
Attention-Sharing Correlation Learning
for Cross-Media Retrieval

Xin Huang, Zhaoda Ye, and Yuxin Peng(B)

Institute of Computer Science and Technology, Peking University,
Beijing 100871, China
pengyuxin@pku.edu.cn

Abstract. Cross-media retrieval is a challenging research topic with
wide prospect of application, aiming to retrieve among different media
types by using a single-media query. The main challenge of cross-media
retrieval is to learn the correlation between different media types for
addressing the issue of “media gap”. The close semantic correlation usu-
ally lies in specific parts of cross-media data such as image and text,
which plays the key role for precious correlation mining. However, exist-
ing works usually focus on correlation learning in the level of whole media
instance, or adopt patch segmentation but treat the patches indiscrimi-
nately. They ignore the fine-grained discrimination learning, which lim-
its the retrieval accuracy. Inspired by attention mechanism, this paper
proposes the attention-sharing correlation learning network, which is an
end-to-end network to generate cross-media common representation for
retrieval. By sharing the common attention weights, the attention of dif-
ferent media types can be learned coordinately. It can not only empha-
size the single-media discriminative parts, but also enhance the cross-
media fine-grained consistent pattern, and so learn more precious cross-
media correlation to improve retrieval accuracy. Experimental results on
2 widely-used datasets with state-of-the-art methods verify the effective-
ness of the proposed approach.

1 Introduction

As a key technique of information acquisition and management, multimedia
retrieval has become an active research topic for decades [1], which can provide
amounts of similar data with a single query. Past efforts mainly concentrate on
single-media retrieval, where user query and retrieval results are of the same
media type. However, with the development of multimedia and network trans-
mission technology, multimedia data such as image, text, video and audio can
be generated and found everywhere. Different media types have been merged
with each other, and become the main form of big data. Under this situation,
the media limitation of single-media retrieval is becoming increasingly obvious,
and cross-media retrieval has become a new important retrieval paradigm.

Cross-media retrieval is proposed to retrieve data of similar semantic but
different media types with a user query. Intuitively, it allows user to retrieve
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relevant texts with an image query. Different from single-media retrieval, cross-
media retrieval faces the great challenge of “media gap”, which means that data
of different media types have different representation forms. For example, image
can be represented by features based on visual information as color and texture,
while text can be represented by features based on word frequency. Represen-
tations of different media types lie in different feature space, so the similarity
between them cannot be directly measured. For addressing this problem, the
mainstream methods of cross-media retrieval are common representation learn-
ing. The main idea is to represent data of different media types with the same
type of representation, so that cross-media similarity can be directly computed
by distance measurement. Based on different models, these methods can be fur-
ther divided into non-DNN based learning methods [2–4] and DNN-based meth-
ods [5–8]. They all project cross-media data into one common space by learning
from their correlation.

The close semantic correlation usually lies in specific parts of cross-media
data. For example, the correlation between image and text can be co-existent
patterns of image patches and words. The above fine-grained correlation plays
the key role for precious correlation mining. However, existing works usually
focus on correlation in the level of whole media instance [2,3,9], and ignore the
fine-grained information. Some recent works as [10,11] adopt patch segmentation
and treat the patches indiscriminately. For example, the work of [10] takes all the
patches for hypergraph construction, and all the patches are equally important.
However, the importances of different parts are usually different, and they can
be very noisy in semantic level, limiting the effectiveness of correlation learning.

For addressing the above problem, inspired by attention mechanism [12–14],
this paper proposes the attention-sharing correlation learning network (ACLN),
which is an end-to-end network to generate cross-media common representation
for retrieval. ACLN first extracts local features from cross-media data, and then
lets them share the common attention weights, so that the attention of different
media types can be learned coordinately according to pairwise correlation and
semantic information. It can not only emphasize the single-media discriminative
parts, but also enhance the cross-media fine-grained consistent pattern, and so
learn more precious cross-media correlation to improve retrieval accuracy. Exper-
imental results on 2 widely-used datasets with state-of-the-art methods verify
the effectiveness of the proposed approach.

2 Related Work

2.1 Cross-Media Retrieval

Cross-media retrieval is designed to retrieve among different media types. As
discussed in Sect. 1, the current mainstream methods can be summarized as
common representation learning, including non-DNN based methods and DNN-
based methods. These methods follow the idea that although representations of
different media types are different, they share the same commons on semantic



Attention-Sharing Correlation Learning for Cross-Media Retrieval 479

description. So in the semantic level, different media types can be represented
in the same common space, leading to cross-media common representation.

