
Scalable Object Detection Using Deep but Lightweight
CNN with Features Fusion

Qiaosong Chen(✉) , Shangsheng Feng , Pei Xu , Lexin Li , Ling Zheng ,
Jin Wang , and Xin Deng

Chongqing Key Laboratory of Computational Intelligence,
Chongqing University of Posts and Telecommunications, Chongqing, China

chenqs@cqupt.edu.cn

Abstract. Recently, deep Convolutional Neural Network (CNN) is becoming
more and more popular in pattern recognition, and have achieved impressive
performance in multi-category datasets. Most object detection system include
three main parts, CNN features extraction, region proposal and ROI classification,
just like Fast R-CNN and Faster R-CNN. In this paper, a deep but lightweight
CNN with features fusion is presented, and our work is focused on the improve‐
ment of the features extraction part in Faster R-CNN framework. Inspired by
recent technical innovation structures, such as Inception, HyperNet and multi-
scale construction, the proposed network is able to result in lower computation
consumption with considerable deep layers. Besides, the network is trained with
the help of data augmentation, fine-tune and batch normalization. In order to apply
scalable with features fusion, there are different sampling methods for different
layers, and various size kernel to extract both global and local features. Then fuse
these features together, which can deal with diverse size object. The experimental
results shows that our method have achieved better performance than Faster R-
CNN with VGG16 on VOC2007, VOC2012 and KITTI datasets while main‐
taining the original speed.
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1 Introduction

Object detection and classification is a hot topic in the field of computer vision. Recently,
object detection and classification have got widely applications in many aspects, such
as intelligent transportation, video surveillance and robot environment awareness. As a
core part of object detection and classification, deep learning has achieved great success
in this area, but there are still some problems that make it become a challenging task,
such as the complexity of image scene, the non-uniform of image shooting angle, object
occlusion, and different postures of the same object or small size object.

For object detection and classification, the traditional machine learning method
basically exists four stages: sliding window, features extraction, features selection and
features classification. The heated research area are features extraction (How to enhance
the ability of expression and anti-deformation ability), and features classification (How
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to improve the accuracy and speed of the classifier). Researchers have proposed various
of features and classifiers, there are some representative features (Haar [1], HOG [2],
SIFT [3], SURF [4], etc.) and classifiers (Adaboost [5], SVM [6], DPM [7], etc.).

The traditional object detection method uses the characteristics of manual design,
and the accuracy of traditional object detection can not meet the actual requirements
even with the best non-linear classifier for feature classification. There are three short‐
comings in the designing of characteristics: (a) Hand-crafted features are low-level
features, which lack of expression of the object. (b) The separability of designed features
is poor, which will result in a higher classification error rate. (c) It is difficult to choose
a single feature applied to multi-category datasets.

In order to extract better features, Hinton presented Deep Learning [8] in 2006, the
using of deep neural network from a large number of data can automatically learn high-
level features. Compared with the hand-crafted features, the learning features of deep
learning is richer, and the ability of expression is stronger. With continuous development
in Deep Learning, the researchers have found that the accuracy based on CNN for
objection detection can be greatly improved. Not only the convolution neural network
can extract high-level features and improve the expression of features, but also combine
feature extraction, feature selection and feature classification into the same model. In
training by end-to-end, function optimization from the overall can enhance the separa‐
bility of features. Especially in the past three years, Deep Learning has become more
popular in the major pattern recognition competition, and achieved better and better
performance, speed and accuracy have been greatly improved. This paper has three main
contributions: (1) Proposed a deep but lightweight network model. (2) Adapted the
multi-scale structure that can learn both global and local parts features, and then combine
them to a new feature which has better ability to express. (3) The features fusion and
multi-scale structure are added to the pre-trained VGG16 [9] model. The experimental
results shows that the proposed method achieved better performance than original
VGG16 model.

The rest of this paper is organized as follows. In Sect. 2, we review some related
works. Section 3 introduces details of the designed network model, and Sect. 4 is
presentation of the experimental results and evaluation. Finally, we conclude our work
and arrange the future work in Sect. 5.

2 Related Work

Object detection can be divided into two categories, one is the early traditional machine
learning methods, the other is the rise of Deep Learning in recent years. In this section,
we generalize the development of these two methods.

