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Abstract. Image semantic segmentation is a fundamental problem and
plays an important role in computer vision and artificial intelligence.
Recent deep neural networks have improved the accuracy of semantic
segmentation significantly. Meanwhile, the number of network parame-
ters and floating point operations have also increased notably. The real-
world applications not only have high requirements on the segmentation
accuracy, but also demand real-time processing. In this paper, we pro-
pose a pyramid pooling encoder-decoder network named PPEDNet for
both better accuracy and faster processing speed. Our encoder network
is based on VGG16 and discards the fully connected layers due to their
huge amounts of parameters. To extract context feature efficiently, we
design a pyramid pooling architecture. The decoder is a trainable con-
volutional network for upsampling the output of the encoder, and fine-
tuning the segmentation details. Our method is evaluated on CamVid
dataset, achieving 7.214% mIOU accuracy improvement while reducing
17.9% of the parameters compared with the state-of-the-art algorithm.
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1 Introduction

Image semantic segmentation is to divide an image into several regions with
each region having the same semantic implication. Over the years, researchers
have proposed many powerful algorithms, which can be roughly grouped into
two categories: traditional approaches and deep convolutional neural network
(DCNN) based approaches. Traditional approaches rely on low-level vision cues,
such as Normalized cut [24]. They are not suitable for complex scenes due to
their limited performance. By contrast, recent approaches have achieved remark-
able success by applying deep convolutional neural network to this pixel-level
labeling task [6,18,19,30]. DCNN is applied to classification tasks in the early
days, such as handwritten digit recognition, image classification and object
detection. Recently, the availability of large scale well annotated datasets and
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computationally-powerful machines have pushed forward the development of
deep convolutional neural network. Moreover, it has been widely proved that the
well-trained DCNN models [12,25,26] pretrained on these large scale datasets
can be transferred to other vision tasks, like image semantic segmentation.
For better performance, deeper and larger convolutional neural networks are
explored [15,21,29], requiring more computing resources and inference time.

However, the real-world applications such as augmented reality wearables,
self-driving vehicles and other automatic devices have a strong demand for
image semantic segmentation algorithms that can process in real-time. Tak-
ing self-driving vehicles as an example, the complex traffic environment requires
autopilot system can deal with emergency timely and effectively. Obviously, the
existing architectures can not meet this requirement [7,10,21,29]. To solve this
problem, several neural networks have been proposed to balance the segment
accuracy and inference time, such as SegNet [1] and ENET [23]. These networks
pay more attention to complex segmentation tasks such as in road and indoor
scenes, and achieve a fast segmentation speed at the cost of accuracy.

In this paper, we propose a new convolutional neural network architecture
which achieves higher segmentation accuracy and faster inference speed. Our
network is primarily motivated by the road scene dataset [4] which requires
modeling both appearance and shape, understanding the context between dif-
ferent classes such as the road surface and the side-walk. The main contributions
of this paper can be summarized as follows: (1) we propose a new DCNN-based
network architecture which reduces the model size notably; (2)we explore a well-
designed pyramid pooling architecture to extract contextual information; (3) we
build a practical system for semantic segmentation which outperforms existing
approaches with similar processing speed [1,19,23].

The rest of this paper is organized in the following order. In Sect. 2 we review
the related work about image semantic segmentation. In Sect. 3 we introduce the
pyramid pooling encoder-decoder network architecture and discuss the advan-
tages of this architecture. In Sect. 4, we evaluate our network empirically and
compare it with other networks. Finally, we give a conclusion on our work in
Sect. 5.

2 Related Work

With the development of convolutional neural networks, image semantic seg-
mentation has achieved unprecedented performance recently. Fully convolutional
neural network (FCN) [19] was the first algorithm used in PASCAL VOC 2012
segmentation tasks [9]. This method was based on VGG16 and changed its fully
connected layers to convolutional ones. Pre-trained on ImageNet [2], FCN can
extract the features of object efficiently and outperform all previous methods.
This successful attempt encouraged other researchers to exploit deep network
architecture for better segmentation results.