Non-DNN based methods mainly learn linear projection for different media
types. For example, canonical correlation analysis (CCA) [2] learns cross-media
representation by maximizing the pairwise correlation, and is a classical baseline
method for various cross-media problems as [15,16]. An alternative method is
cross-modal factor analysis (CFA) [17], which minimizes the Frobenus norm of
pairwise common representation. Beyond pairwise correlation, joint representa-
tion learning [3] is proposed to make use of semi-supervised regularization and
semantic information, which can jointly learn common representation projections
for up to five media types.

Instead of linear projection, DNN-based methods take deep neural network
as the basic model for generating cross-media common representation. Recent
years, DNN-based cross-media retrieval has become an active research topic,
and many methods have been proposed [5,6,8,9]. For example, the architecture
of Bimodal AE [5] takes two modalities as input, and has a middle code layer
for common representation. CMDN [8] is proposed to simultaneously consider
inter-modality and intra-modality information in a hierarchical multi-network
architecture, which improves the retrieval accuracy. Wei et al. [9] propose to use
CNN pre-trained with ImageNet as the feature extractor for images, and show
the effectiveness of CNN feature in cross-media retrieval.

Existing methods usually focus on correlation in the level of whole media
instance [2,3,9]. They take the whole media instances as input and learn corre-
lation among them. However, close semantic correlation usually lies in specific
parts of cross-media data, instead of whole data. The above methods ignore
the fine-grained information. Note that some recent works as [10,11] first adopt
instance segmentation to obtain several patches for media instances, and then use
these patches indiscriminately as input. However, the importances of different
parts are usually different. Taking text as example, not all words or sentences are
semantically discriminative and have strong correlation with other media types.
Some of them can even contain noisy information, and limit the effectiveness of
correlation learning.

2.2 Attention Mechanism

Attention mechanism aims to find the “important” parts within a whole media
instance, which has been applied to image and language processing. For exam-
ple, visual attention models can select and focus on the regions containing dis-
criminative information, such as the work of [12] which selects the regions that
by recurrent attention model for multiple object recognition. Similarly, textual
attention models are proposed to find the alignments between input and out-
put text for helping deal with long-term dependency. Such methods have been
applied to problems like question answering [13] and text generation [18].

Attention mechanism has also widely-used in problems involving multimedia,
such as image caption [19] and visual QA [14,20]. For example, Lu et al. [20]
propose the method of co-attention, which integrates visual and textual attention
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to guide each other for better natural symmetry between image and question.
Note that the attention weights of text and image are different in [20], and it
needs image and text as input at the same time, so cannot support cross-media
retrieval.

Our proposed ACLN approach takes an attention-sharing strategy for cross-
media retrieval. That is to say, the inputs of image and text share the common
attention weights to enhance the cross-media fine-grained consistent pattern,
which helps learn better common representation for cross-media retrieval.

3 Attention-Sharing Correlation Learning

In this paper, we take image and text as examples to show the ACLN approach,
while it can be applied for other media types. The overview of our ACLN is
shown as Fig. 1, which can be viewed as an end-to-end architecture with three
parts, namely (1) local feature extraction, (2) attention-sharing learning, and
(3) common representation generation.

For training stage, there are two types of cross-media correlation considered
by ACLN. The first is co-existence relationship (specifically pairwise correlation
in this paper), which means that data of different media types exist as a whole
and have close relevance; the second is common semantic information, which
means that data in each pair have the same semantics, i.e., they share the same
semantic label. For testing stage, image or text can serve as input independently,
and ACLN can generate common representation for them to perform cross-media
retrieval with distance measurement.

We denote training data as Dtr = {DI
tr,D

T
tr}, where DI

tr = {ip, yp}ntr

p=1, and
DT

tr = {tp, yp}ntr

p=1. ip and tp means p-th paired image and text data, yp means
their shared label, and ntr denotes the number of training pairs. Testing data
is denoted as Dte = {DI

te,D
T
te}, where DI

te = {ip}nte

p=1, DT
te = {tp}nte

p=1, and nte

means the number of testing data. The aim of ACLN is to generate common
representation for DI

te and DT
te.
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Fig. 1. An overview of our attention-sharing correlation learning network (ACLN).
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3.1 Local Feature Extraction

The part of local feature extraction aims to extract the fine-grained represen-
tation for image regions and text words, and these fine-grained representations
will be further fed into the attention-sharing learning part.

