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Abstract. The traditional disparity refinement methods cannot get highly
accurate disparity estimations, especially pixels around depth boundaries and
within low textured regions. To tackle this problem, two novel stereo refinement
strategies are proposed: (1) merging super-pixels into stable region to maintain
continuity and accuracy of the same disparity; (2) optimizing the co-operative
relations between adjacent regions. Then we can obtain high-quality and
high-density disparity maps. The quantitative evaluation on Middlebury
benchmark shows that our algorithm can significantly refine the results obtained
by local and non-local methods.
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1 Introduction

Stereo matching has been one of the key problems in computer vision for years.
Recently, most of publications [1–4] have been focused on solving this problem. And
the segment-based methods [7–9] have attracted more and more attention due to their
good performances for years.

Most segment-based stereo matching algorithms follow the four-step pipeline [5]:
First, matching cost computation; Second, cost aggregation; Third, disparity
computation/optimization; Fourth, disparity refinement. Traditional disparity refine-
ment methods, involving left-right consistency checking [10], hole filling [11], and
median filtering [12, 13], could not provide highly accurate disparity estimation. Yoon
et al. [14] adopted adaptive supporting-weight approach for correspondence search to
refine the local aggregation results. Yang [15] firstly proposed the non-local aggre-
gation method and refined the non-local results with minimum spanning tree (MST).
Based on Yang’s method, Mei et al. [16] proposed a segment-tree (ST) structure for
non-local cost aggregation, they enhanced the disparity values, with a depth-color
segmentation method extended from a classic graph-based segmentation method [17].
The region-based methods [18, 19], presented to further improve the disparity esti-
mation, can get better results especially in low textured regions.

In this paper, we propose a stereo refinement algorithm based on merging
super-pixels (MSP). Our algorithm includes the following seven steps: First, estimating
the initial disparity values with a local or non-local method and locating the
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super-pixels with a depth-color segmentation method from stereo images; Second,
estimating the robust information of each super-pixel by voting; Third, searching for
the supporting neighbors of each super-pixel; Fourth, merging super-pixels into region
based on the correlation of adjacent super-pixels; Fifth, updating the information of
each region and finding out unreliable regions; Sixth, correcting unreliable region with
its supporting region; Seventh, assigning disparity value for each pixel with consid-
ering the disparity of the correlative region.

In general, our paper makes these main contributions: (1) we merge super-pixels into
stable region, then the disparity of each pixel can be estimated by considering the constraint
on smoothness of the correlative region to maintain the continuity of the same disparity.
(2) we apply the optimization of the cooperative relations between adjacent regions to
reduce the unreliable disparity values and obtain the high-quality depth boundaries.

2 Obtaining Raw Cost Aggregation and Initial Disparities

2.1 Obtaining Cost and Disparity in Pixel Domain

First of all, we employ some local or non-local algorithms to obtain the raw cost aggre-
gation and initial disparity values. These algorithms always poorly use WTA strategy to
select disparities from multiple candidates and the disparity estimation obtained by these
algorithms is not accurate enough. Later, the accuracy will be improved by our algorithm.

2.2 Over-Segment Based on Color-Depth

Segment-based algorithms usually assume that disparity values vary smoothly in each
segment and the depth discontinuities only occur on segment boundaries. But in
practice, over-segment based on color-depth is preferred and the assumption is not
al-ways met. In this paper, we use efficient graph-based image segmentation [16, 17].
Figure 1 shows the disparity map of the Teddy stereo pair and the segmentation result
of the left image produced by the method in [16]. In this paper, we call the
over-segmentation super-pixel.

2.3 Cross-Checking Test

At first, a local or non-local cost aggregation method runs the left and the right image as
reference images in turn to obtain two corresponding disparity maps. In order to eliminate
the outlier in disparity map and obtain robust disparity estimation of each segmentation,
the cross-checking test is applied. Then the occlusions and matching errors in the dis-
parity map can be obtained, they are all called unreliable pixels in this paper. After
cross-checking, the cost volume is refined according to [15]. Let D denotes the disparity
map, a new cost value is computed for each pixel p at each disparity level d as:

Cn
1 pð Þ ¼ d � D pð Þj j; p is stable and D pð Þ[ 0

0; otherwise

�
ð1Þ
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3 Robust Super-Pixels Merging

The super-pixels are sensitive to unreliable pixels and they are correlative rather than
individual. If the super-pixel is handled solely, the disparity values around the
boundary between adjacent regions, which have the same disparity may be discon-
tinuous. In this paper, an effective approach of merging super-pixels to stable region is
proposed to resolve this problem.