2.1 Traditional Machine Learning

In 2004, Viola and Jones [1] proposed a new feature named Haar-like with cascade
Adaboost classifier for face detection, it shows a great speed advantage compared with
other methods at the same period. Therefore it also attracted many researchers in the
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feature design, cascade structure, boosting algorithm three aspects of in-depth research
at the same time. Next year, Dalal and Triggs [2] proposed a local image texture called
Histograms of Oriented Gradient (HOG), and combined it with Support Vector Machine
(SVM) for pedestrian detection. With the development of HOG, Deformable Parts
Model (DPM) [7] appeared, and also won the championship for three consecutive years
at The Pascal Visual Object Classes (VOC) Challenge. Due to the fact that DPM
considers well for local and global relationships, it has got higher detection accuracy
and better performance. Although the above methods have achieved great performance,
their development are limited by the limitations of hand-crafted design features and
redundant time caused by sliding window.

2.2 Current Deep Learning

In 1998, Lécun et al. [10] proposed famous LeNet-5 model. It includes convolution
layer, Relu layer, polling layer and the final innerproduct layer, and these layers have
been still used, the network is also considered to be the first true sense of the convolution
neural network. In 2012, Krizhevsky et al. [11] proposed AlexNet model, and have got
lower ten percentage points than the previous year champion in ImageNet Large Scale
Visual Recognition Competition (ILSVRC). This year is called the turning point of Deep
Learning, marking the Deep Learning to take off. With the development of Deep
Learning, some famous model like ZF [12], VGG [9], GoogleNet [13], and ResNet [14]
are proposed.

In past three years, Deep Learning has got rapid development. Li et al. [15] proposed
a kind of cascade convolution neural network named Cascade CNN. It contains six
independent networks, three for the classification of the network, the other three for the
bounding box regression. Cascading ideas can combine weak classifiers for higher
accuracy, but the 6 networks of this paper are separated and can not be trained by end-
to-end. So Qin et al. [16] proposed a joint training cascade convolution neural network
for face detection, it has maintained the advantages of cascade and trained by end-to-
end. In [17], Can and Fan proposed a multi-scale network named MS-CNN, it can detect
different size objects at the same time. GoogleNet [13] uses Inception structure to make
the network deeper, and the training parameters less. Ren et al. [18] proposed a network
based on region proposal network (RPN) called Faster R-CNN, it decomposes the object
detection problem into two subproblems. Firstly, the RPN network generates proposal
bounding boxes, and uses these bounding boxes as input to the R-CNN. Because the
RPN and R-CNN networks share the convolution feature, so the detection time is
reduced and the detection accuracy is higher. Although RPN can reduce the detection
time, the time is still too long. Aiming at this problem, YOLO [19] is an approach
proposed by Redmon and Divvala. It removes the RPN network, can further reduce the
detection time, but reduce the accuracy a little. On the basis of Faster R-CNN and YOLO
framework, many classical methods are proposed by related researchers, such as FCN
[20], PVANET [21], SSD [22] and YOLO9000 [23]. It is worth mentioning that our
work is also based on the Faster R-CNN framework.
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3 The Proposed Scalable Object Detection Method

In this section, we present the details of the proposed Scalable object detection method.
Firstly, we describe the overall framework, next elaborate the feature fusion part of the
pre-training model, and then expound the multi-scale structure. Finally, we present the
training details.

Fig. 1. Scalable object detection architecture. The network takes an input image of size 224 × 224,
(1) combine the downsampling of Conv1, Conv3 and upsampling of Conv5 feature maps of pre-
trained VGG16 model to carry out Concat_1, (2) behind the Concat_1, there is a global
convolution name G-Conv1, (3) and then divided into three equal local parts named as Pi-Conv1
(i = 1, 2, 3), finally combine the Pi-Conv2 (i = 1, 2, 3) to get the Concat_2
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3.1 The Overall Framework

The proposed scalable object detection architecture is showed in Fig. 1, and the details
of the parameters of the network are given in Table 1. Initially, a 224 × 224 image is
forwarded through the convolutional layers of pre-trained VGG16, and the features maps
are produced. We aggregate hierarchical feature maps and then compress them into a
uniform space, namely Concat_1. There is a global convolution with the kernel size of
7 × 7 to get global features, and a cascaded multi-scale structure consists of three parts
for extracting local features, we combine the three local part feature maps to get the
layer Concat_2. Finally, the innerproduct layer outputs detection classification results.
Besides, each convolution layer is followed by a normalizing layer using local response
normalization (LRN) and RELU layer.