For a text tp, it is encoded as 1-hot representations (vectors with only one
dimension set as 1 and the others set as 0) of words and get H(tp) = {w1, ..wT }
following [20], where T is the word number in tp, wi ∈ RV ∗1 and V is the
vocabulary size of all texts. Then we can embed each word to a representation
vector as follows:

ŵi = Wewi,We ∈ Rda∗V (1)

where We is the weight parameters learned in the training stage of the network.
So we have the local features of text with the activation function tanh:

L(tp) = {tanh(ŵ1), .., tanh(ŵT )} (2)

For an image input, we use the convolutional layers to get the image feature
maps. In this paper, we take AlexNet [21] as the basic model for image. The
original local features of image are denoted as C(ip) = {v1, .., vN}, vi ∈ Rdi∗1,
where the vi is a feature vector extracted from the feature maps in spatial regions
i, and N is the number of regions. Specially, we use the output of the pool5 as
image local feature, and construct vi with the value of spatial region i in each
feature map. Then the local feature vectors will pass through a fully-connected
layer which maps them to the same dimension as the text features (i.e., da here).
So we have the image local features L(ip):

v̂i = tanh(Wprevi),W ∈ Rda∗di (3)
L(ip) = {v̂1, .., v̂N} (4)

where Wpre is the parameter of the fully-connected layer (FC1i).
At last, both the local features of images ant texts will pass through a fully-

connected layer (FC2i and FC1t in Fig. 1) to convert them as common local
features. For convenience, here we take ŵ and v̂ as the common local features,
and have:

Xŵ = tanh(Wfc2iŵ) (5)

X v̂ = tanh(Wfc1tv̂) (6)

where Wfc2i,Wfc1t ∈ Rda∗da are the weight parameters of the fully connected
layers FC2i and FC1t.

3.2 Attention-Sharing Learning

In this part, we adopt an attention-sharing structure to select the common local
features which capture the correlation between two media types and then fuse
to get global features.
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Briefly, we adopt an attention function shared by common local features of
both images and texts, and generate the attention weight vector for fusing the
common local features to be the global features. Here we let X = {x1, .., xn}
be either the common local features of text or image for convenience, where
n denotes the total number of common local features of an image or text, so
we have:

hi = tanh(Waxi) (7)

ai =
ehi

∑n
k=1 ehk

(8)

X̂ =
n∑

i=1

aixi (9)

where Wa ∈ R1∗da is the weight parameter shared by all the common local
features as the attention weight, which is learned to capture the fine-grained
correlation between images and texts. And X̂ is the global feature to the input X.

Note that the attention-sharing structure is to capture the fine-grained con-
sistent patterns between different media types. Because the input is paired data,
we simply assume that they share the relevant global semantics. With this in
mind, we adopt the constraint that paired instances will have similar global
features, letting the fusion process focus more on the local features with close
correlation.

Specifically, we use the cosine similarity as the risk. For the paired global
image feature X̂I

i and text feature X̂T
i , the discrepancy of the paired feature is

defined as:

d(X̂I
i , X̂T

i ) =
< X̂I

i , X̂T
i >

‖X̂I
i ‖‖X̂T

i ‖ (10)

Then we have the correlation loss as:

Lcorr = λ

n∑

1

d(X̂I
i , X̂T

i ) (11)

where λ > 0 is a penalty parameter of the correlation loss.

3.3 Common Representation Generation

In this part, we use two fully-connected layers to obtain the final representation
with the labels. Both the image and text global features will pass through two
fully-connected layers and a softmax layer to generate the common representa-
tions. The semantic loss is defined as:

LSe =
1
n

n∑

i=1

fs(XI
i , Li, θ) + fs(XT

i , Li, θ) (12)
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where fs(X,L, θ) is the softmax loss function:

fs(X,L, θ) = −log
eθLX

∑c
j=1 eθjX

(13)

where X is the output of the last fully-connected layer with an instance, L is
the label of the instance, c is the total category number of the data and θ is the
parameter of the network.

