the linear correlation between the quality ground truth and
the evaluation results of compared and our methods: Pearson linear correlation
coefficient (LCC) and Spearman rank-order correlation coefficient (SROCC).
The two coefficients are ranged between [−1, 1], where 1 stands for total positive
linear correlation, 0 is no linear correlation, and −1 represents total negative
linear correlation. Considering both compared metrics and our indicator are
negatively related with the MSE scores, we reverse the LCC and SROCC results
to be positive values. Table 3 gives the results of the two coefficients between
MSE scores and metric values on 160 images. As can be seen, the proposed



No Reference Assessment of Image Visibility 673

indicator VI has the highest linear correlation with the quality ground truth,
and outperforms the compared metrics by a large margin.

4 Conclusion

The evaluation of the dehazing method is a tough task. In this paper, the prob-
lem is addressed with a proposed indicator that can measure the visibility for the
restored image. The proposed visibility indicator VI is designed from two aspects
of image sharpness and haze residual degree. A multi-scale contrast feature is
proposed to measure the image sharpness. Compared with traditional contrast
metrics, our proposed feature integrates multi-scale information through the
image pyramid, which is scale-invariant along with a certain anti-noise abil-
ity. Considering that under-dehazing happens sometimes, the contrast feature
cannot give accurate assessment for this situation. The dark channel feature is
adopted to reflect the haze residual degree of the dehazed image. Using a bal-
ance coefficient to fuse the two features together, the final visibility indicator
is derived. Experimental results indicate that, compared with the existing rel-
evant metrics, the proposed approach can accurately evaluate the visibility of
the dehazed image with high consistency with human visual perceptions and
objective quality scores.
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