The direct prediction of FCN based methods are usually in low resolution.
To obtain high resolution predictions, many recent methods focus on refining
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Fig. 1. The architecture of pyramid pooling encoder-decoder network

the low resolution predictions. DeepLab-CRF [6] performed bilinear upsampling
of the score map to the input image size and applied the fully connected condi-
tional random fields [14] to refine the object boundary. The work in [21] trained
deconvolutional layers to upsample the low resolution predictions. CRF-RNN
[30] applied a recurrent neural network to replace conditional random fields for
end-to-end training. To reduce the computation time, Liu et al. [18] and Lin
et al. [15] both designed an efficient approximate inference algorithm for fully
connected CRF models. The network proposed in [5] extracted the edge feature
maps and applied a discriminatively trained domain transform so as to combine
it with the score maps from FCN. The networks such as [16,22,28] used context
information for finer segmentation results. These networks achieve high score in
image semantic segmentation challenges like PASCAL VOC 2012 [9], but can not
meet the requirement of real-world application because of their large network
architectures.

Unlike employing the whole CNNs directly, SegNet [1] discarded the fully
connected layers of VGG16, so as to reduce the number of parameters. Further-
more, this network only stored the max-pooling indices in the encoder to its
corresponding upsampling layers. As a result, SegNet had a great performance
both on segmentation accuracy and processing speed. Another network, named
ENET [23], focused on real-time image segmentation and chose to pre-train it’s
own encoder network in ImageNet classification task to avoid overlarge network
architecture. Tested on an NVIDIA Titan X GPU, ENET achieved the fastest
implementation speed, more than 100 fps. However, the high segmentation speed
was built at the sacrifice of segmentation accuracy.

3 Network Architecture

Our network architecture PPEDNet (Pyramid Pooling Encoder-Decoder Net-
work) is shown in Fig. 1. It consists of a large encoder network, a corresponding
small decoder network followed by a pixel-wise classification layer. The encoder
corresponds to the feature extractor that transforms the input image to multidi-
mensional feature representation, whereas the decoder is a shape generator that
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produces segmentation result from the features extracted from the encoder. Fol-
lowing the process of image segmentation, we first present the encoder network
and then the decoder network.
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Fig. 2. Pyramid pooling model

3.1 Encoder Network

Feature extraction is the premise and core of pixel-wise classification. Thus, a
powerful encoder network is of great importance. Our feature extraction frame-
work is based on VGG16 which is a very successful image classification network.
Therefore, we can initialize the training process from weights trained for clas-
sification on large datasets [2]. Each encoder in the encoder network performs
convolution with a filter bank to produce a set of feature maps. They are then
batch normalized. Following that, an element-wise rectified-linear non-linearity
(ReLU) max (0, x) is performed. Max pooling with a 2× 2 window and stride 2
(non-overlapping window) is used to result in a large input image context (spa-
tial window) for each pixel in the feature maps. Different from the original VGG
network, we remove the fully connected layers because these layers consume too
many parameters. Besides, the most significant change is that we have designed
a pyramid pooling framework.

Most convolutional neural networks like FCN [19] and DeepLab [6] only pre-
dict each pixel independently, without considering context relationship between
each receptive field. This limits the ability of diverse scenes understanding, and
networks in [6,19] may usually make mistakes when there exists similar appear-
ance inter class. Although some post-processing methods such as conditional
random field, can calculate the pairwise potential and smooth noisy segmen-
tation maps, the complicated inference operations reduce the processing speed
severely. Liu et al. [17] tried to learn global context with global average pooling,
and yielded encouraging improvement. Compared with the Parsenet [17], pyra-
mid pooling model has a stronger ability of extracting and combining different
regional characteristics.
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The pyramid pooling model is shown in Fig. 2. The input is high-level feature
maps, which in our network is the output of Conv5-1 of VGG16. Then, three
different pyramid scales are used to extract different sub-region features from
the input feature maps, forming pooled representation for different locations.
The outputs of different levels of the pyramid pooling model contain feature
maps of different sizes. We use 1 × 1 convolutional operation after each pyra-
mid pooling layer to adjust the weights of every channel. To concatenate these
feature maps with the original one, a direct upsampling operation is used to
resize the low-dimensional feature maps, producing the desired feature map via
bilinear interpolation. Finally, different levels of feature maps are concatenated
as a hybrid multi-scale context input for further convolutional layers. Compared
to other multi-scale pooling modules, our pyramid pooling model extracts the
multi-scale feature maps in the same high-level maps, and concatenates these new
contexts directly without several 3× 3 convolutional operations. This makes the
raw hybrid multi-scale context with the same resolution, which provides strong
evidence for classification.