It should be noted that the proposed ACLN is an end-to-end network, and
the correlation loss (Lcorr) and semantic loss (LSe) can be considered jointly. In
training stage, by optimization with RMSProp, we can minimize the total loss
to train the whole network. In the testing stage, we use the predicted probability
vectors as the final common representation for performing cross-media retrieval.

4 Experiments

This section presents the experiments for verifying the effectiveness of the pro-
posed method. We adopted 2 widely-used cross-media datasets and 7 compared
methods with 2 retrieval tasks in our experiments.

4.1 Details of the Deep Architecture

In the implementation, we adopt Torch to develop our model. We use the
Rnsorop optimizer with a base learning rate 4e − 4, momentum 0.99 and weight-
decay 1e − 8, and set the batch size to be 20. Particularly, the learning rate of
FC3i and FC4i is set to be 4e − 5 on the Wikipedia dataset. The five convo-
lutional layers of AlexNet are pre-trained with ImageNet from the Caffe Model
Zoo and fine-tuned with the images in each dataset. In the training stage, the
weights of the convolutional are frozen. The text local feature (and the common
local feature) is a 512-dimentional vector after embedding, i.e. da = 512. The
original image local feature is a 256-dimensional vector so that di = 256. We
also apply dropout with probability 0.5 on each layer. We use the CosineEmbed-
dingCriterion layer to calculate the correlation with the margin as 0 and penalty
λ as 1.

4.2 Dataset Introduction

This section introduces the 2 datasets adopted for the experiments, namely
Wikipedia dataset and NUS-WIDE-10k dataset.

Wikipedia dataset [15] is widely-used for cross-media retrieval evaluation
as [3,7]. It is based on “featured articles” in Wikipedia which contains 2,866
image/text pairs with 10 high-level semantic categories. In each pair, the text
describes the image with several paragraphs, so they have close correlation. Fol-
lowing [7], the dataset is randomly split into three parts: 2,173 pairs are selected
as training set, 462 pairs are selected as testing set, and 231 pairs are used for
as validation set.
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NUS-WIDE-10k dataset [7] is a subset of NUS-WIDE dataset [22]. NUS-
WIDE dataset contains about 270,000 images with several corresponding tags
which are regarded as text in the experiments. NUS-WIDE-10k dataset is con-
structed with 10,000 image/text pairs which are randomly selected from 10
largest categories in NUS-WIDE dataset and each category has 1,000 pairs of
images and text. Following [7], the dataset is randomly split into three parts:
8,000 pairs for training, 1,000 pairs for testing and 1000 pairs for validation.

It should be noted that although the splits of these datasets have validation
sets, the ACLN and compared methods don’t need validation sets as input. That
is to say, validation sets will not be used in the whole experiments.

4.3 Compared Methods and Input Settings

Totally 7 state-of-the-art methods are compared in the experiments: CCA [2],
CFA [17], KCCA (with Gaussian kernel) [23], JRL [3], LGCFL [4], Corr-AE
[7], and Deep-SM [9]. Among these, CCA, CFA, KCCA, JRL, LGCFL are non-
DNN based methods, while Corr-AE and Deep-SM are DNN-based methods.
Note that Deep-SM is also an end-to-end DNN-based method.

For image, the processing is end-to-end in ACLN, and it directly takes the
image pixels as input. Deep-SM also takes original images as input. However,
all they other methods including CCA, CFA, KCCA, JRL, LGCFL and Corr-
AE can only take feature vector as input. For them we take the same fine-
tuned AlexNet adopted by ACLN, and further fine-tuned to convergence with
the images. Then we extract the output of the FC7 layer in the AlexNet as
the feature vector. For text, ACLN also has the end-to-end processing ability,
and takes the original text as input. For all the compared methods, we train a
basic ACLN network which simply averages the common local features without
attention and then extract the output of the FC2t layer as the feature vector.

4.4 Evaluation Metrics

Two retrieval tasks are conducted in the experiments: text retrieval by
image query, and image retrieval by text query, which are briefly denoted as
Image→Text and Text→Image. We first obtain the common representation for
all testing images and text with all compared methods and our ACLN. Then tak-
ing Image→Text task as example, we take each image as query, and measure the
cosine distance between the common representation of the query image and all
texts. Finally, we get a ranking list according to the distances and then compute
the mean average precision (MAP) for it to evaluate the retrieval results.