3.1 Voting the Information of Super-Pixel

Before merging, the information of super-pixels should be obtained by voting. The
information contains RGB values, disparity and the message whether the super-pixel is
unreliable or not. The process of voting robust information can be expressed as:

First, the RGB values of super-pixel are estimated by using RGB values of all pixels
within the region. And the RGB values of each super-pixel are respectively determined
by voting a one-dimensional histogram, where the x-coordinate is the value of one of the
three channels, and the y-coordinate is the count number of values. After sorting the
histogram and smoothing operation by a Gaussian filter, the value of each individual
channel is finally estimated by the maximum of the corresponding histogram;

Second, the disparity of each super-pixel is estimated in a similar way by getting rid
of unreliable pixels.

Third, if the number of unreliable pixels in a super-pixel is more than a given
per-cent of the number of all pixels within the super-pixel, we regard this super-pixel as
an unreliable super-pixel and assign true (denotes the super-pixel is unreliable) for the
message of this super-pixel. Let Wocc denotes the percent.

3.2 Supporting Neighbors Selection

In order to get rid of piecewise smooth, the super-pixels should be merged to stable
region by considering the supporting neighbors of each super-pixel. LetWi Sp

� �
denotes

(a) The over-segmentation 
result of the left image.

(b) The initial disparity map.

Fig. 1. The segmentation result of the left image by using color-depth based over-segmentation
method and the disparity map of the Teddy stereo pair by using segment-tree stereo matching
algorithm [16]. (Color figure online)
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the weight of the correlation between the super-pixel Sp and its neighboring super-pixel
Si. Considering the difference of disparity and color between super-pixels Sp and Si.
The ratio a, which denotes the ratio of common border lengths to perimeter, can be
written as:

a ¼ Ni

Nall
ð2Þ

where Ni denotes the length of the boundary between super-pixel Sp and Si. And Nall

denotes the perimeter of super-pixel Ni. Thus, Wi Sp
� �

can be written as:

Wi Sp
� � ¼ a

Dr Sp
� �� Dr Sið Þ�� �� � rs

rc
¼ 1� að Þ Ir Sp

� �� Ir Sið Þ
rc

ð3Þ

where Si covers all neighbors of super-pixel Sp. rs and rc are two variables, which can
self-adapt in terms of the disparity range and color range, to normalize Ir and Dr to the
range [0, 1]. Dr denotes the disparity of super-pixel and Ir denotes the RGB values of
super-pixel.

Here, it is worthy of attention that the proposed approach just depends on the
con-textual information of the adjacent super-pixels and no ambiguity or artificial
factor exists.

The supporting neighbors are selected by minimizing the set of Wi Sp
� �

,
i ¼ 1; 2. . .n. Due to the several minimum (because of equal) at the same time, the
supporting neighbors of super-pixel Sp are consist of all neighboring super-pixels,
which can minimize the Wi Sp

� �
.

3.3 Merging Super-Pixels to Stable Region

This step aims to obtain stable region by merging super-pixels and it is divided into the
following three cases:

(a) If two neighboring super-pixels are both reliable super-pixel and their disparities
are equal, then merge the two super-pixels;

(a) The merged super-pixels 
result of the left image.

(b) The first iteration disparity 
map.

Fig. 2. The first iteration: merging the super-pixels and then estimating the disparity map based
on the merged result.
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(b) If the two super-pixels are both unreliable or one is unreliable region, the other is
not and one is the supporting neighbor of the other one, then merge the two
super-pixels;

(c) The rest conditions will not be merged. If a super-pixel was not merged with any
other super-pixel, it should be regarded as a stable region. We merge the
super-pixels by using a forest structure. (The forest construction algorithm, which
regards super-pixel as pixel, is similar to the ST structure algorithm in [16].)

Figure 2 gives the super-pixels merged result of the left image and the disparity
map with first iteration. The experimental results show that the new segmentations are
stable and our method performs well in disparity estimation.

4 The Principle of Unreliable Region Optimization

The unreliable pixels have great effects on disparity estimation. In this section, we
propose a new method to deal with unreliable pixels by optimizing the unreliable
region. As described in Sect. 3, before optimizing, the information and the supporting
neighbors of each region must be updated.