Table 1. Detail parameters of the network

Name Type Kernel size Stride/pad Output
Conv1_1 Convolution 3 × 3 1/1 224 × 224 × 64
Conv1_2 Convolution 3 × 3 1/1 224 × 224 × 64
Pool1 Maxpool 2 × 2 2/0 112 × 112 × 64
Conv2_1 Convolution 3 × 3 1/1 112 × 112 × 128
Conv2_2 Convolution 3 × 3 1/1 112 × 112 × 128
Pool2 Maxpool 2 × 2 2/0 56 × 56 × 256
Conv3_1 Convolution 3 × 3 1/1 56 × 56 × 256
Conv3_2 Convolution 3 × 3 1/1 56 × 56 × 256
Conv3_3 Convolution 3 × 3 1/1 56 × 56 × 256
Pool3 Maxpool 2 × 2 2/0 28 × 28 × 512
Conv4_1 Convolution 3 × 3 1/1 28 × 28 × 512
Conv4_2 Convolution 3 × 3 1/1 28 × 28 × 512
Conv4_3 Convolution 3 × 3 1/1 28 × 28 × 512
Pool4 Maxpool 2 × 2 2/0 14 × 14 × 512
Conv5_1 Convolution 3 × 3 1/1 14 × 14 × 512
Conv5_2 Convolution 3 × 3 1/1 14 × 14 × 512
Conv5_3 Convolution 3 × 3 1/1 14 × 14 × 512
Down Maxpool 4 × 4 4/0 56 × 56 × 128
Up Deconvolution 4 × 4 4/0 56 × 56 × 128
Concat_1 Concat 56 × 56 × 512
G-Conv1 Convolution 7 × 7 3/1 18 × 18 × 512
P1-Conv1 Convolution 3 × 3 1/0 16 × 16 × 128
P1-Conv2 Convolution 3 × 3 1/0 14 × 14 × 128
P2-Conv1 Convolution 5 × 5 1/0 14 × 14 × 256
P2-Conv2 Convolution 3 × 3 1/1 14 × 14 × 256
P3-Conv1 Convolution 3 × 3 1/0 16 × 16 × 128
P3-Conv2 Convolution 3 × 3 1/0 14 × 14 × 128
Concat_2 Concat 14 × 14 × 512
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3.2 The Features Fusion Structure

We initialize the parameters of Conv1 to Conv5 layers according to the pre-trained
model VGG16. Because of subsampling and pooling operations, these feature maps are
not in the same dimension. In order to combine different levels of feature maps, we have
different sampling methods for different layers. A max pooling layer is added on Conv1
to get its downsampling, a deconvolution layer is added on Conv5 to carry out its
upsampling. It makes them and Conv3 into a unified space, and finally combines them
to generate Concat_1. But why is Conv1, Conv3 and Conv5, because their characteristics
are the largest different. If the feature difference is not big, the effect of fusion will be
reduced.

The lower feature maps are the details of the information, it is conducive for
bounding box regression. And the higher feature maps are semantic information, which
is good for classification. When we combine these two type features together, we can
get better performance. The experimental results will be a good proof, so it is effective.

3.3 Multi-scale Structure

There is a global convolution on Concat_1 layer named G-Conv1 with the kernel size
of 7 × 7, because different sizes of the convolution of the kernel field is not the same,
the characteristics of the extraction is also not the same. The kernel of size 7 × 7 can
extract global features, and it is divided into three equal local convolution parts.
According to the Inception structure, the network has kernel with size 5 × 5 and 3 × 3,
each different parts is designed to learn different local features. While getting the local
feature maps Pi-Conv2 (i = 1, 2, 3), we combine the three part feature maps to get the
concatenation layer Concat_2. So we can obtain both global and local features at the
same time.