We choose MAP score as the evaluation metric because it jointly considers
the precision and ranking of results, and it can be used for fair and comprehen-
sive evaluation. The MAP scores are computed as all queries’ mean of average
precision (AP), and AP is computed as:

AP =
1
R

n∑

k=1

Rk

k
× relk (14)
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where R denotes relevant item number in test set (according to the label in our
experiments), Rk denotes the relevant item number in top k results, n denotes
the test set size, and relk = 1 means the k-th result is relevant, and 0 otherwise.

4.5 Experimental Results

Table 1 shows the MAP scores in our experiments on the 2 datasets. On
Wikipedia dataset, ACLN achieves the highest MAP score of 0.430. Comparing
with the best compared method Deep-SM, ACLN obtains an inspiring improve-
ment of 0.036. Similar trends can be seen on NUS-WIDE-10k dataset, where our
ACLN remains the highest MAP score of 0.487. This is because that the com-
pared methods only focus on correlation in the level of whole media instance, and
ignore the fine-grained information. ACLN can not only emphasize the single-
media discriminative parts, but also enhance the cross-media fine-grained con-
sistent pattern, and so learn more precious cross-media correlation to improve
retrieval accuracy.

Table 2 shows the MAP scores of our baselines and the complete ACLN.
ACLN (Baseline) means that the network is trained without the attention which
simply averages the common local features. ACLN (Separate Attention) means
that network is trained with separate attention which adopts independent atten-
tion weights for images and text. Except for the above differences, the rest parts
of the three baselines keep the same with complete ACLN.

Table 1. MAP scores of our ACLN and compared methods.

Dataset Method Task

Image→Text Text→Image Average

Wikipedia dataset CCA 0.125 0.124 0.124

Corr-AE 0.188 0.202 0.195

CFA 0.368 0.336 0.352

KCCA 0.340 0.316 0.328

JRL 0.371 0.330 0.351

LGCFL 0.390 0.321 0.356

Deep-SM 0.441 0.347 0.394

Our ACLN 0.446 0.415 0.430

NUS-WIDE -10k dataset CCA 0.121 0.122 0.121

Corr-AE 0.185 0.143 0.164

CFA 0.407 0.411 0.409

KCCA 0.402 0.427 0.415

JRL 0.442 0.473 0.457

LGCFL 0.421 0.440 0.431

Deep-SM 0.465 0.445 0.455

Our ACLN 0.480 0.495 0.487
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Table 2. MAP scores of our ACLN and the baselines.

Dataset Method Task

Image→Text Text→Image Average

Wikipedia
dataset

ACLN (Baseline) 0.436 0.351 0.394

ACLN (Separate Attention) 0.429 0.396 0.413

Our ACLN 0.446 0.415 0.430

NUS-WIDE
-10k
dataset

ACLN (Baseline) 0.458 0.454 0.456

ACLN (Separate Attention) 0.470 0.487 0.479

Our ACLN 0.480 0.495 0.487

It can be seen that the results of ACLN (Separate Attention) are better
than ACLN (Baseline), which shows that the attention mechanism helps provide
fine-grained clues for improving the accuracy of cross-media retrieval. The com-
plete ACLN is even better than ACLN (Separate Attention), which shows that
the attention-sharing structure enhances the cross-media fine-grained consistent
pattern for higher retrieval accuracy. The above baseline experiments show the
separate contribution of our ACLN architecture, and verify its effectiveness.

5 Conclusion

This paper has proposed the attention-sharing correlation learning network
(ACLN), which is designed to generate cross-media common representation
with fine-grained discrimination learning for cross-media retrieval. ACLN first
extracts local features from cross-media data, and then lets them share the com-
mon attention weights, so that the attention of different media types can be
learned coordinately according to pairwise correlation and semantic informa-
tion. It can not only emphasize the single-media discriminative parts, but also
enhance the cross-media fine-grained consistent pattern, and so learn more pre-
cious cross-media correlation to improve retrieval accuracy. Experimental results
on 2 widely-used datasets with state-of-the-art methods verify the effectiveness
of the proposed approach. The future work lies in two aspects: first, we intend
to incorporate the attention learning of more than two media types into our
framework; second, we will apply ACLN to other applications like image caption
to further verify its effectiveness.
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