The number of pyramid pooling levels and sizes can be modified according
to how many sub-regional contexts we want to combine. Considering the input
images of CamVid dataset with a resolution of 480 × 360 (Width, Height), the
feature maps which are the input of the pyramid pooling model (30×23) are too
small to be divided into many levels. So, our pyramid pooling model has three
levels with bin sizes of 1 × 1, 2 × 2, and 4 × 4. Furthermore, we note that road
scene images could always be divided into three parts: the road in the middle
and the buildings on the two sides. A three-level pyramid pooling model with
sizes of 1 × 1, 3 × 2, and 6 × 4 should be more reasonable. For convenience, we
name these two frameworks as the original pyramid pooling and the attentional
pyramid pooling respectively. Inspired by Zhao et al. [29], we choose average
pooling as the type of pooling operation. With the pyramid pooling model, our
network extracts an effective global context for pixel-level scene parsing.

3.2 Decoder Network

With several layers of max-pooling, low-resolution feature maps from the encoder
network have a loss of spatial resolution, which is unbeneficial to segmentation.
Thus, we need an appropriate method to upsample these feature maps to dense
high-resolution segmentation image with the same size as original input image.
Recent work has pursued two directions to address localization challenge. The
first approach is to employ information from multiple layers in the network [19] or
a super-pixel representation [20] to optimise the edge segmentation. The second
approach is to design a trainable decoder network to learn deconvolution [1,21].
These decoder networks are always the mirror of the encoder networks.

In our method, we propose an asymmetric encoder-decoder network that is
different from the one presented in [1]. This is motivated by the idea that the
encoder network should extract the appearance and shape features, providing
strong evidence for classifier. By contrast, decoder network is only required to
restore the resolution of the input feature maps and fine-tune the segmentation
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details. To explore the influence of decoder network on segmentation perfor-
mance, we choose SegNet [1] as the baseline, and try three different decoder
networks. First, we remove the deconv3-3, deconv4-3 and deconv5-3 convolu-
tional layers in SegNet. Then, only one convolutional layer is retained between
two upsampling layers. Further more, we try to replace the convolutional layers
with the bottleneck architecture presented in ENET [23] for its success. Dif-
ferent from the original bottleneck, we make some changes which are shown in
Fig. 3. Figure 3(a) is the original convolutional block, it consists of three parts,
a 3 × 3 convolutional layer, a batch normalization layer and a rectified linear
unit. Figure 3(b) is the bottleneck module which has two branches. On the right
of the branch includes three convolutional layer: a 1× 1 projection that reduces
the channels of feature maps, a main convolutional layer with 3× 3 kernels, and
a 1 × 1 expansion that resizes the channels. On the left of the branch is a 1 × 1
adjustion matches the number of the channels. The details of the experiment are
shown in Sect. 4. As a result, we choose the second approach for the balance of
accuracy and speed.
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Fig. 3. The comparison of convolutional module. (a) Original convolutional block. (b)
Bottleneck module.