3.4 Training Details

• Data augmentation: Data augmentation is an indispensable technique in Deep
Learning, it can manually increase the training data, and effectively inhibit the over-
fitting. To apply data augmentation, we resize the shorter side to 600, and do the same
as the short side of the scale operation on long side. Then we randomly crop a small
patch 224 × 224 around objects from the whole image, and each sample is horizon‐
tally flipped.

• Faster R-CNN: Faster R-CNN combines the region proposal network and the detec‐
tion network into a unified network, including two independent networks, one is RPN,
the other one is R-CNN. RPN is used to predict the region proposal of input image
with the three scales (128, 256, 512) and three kinds of aspect ratio (1:1, 1:2, 2:1),
the mechanism of mapping is called anchor, each convolution produces 9 anchor.
IOU (Intersection-over-union) of these achor and ground-truth is less than 0.3 as
negative (background) and greater than 0.7 as positive (foreground). If it does not
belong to the above, the proposal bounding box will be lost. The remaining bounding
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boxes are used as input to the R-CNN, and the two networks share the convolution
feature.

• Fine-Tune: The pre-trained VGG16 is used to initialize the parameters of Conv1 to
Conv5 layers, and the learning rate is set to 0. So we can reduce a lot of training
parameters. The rest of the convolution layers are initialized with Xaiver, and set the
bias terms to 0. The last innerproduct layer layers is randomly initialized with Gaus‐
sian distributions with the standard deviations of 0.01 and 0.001, and also set the bias
terms to 0.

• SGD parameters: We set global learning rate 0.001. The RPN and RCNN both have
40000 iterations, after 30000 iterations, we lower the learning rate to 0.0001 to train
more iterations. Following standard practice, we use a momentum term with weight
0.9 and weight decay factor of 0.0005.

4 Experiments and Evaluation

In our experiments, The proposed method is evaluated on VOC2007, VOC2012 and
KITTI datasets. The PASCAL Visual Object Classes Challenge is well known in the
field of pattern recognition competitions, the VOC dataset has also become a standard
dataset for object detection and classification, so it is shown that the VOC dataset can
well explain the advantage and disadvantage of our method. Compared with the VOC
dataset, KITTI has more small objects, occlusion situation is serious and the shooting
angle is different. Experimental results also have proved that the performance on VOC
is better, some detection examples of different datasets are showed in Fig. 2. Our exper‐
imental environment is NVIDA GTX1070 with Caffe, because of the limitation of
experimental environment, all our experimental results are lower than original paper.
But it does not affect the comparison results, it can still explain the results.

4.1 Datasets

• VOC2007: VOC2007 is a dataset containing 20 categories. Images are from our
daily life scenes; Image size is around 500 × 375. It includes a total of 9963 images,
5011 training images and 4952 test pictures, 24640 annotated objects.

• VOC2012: Compared with VOC2007, occlusion flag is added to annotations and
action classification is presented, the number of images increased to 11530, including
27450 annotated objects.

• KITTI: KITTI is a vehicle pedestrian dataset containing a total of 9 categories,
including 7481 training images and 7518 test images, image size is around
1250 × 375.

4.2 VOC2007 and VOC2012 Results

Loss, accuracy and precision are three important indicators in the field of object detection
and classification. The loss value can reflect whether the training situation of the model
is stable, accuracy reflect the ability to judge the whole of the model, include both
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positive and negative samples. And precision only reacts to the ability of the model to
judge the positive samples. The Eqs. (1) and (2) are mathematical expressions of accu‐
racy and precision. TP and FP respectively mean True Positive and False Positive, TN
and FN respectively mean True Negative and False Negative. We use these three indi‐
cators to evaluate the experiment, and do it also in KITTI.

Accuracy = TP + TN
TP + FP + TN + FN (1)

Precision = TP
TP + FP (2)

Figure 3 shows the comparisons of loss and accuracy, from this picture we can see
that the loss of our method is lower while accuracy is higher. Besides, when we only