The principles of unreliable region optimization are as follows:

(a) Considering each unreliable region’s supporting neighbors, if there is a supporting
neighbor which is a reliable region, or an unreliable region which has already been
optimized, then we regard the supporting neighbor as a supporting region;

(b) If there is no supporting region of unreliable region Su, we select the neighbor
which can minimize Wi Suð Þ from all neighbors of Su to be a supporting region;

(c) If an unreliable region has more than one supporting region, selecting the sup-
porting region with the minimum of disparity. And then we regard the selected
supporting region as the final supporting region;

(d) Assigning the final supporting region disparity for the correlative unreliable
region disparity. And then set a label, which denotes the unreliable region has
been optimized, to this unreliable region. Applying the four steps to all unreliable
regions until each of them have been set an optimized label.

5 Depth Hypotheses Generation

In this section, we obtain the accurate disparity map by two steps. First, we adopt the
constraint on smoothness to reduce the effect of spurious disparity estimation. Second,
the iterative refinement is employed to enhance the accuracy of the disparity map.

5.1 The Constraint on Smoothness of Region

In order to reduce effects on spurious disparity estimation, we consider the smooth-ness
of stable region. Usually, the depth discontinuity occurs around the boundaries of
regions. Thus, the method, used to solve the smoothness problem, assigns the disparity
value for each pixel by selecting the disparity from the correlative stable region
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disparity, which can minimize the cost aggregation. The optimal disparity value of
pixel p within super-pixel Sp can be written as:

ud pð Þ ¼ min DA
di pð Þ

� �
; di 2 Dr Sp

� �� Dd;Dr Sp
� �þDd

� 	 ð4Þ

where Dd is a variable which determines the range of stable region disparity. If it is too
small, the correct cost value may be excluded and if it is too large, the effects of
spurious cost values may not be reduced. Thus we apply an adapting formulation for
computing Dd, the formulation can be written as:

Dd ¼ R
c

ð5Þ

where R denotes the disparity range of image and c is a constant which is set to six in
all of our experiments. According to Eq. (4), the disparity value of pixel p is d which
minimizes DA

di pð Þ.

5.2 Enhancement with Iteration

After estimating the accurate disparity values, we can use iterative refinement to
enhance the disparity estimation. As shown in Fig. 3, in the first iteration, disparity
value with the best cost value is selected for each pixel, and then the robust typical
disparity value can be voted for each stable region. In the next iteration, refining the
disparity values by re-computing the steps from 2 to 7 based on the last iteration
disparity map. New stable regions are determined and their information is updated. The
best disparity values of pixels are selected only among the represent disparity value of
the correlative stable regions. The final disparity values can be assigned after two
iterations.

(a) The merged super-pixels 
result of the left image.

(b) The second iteration dis-
parity map.

Fig. 3. The second iteration: merge super-pixels and then estimate the disparity map based on
the merged result.
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Figure 3 shows the second iteration segmentation result of the left image. Obvi-
ously, the experimental result performs better than the result in the first iteration
(Fig. 2). In addition, in order to verify the robustness of the proposed algorithm, Fig. 4
shows the merged results of the rest stereo image pairs in the Middlebury data sets [6].

6 Experimental Results

The local algorithm [14] and the non-local algorithm [16] proved to be the top per-
former on Middlebury benchmark [6], but the results of this paper demonstrates that
quantitative disparity map estimated by these algorithms can be improved by the
proposed algorithm (MSP).

All experiments in this paper strictly follow a local stereo matching pipeline [5].
The specific descriptions are as follows:

(a) Cost computation: The same cost used in the local method [14] and non-local
method [16], is adopted in all our experiments. It is a blending of truncated color
difference and truncated gradient difference.

(b) Cost aggregation: Two cost aggregation methods are evaluated with various stereo
data sets: local aggregation with adaptive supporting-weight (AW) [14], non-local
aggregation with enhanced ST (Segment-tree) [16].

(c) Disparity optimization: WTA (Winner-Take-All) operation is adopted in all
experiments. This method simply chooses the disparity for each pixel with the
minimal aggregated cost.

(d) Disparity refinement: Based on the result of (c), applying the merged super-pixel
(MSP) refinement algorithm to enhance the performance. Two parameters require
to be set in this method, the parameter k is set to 0.03 and Wocc is set to 0.4. The
final disparity map can be obtained by only iterating the proposed algorithm twice.