Another noteworthy point is that the decoder in the decoder network upsam-
ples its input feature maps using the memorized max-pooling indices from the
corresponding encoder feature maps. Inspired by SegNet [1], we only store the
max-pooling indices, i.e., the location of the maximum feature value in each
pooling window is memorized for each encoder feature map. For intuitive com-
parison, we inference DeconvNet [21] which applies this upsamle technology, and
the required memory is reduced greatly (from 1872M to 1174M).
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4 Experiments

We conduct experiments on CamVid dataset [4]. This dataset consists of 367
training and 233 testing RGB images at 960 × 720 resolution. There are eleven
different classes such as tree, car, building, etc.1 To reduce the computational
requirements, we reshape the image to 480 × 360 before training.

Table 1. Comparison of decoder variants.

Model GA/% CAA/% mIoU/% IM/MB MS/MB IS/FPS

SegNet 87.462 69.531 56.984 1038 112.4 13

SegNet-1 87.492 71.116 56.893 987 92.1 14.3

SegNet-2 87.445 70.956 56.89 873 71.3 16.8

SegNet-3 69.993 58.958 39.834 1235 59.4 11.3

4.1 Decoder Variant

We train three different decoder variants described in Sect. 3 on CamVid dataset.
Inspired by SegNet [1], the encoder weights are initialized by VGG16 model pre-
trained on ImageNet classification challenge, the decoder weights are initialized
using the technique in [11]. All the variants are trained using stochastic gradient
descent (SGD) [3] with a fixed learning rate of 0.001 and momentum of 0.9.
Before each epoch, the training set is shuffled and each mini-batch (4 images)
is then picked in order to ensure that each image is used only once in each
epoch. The weighted cross-entropy loss is used as loss function for training the
network. There is a need to balance the weights since there is too many dif-
ferences between the number of each class in the set. The balance strategy is
named median frequency balancing [8], which is assigned to calculate the ratio of
the median of class frequency on the entire training set, implying larger classes
have smaller weights while smaller classes have higher weights. To compare the
three different decoder variants quantitatively, we use six commonly used perfor-
mance measures: global accuracy (GA) measures the percentage of pixels that
are correctly classified in the entire dataset, class average accuracy (CAA) is the
predictive accuracy over all classes, mean intersection over union (mIoU) is a
more stringent metric than class average accuracy since it penalizes false posi-
tive predictions, inference memory (IM) is the memory requirement to segment
images, model size (MS) means the number of parameters and inference speed
(IS) tests the segmentation efficiency.

The experiment results are illustrated in Table 1. There are three decoder
variants named SegNet-1, SegNet-2 and SegNet-3. SegNet-1 removes the
deconv3-3, deconv4-3 and deconv5-3 convolutional layers. SegNet-2 only retains
1 The twelfth class contains unlabeled data, which is ignored while training.
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Fig. 4. Results on CamVid day and dusk test/val samples.

one convolutional layer between two upsampling layers. SegNet-3 is based on
SegNet-2 and replaces the convolutional layers with the bottleneck architec-
ture in the decoder. Compared with the baseline (SegNet), SegNet-2 reduces
34.6% model size, accelerates more than 3 fps and has only 0.094% mIoU loss.
It is notable that when it comes to global accuracy and class average accu-
racy, SegNet-1 even has better performance than the baseline. This suggests
that some parameters in decoder layers are redundant for upsample. However,
the huge successful bottleneck architecture in ENET [23] has a poorer perfor-
mance, reduce 17.15% mIoU, 17.47% global accuracy and 10.57% class average
accuracy. Further more, this architecture pluses feature map with the lower one,
which infinitely increasing the required inference memory, thus probably making
slower inference speed.
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Table 2. The comparison of accuracy among different classes.