(a) VOC2007+VOC2012  

(b) KITTI 

Fig. 2. Results on different datasets. (a) VOC2007 + VOC2012, (b) KITTI Datasets
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add the features fusion structure (Faster Rcnn + Fusion) or multi-scale structure (Faster
Rcnn + MS), the loss also lower than original Faster R-CNN with VGG16, and the
accuracy is higher. It indicates that the features fusion and multi-scale structure which
we add are valid. Table 2 shows our results compared with other methods in average
precision (AP) and Frames Per Second (FPS) values. Because our work is based on the
Faster R-CNN framework, the FPS of our method is lowest with 5, but we enhance the
mean AP (mAP). Compared with other methods, our mAP is higher than YOLO but
little lower than SSD500. And for single classes, our AP value is higher or lower. The
reason is that different network structures perform differently for different object scene,
such as different object size and pose. We combine different levels of feature maps, and
use different convolution kernels in the multi-scale structure, so we have got a higher
mAP on the whole. However, there is no single-scale features targeted for individual
special classes, AP value may be lower. In general speaking, we have achieved better
performance than original VGG16 model, and keep the speed at the same time.

Fig. 3. Loss and accuracy on VOC2007 + VOC2012

4.3 KITTI Results

Just as we can see in the Fig. 4, we have got lower loss and higher accuracy the same as
VOC2007 and VOC2012. It indicates that the feature fusion and multi-scale structure
which we add is valid once again. Table 3 shows the results of mAP and FPS, we have
got a higher mAP than Faster R-CNN and YOLO, but little lower than SSD500.
Compared with the results on VOC2007 and voc2012, all the mAP are lower and FPS
are identical. The reason is that there is more small size object in KITTI dataset, and
occlusion situation is serious.
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Fig. 4. Loss and accuracy on KITTI

Table 2. Results on VOC2007 + VOC2012 (with IOU = 0.7)

Method Faster R-CNN YOLO SSD500 HyperNet Proposed
Tv 52.7 45.3 68.3 61.6 63.5
Bird 67.5 52.7 71.5 49.5 85.3
Boat 46.1 33.9 54.6 46.3 42.5
Bottle 42.2 19.4 47.2 48.8 52.4
Bus 66.7 62.6 77.4 72.2 61.2
Table 49.1 42.8 54.8 51.3 44.5
Cat 73.6 71.5 85.2 64.4 83.1
Chair 43.9 35.9 52.0 32.7 58.3
Cow 68.2 54.4 75.4 60.6 64.9
Car 65.4 51.2 77.1 66.9 78.7
Dog 74.3 71.3 83.7 59.1 87.6
Horse 73.7 66.1 80.3 63.8 85.8
Aero 74.9 71.8 84.6 61.8 70.2
Plant 36.5 24.4 44.9 26.7 49.1
Person 67.4 58.2 80.6 55.9 79.4
Sheep 62.3 46.7 72.7 62.4 76.8
Sofa 54.4 48.5 61.5 57.1 69.3
Train 73.6 67.1 82.9 62.2 68.9
mbike 70.8 64.6 81.2 54.6 84.4
Bike 71.3 62.3 78.1 62.9 81.6
mAP 61.7 52.5 70.7 56.0 69.4
FPS 5 32 14 5 5
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Table 3. Results on KITTI (with IOU = 0.7)

Method Faster R-CNN YOLO SSD500 HyperNet Proposed
Tram 49.1 42.6 57.3 45.5 58.9
Car 69.4 60.2 74.5 64.7 78.3
Person_sitting 45.2 37.9 56.1 42.3 41.8
Pedestrian 63.5 55.8 70.2 60.2 60.6
Truck 57.4 49.3 61.6 54.3 66.7
Cyclist 64.9 57.2 73.3 62.1 62.3
Dontcare 56.3 48.4 64.1 51.9 63.8
Misc 38.5 34.6 43.8 39.5 51.2
Van 45.8 36.5 49.7 41.6 54.1
mAP 54.5 47.0 61.2 51.3 59.7
FPS 5 32 14 5 5

5 Conclusion

In this paper, we proposed a unified multi-scale network with features fusion, through
combining different levels of feature maps, we can obtain advantage of both high and
low-level maps, multi-scale structure can detect object of different sizes. Experimental
results show that we have got a higher mAP as a whole on the VOC2007, VOC2012
and KITTI datasets, and maintained the original speed. We also analyzed the experi‐
mental results, compared with other mainstream methods, it illustrates the advantages
and disadvantages of our approach. In the future work, our main focus is how to further
improve the detection speed and achieve real-time performance, it is better to enhance
the mAP at the same time.
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