Fig. 4. The image from top to bottom is the merged super-pixels results of Tsukuba, Venus and
Cones.
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The disparity maps of all four stereo pairs in the Middlebury data sets computed by
local method [14] are presented in Fig. 5(a). And the disparity maps obtained by the
proposed algorithm, and based on the resulting disparity maps in Fig. 5(a), with dif-
ferent iterations, are presented in Fig. 5(b)–(c). Obviously, Fig. 5(b)–(c) show that their
results are more accurate than the result in Fig. 6(a). Thus, it proves that the proposed
method (MSP) is available to enhance the performance of local methods. Similarly, the
proposed method (MSP) is effective to improve the performance of non-local methods.
Visual comparisons in Fig. 5 show that the proposed refinement method performs
better within the low textured regions. For instance, the region near the hand of teddy
bear (the third row of Fig. 5) is estimated inaccurate with cost computation method (the
first step of stereo matching pipeline). Both the local and non-local cost aggregation
methods cannot correct these errors, but the proposed method can obtain the accurate
disparity values through optimizing the unreliable region with its supporting region.
Moreover, the method is more accurate around depth boundaries, such as the bound-
aries of the newspaper in Venus data set (the second row of Fig. 5). Errors around

(b) Local cost
aggregation []+
MSP-1 (6.84%).

(c) Local cost
aggregation []+
MSP-2 (6.29%).

(d) Non-local 
cost aggregation 
[]    (5.35%).

(f) Non-local cost
aggregation []+
MSP-2 (4.74%).

(a) Local cost
aggregation []   
(6.67%).

(e) Non-local cost
aggregation []+
MSP-1 (5.18%).

Fig. 5. Experimental results using the Middlebury data sets [6]: Tsukuba, Venus, Teddy and
Cones. (a) is the disparity map obtained by using the local cost aggregation algorithm [14]. (b)–(c)
are the refined results of (a) by applyingMSP-1 andMSP-2 refinement method proposed in Sect. 2,
respectively. (d) is the disparity map obtained by employing the non-local cost aggregation [16].
And (e)–(f) are the refined results of (d) by applying MSP-1 and MSP-2 refinement method,
respectively. The bold numbers under the images are the average errors (percentages of bad pixels)
which show that the significant improvement of quantitative evaluation with local and non-local
stereo matching method by employing the proposed refinement method. The corresponding
quantitative evaluation is summarized in Table 1. Visual comparison of the disparity maps using
the local or non-local cost aggregation method without MSP or not shows that the proposed
refinement method performs better around depth boundaries. For instance, the disparity estimations
around the boundaries of the newspaper (the second row) in (b)–(c) or (e)–(f) are more accurate than
in (a) or (d). Moreover, note that the proposed refinement can also enhance the performance in low
textured regions. For example, the disparity estimations within the low texture region near the hand
of teddy bear (the third row) in (b)–(c) or (e)–(f) are more accurate than in (a) or (d).
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depth boundaries are mostly due to noises and would cause inconsistency, the method
corrects the errors by merging super-pixels to stable region and assign the disparity
value for each pixel by considering the constraint on smoothness of stable region. More
details are presented in Figs. 6 and 7. According to the comparisons of the disparity
estimation within zoom-in regions in Figs. 6 and 7, MSP-2 performs completely better

(a) The left image of 
Teddy stereo pair. 

(b) Zoom-in (c) Local cost     
aggregation  
[14] 

(d) Local cost 
aggregation
[14]+MSP-1. 

(e) Local cost 
aggregation
[14]+MSP-2. 

(f) Non-local
cost aggrega-
tion [16].

(g) Non-local 
cost aggrega-
tion [16] + 
MSP-1. 

(h) Non-local 
cost aggrega-

tion [16] + 
MSP-2. 

Fig. 6. (a) The left image of Teddy stereo pair from Middlebury data sets [6]. (b) The zoom-in
region of yellow box. (c) The result of the local cost aggregation [14]. (d) The refined result of
(c) by employing MSP once. (e) The refined result of (c) by employing MSP twice. (f) The result
of the non-local cost aggregation [16]. (g) The refined result of (f) by employing MSP once.
(h) The refined result of (f) by employing MSP twice. Visible comparison of the results in low
textured region, (d)–(e) are more accurate than (c) and (g)–(h) are more accurate than (f), shows
that the proposed refinement method is significantly available to reduce the efforts of spurious
disparity values estimated by local or non-local method. (Color figure online)

(b) Zoom-in region
of the  yellow box.