Model Sky Building Pole Road Pavement Tree SignSymbol Fence Car Pedestrian Bicyclist

SegNet 93.11 87.82 35.15 94.21 86.07 81.16 56.07 39.41 80.84 71.90 39.10

ENET 95.1 74.7 35.4 95.1 86.7 77.8 51.0 51.7 82.4 67.2 34.1

ReSeg 93.0 86.8 35.6 98.0 87.3 84.7 48.6 20.9 87.3 63.3 43.5

FCN32 90.27 74.39 10.22 74.05 84.65 80.73 40.47 54.83 80.83 53.03 46.45

FCN8 89.24 71.85 25.66 87.90 82.59 82.31 65.58 52.22 79.61 74.90 55.72

PPED-O 94.10 88.51 48.37 96.84 87.79 87.93 57.89 52.00 83.17 72.17 60.42

PPED-A 94.66 90.73 40.30 97.17 87.68 86.53 53.27 50.87 81.41 73.01 62.05

Table 3. Quantitative comparison of semantic segmentation on the CamVid test set
when trained on its original train set.

Model GA/% CAA/% mIoU/% IM/MB MS/MB IS/FPS

SegNet 87.462 69.531 56.984 1038 112.4 13

FCN32 77.535 62.720 46.441 1271 512.4 12.1

FCN8 80.94 69.78 50.50 1290 512.5 11.7

PPED-O 89.956 75.382 63.294 884 92.3 16.4

PPED-A 90.310 74.334 64.198 884 92.3 16.2

4.2 Comparison

We compare our network with ENET [23], ReSeg [27], FCN × 32 and FCN × 8
[19] on the test set for their fine segment accuracy and inference speed. All the
compared network architectures are trained on the original CamVid train set
with 367 RGB images. The objective is to understand the performance of these
architectures when trained on the same dataset. We add batch normalization [13]
layers after each convolutional layer in order to end-to-end train the network.
To provide a controlled benchmark we use the same SGD solver [3] with a fixed
momentum of 0.9, the learning rate is unfixed for different convergence speed
between these networks. A mini-batch size of 4 is set to ensure all architectures
can be trained on an NVIDIA Titan X GPU and dropout of 0.5 is added for some
deeper convolutional layers to prevent overfitting. VGG16 pre-trained model
parameters are used in order to accelerate convergence and other layers’ weights
are initialized using the technique in He et al. [11]. There is no limit for maximum
epoch, and all architectures are trained until no further performance increase is
observed.

The results in Table 2 show the accuracy of each class that belongs to differ-
ent architectures. ENET performance is provided by [23] while the data of ReSeg
is provided by Visin [27]. Our network have two versions which are introduced in
Sect. 3. PPED-O uses the original pyramid pooling framework, and PPED-A is
with the attentional pyramid pooling framework. Both our two networks use the
second decoder variant described in Sect. 3 as their decoder. It is clear that our
networks get the highest accuracy in six of the categories. Some classes like pole
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and bicyclist on which SegNet and ENET get a poor segmentation result, are
much better segmented by our networks. Different pyramid pooling models also
influence the segmentation accuracy. Attention pyramid pooling outperforms in
five classes which exactly distribute on the left, middle and right of an image. It
is notable that particular designed pooling focuses on these three regions, making
finer segmentation of some objects like pedestrian and road. But for other classes,
especially someone which is between buildings and the road, original pyramid
pooling has better performance. Table 3 shows more performance metrics, and
our network outperforms existing state-of-the-art algorithms in all the metrics.
Our model obtain a 17.9% less of parameters than SegNet, and accelerates imple-
mentation speed more than 3 images per second. For more detailed comparison,
attention pyramid pooling has better performance in global accuracy and mIoU.
But compared in class average accuracy, original pyramid pooling is better. The
qualitative comparisons of our network predictions with other deep architectures
can be seen in Fig. 4. It is clear that our proposed architecture has a stronger
ability to segment smaller classes in road scenes.

5 Conclusion

We propose a novel neural network architecture for complex scene image seman-
tic segmentation. The main motivation is the need of an efficient method for road
scene understanding which works well in terms of both accuracy and computa-
tional time. For this objective, we propose a pyramid pooling encoder-decoder
network architecture. We compare it with others in the metrics of mean of inter-
section over union (mIoU), inference memory, model size and particularly pro-
cessing speed. The experimental results reveal both 7.214% mIoU improvement
and more than 3 fps acceleration compared with existing state-of-the-art algo-
rithm, SegNet [1].
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