(c) Local cost 
aggregation
[14].

(d) Local cost 
aggregation
[14] + MSP-1.

(e) Local cost 
aggregation
[14] + MSP-2.

(f) Zoom-in region
 of the red  box. 

(h) Non-local 
cost aggregation
[16] + MSP-1. 

(g) Non-local 
cost aggregation
[16].

(i) Non-local 
cost aggregation
[16] + MSP-2. 

(a)The left image of Teddy stereo pair.

Fig. 7. (a) The left image of Venus stereo pair from Middlebury data sets [6]. (b) The zoom-in
region of the yellow box. (c) The result of the local cost aggregation [14]. (d) The refined result of
(c) by employingMSP once. (e) The refined result of (c) by employingMSP twice. (f) The zoom-in
region of the red box. (g) The result of the non-local cost aggregation [16]. (h) The refined result of
(g) by employing MSP once. (i) The refined result of (g) by employing MSP twice. Visible
comparison of the results around depth boundaries, (d)–(e) are more accurate than (c) and (h)–(i) are
more accurate than (g), shows that the proposed refinement method is significant available to
improve the accuracy of the results estimated by local or non-local method. (Color figure online)

Disparity Refinement Using Merged Super-Pixels for Stereo Matching 303



than local and non-local methods, with more accurate estimation both in low textured
regions (shown in Fig. 6) and around depth boundaries (shown in Fig. 7).

The running time of the algorithm is related to the number of iterations. By using a
PC with CPU of PM 2.5G, the total time for processing the stereo pair of Tsukuba is
about 2 s. Here, the number of iterations is 2, and the time for image segmentation is
about 1 s. The comparisons between the proposed refinement method and local method
[14] or non-local method [16] are shown in Table 1. The average error of local method
is reduced by 0.38% (from 6.67% to 6.29%) through applying the proposed method.
And the rank is increased by 18.3 (from 79.5 to 61.2). The average error of non-local
method [16] is reduced by 0.61% (from 5.35% to 4.74%) through using the proposed
method. And the rank is increased by 13.4 (from 37.7 to 24.3). It is clear to see the
significant improvement of quantitative evaluation when we replace local and non-local
stereo matching method with our novel refinement method.

7 Conclusion

This paper proposed a novel refinement algorithm for stereo matching, permits us to
obtain the high-quality and high-density disparity map of a scene from its initial
disparity estimation. Its novelty is reflected in the following two aspects: Novelty 1,
presenting the method of merging super-pixels into stable region. Novelty 2, dealing
with unreliable pixels by optimizing the unreliable region.

The advantage of this algorithm lies in that it is able to restrain and correct errors
both in low textured regions and around depth boundaries, making us obtain the
high-quality and high-density disparity map.

In the near future, we will focus on testing the algorithm with more challenging
stereo data sets and various local or non-local cost aggregation methods.

Table 1. Quantitative evaluation of six methods (AW [14], AW [14] + MSP-1, AW
[14] + MSP-2, ST [16], ST [16] + MSP-1, ST [16] + MSP-2) on the standard middle-bury
benchmark [6] with error threshold 1. The percentages of the erroneous pixels in nonocc./all/disc.
regions are used to evaluate the performance of the method. The disparity estimation using local
[14] or non-local [16] method with MSP-1 is slightly more accurate than only using [14] or [16],
while MSP-2 outperforms the other methods with the best overall accuracy.

Algorithm Avg.
rank

Avg.
error

Tsukuba Venus Teddy Cones

Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc

AW [14] 79.5 6.67 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26

AW
[14] + MSP-1

76.9 6.84 1.44 1.69 7.52 0.28 0.54 3.38 7.49 15.0 18.9 4.28 11.4 10.1

AW
[14] + MSP-2

61.2 6.29 1.43 1.69 7.49 0.17 0.32 1.89 7.30 12.6 18.4 4.09 10.5 9.70

ST [16] 37.7 5.35 1.25 1.68 6.69 0.20 0.30 1.77 6.00 11.9 15.0 2.77 8.82 7.81

ST
[16] + MSP-1

32.1 5.18 1.09 1.48 5.83 0.15 0.28 1.97 5.75 12.8 14.0 2.57 8.92 7.37

ST
[16] + MSP-2

24.3 4.74 1.09 1.48 5.85 0.15 0.27 1.90 4.76 9.98 12.9 2.49 8.84 7.11
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