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Abstract. Compared to single-label image classification, multi-label image
classification outputs unknown-number objects of different categories for an
input image. For image-label relevance in multi-label classification, how to
incorporate local information of objects with global information of label rep-
resentation is still a challenging problem. In this paper, we propose an
end-to-end Convolutional Neural Network (CNN) based method to address this
problem. First, we leverage CNN to extract hierarchical features of input images
and the dilated convolution operator is adopted to expand receptive fields
without additional parameters compared to common convolution operator.
Then, one loss function is used to model local information of instance activa-
tions in convolutional feature maps and the other to model global information of
label representation. Finally, the CNN is trained end-to-end with a multi-task
loss. Experimental results show that the proposed proposal-free single-CNN
framework with a multi-task loss can achieve the state-of-the-art performance
compared with existing methods.
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1 Introduction

Single-label image classification, which just outputs a dominant label from a predefined
label set for an input image, has been studied during the past years. However,
real-world images mostly contain multiple objects of different categories, thus
multi-label image classification needs to be considered for real-world images and
usually it is a more complex and challenging task.

In recent years, Convolutional Neural Network (CNN) [1] has achieved great
success in single-label image classification [2–4]. Inspired by this, recent state-of-the-
art works for multi-label image classification are mainly involved with CNN and these
methods can be generally categorized into two types: based on proposals and based on
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multi-network. The first type of methods [5–7] has a multi-stage pipeline in training
phase that first generate object proposals for an input image, and then makes predic-
tions from features extracted by a CNN for each proposal. Although proposal based
methods can produce high quality proposals, most of these proposals are redundant and
thus proposal selection is required to reduce computation. The second type of methods
[7, 8] trains a fusion model of multiple CNNs or CNN combining with Recurrent
Neural Network (RNN). These multi-network models usually have more parameters to
tune and in practice are harder to converge. Moreover, combination of local infor-
mation of objects and global information of label representation is not considered in
these methods.

To address the problems above, in this paper we propose a proposal-free
single-CNN based multi-label classification framework with a multi-task loss. Firstly, a
CNN is used to extract hierarchical features for an input image. By directly taking an
image as input instead of multiple region proposals, the redundant proposal extraction
process is avoided. Secondly, the dilated convolution operation is adopted to expand
receptive fields without additional parameters compared to common convolutional
operation, which will benefit further global information representation. Thirdly,
inspired by [9], with stronger activations in convolutional feature maps of higher layers
generally corresponding to positions of object instances in the image, bounding box
annotation (ground-truth rectangle tightly enclosed an object) of each instance can be
considered as local constraint information with strong label. To leverage this insight
into multi-label classification, the CNN model is trained with a multi-task loss com-
posed of two loss functions: one is to model local information of instance activations in
convolutional feature maps and the other model global information of label
representation.

The main contributions of our work can be briefly summarized as follows:

• An end-to-end proposal-free method with single-CNN framework for multi-label
image classification is proposed.

• The dilated convolution operation is adopted to expand receptive fields for aggre-
gating multi-scale contexture information without additional parameters.

• A multi-task loss is utilized to leverage local information of object instances and
global information of label representation to enhance the discriminative capability
of CNN.

The rest of this paper is organized as follows. The proposed method is given in
Sect. 2, in which the basic structure of CNN, the dilated convolution operator and the
multi-task loss are described in details. Section 3 shows experimental results on two
widely used datasets and the performance comparisons of the proposed method with
the state-of-the-art methods. Finally, concluding remarks are drawn in Sect. 4.

2 Our Method

To address the multi-label image classification problem, we propose an end-to-end
proposal-free single-CNN based framework with a multi-task loss. Figure 1 shows that
our method comprises three main parts: hierarchical feature learning of CNN (ConvNet
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in Fig. 1), local instance constraint on convolutional feature maps (loss1 in Fig. 1) and
global presentation in label space for classification (loss2 in Fig. 1). Contributing to
hierarchical feature learning, the basic structure of CNN and the dilated convolution
operation are separately described in Subsects. 2.1 and 2.2, and a multi-task loss
composed of two loss functions is elaborated in Subsect 2.3.

2.1 Basic Structure of Convolutional Neural Network

A CNN is generally composed of several convolutional and pooling layers (denoted as
C layers and P layers) to extract hierarchical features from the original inputs or
receptive fields, subsequently with several fully connected layers (denoted as FC
layers) followed for specific tasks, as shown in Fig. 2.

Assumed that a CNN is constructed with L layers and the output of the l - th layer
is denoted as Il, where l 2 1; 2;. . .; Lf g, layer, specifically I0 denotes the input data. As
shown in Fig. 2, the input data is connected locally to a convolutional where a 2-D
convolution operation is performed with convolutional kernelsWc

l and a bias term bcl is
added to the resultant feature maps. To model nonlinearities in CNN, an activation
function @ð�Þ is generally performed following convolutional layers. Then, a pooling
operation poolð�Þ is usually followed to achieve shift-invariance by reducing the res-
olution of the feature maps. The general C-P block of CNN can be formulated as

Fig. 1. Framework of the proposed method with a multi-task loss (loss1 represents local
instance constraint and loss2 represents global representation in label space). Blue arrows
indicate forward computation and red arrows indicate backward computation in CNN. Red
rectangles in input represent bounding box annotations. Black dashed lines show description of
output in CNN. (Color figure online)
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Il ¼ poolð@ðIl�1 �Wc
l þ bcl Þ; ð1Þ

where � denotes the convolution operation. After some C-P blocks, hierarchical fea-
tures are further transformed into 1-D feature vector by the FC layers. The FC layers
connect all neurons in the previous layer to each singe neuron of the current layer to
generate global semantic information. Denoting weight as Wfc

l and bias as bfcl , an FC
layer computation can be formulated as follows:

Il ¼ @ðIl�1 �Wfc
l þ bfcl Þ ð2Þ

The output of the last FC layer is usually fed to an output layer using certain
operations for specific tasks, for example, softmax operation is used for multi-class
classification. Suppose we have N desired input-output pairs ðxn; ynÞ;f
n 2 ½1; 2; . . .;N�g, where xn is the n - th input data and yn is its corresponding target
label and tn is the corresponding output of CNN. Denoting h as all the parameters of
CNN, the loss of CNN can be computed as

L ¼ 1
N

XN
n¼1

‘ðh; yn; tnÞ ð3Þ

Training a CNN can be seen as an optimization of function mapping, i.e., to
minimize the loss of CNN, and generally, stochastic gradient descent (SGD) is used to
find the best fitting set of parameters.

2.2 Dilated Convolutional Neural Network

Compared to common convolution operation, the dilated convolution operator is used to
gain context information like cross-layer connection in [10]. Unlike the deconvolutional
layer [10], with dilation rate [11] in CNN, the dilated convolution operation can apply
the same convolutional kernel at different scales without additional memory and loss of
information. Combining with proper parameter stride and padding in convolution
operation, the dilated convolution operation can be used for multi-scale context infor-
mation, which is demonstrated to be superior to cross-layer connection [12].

Fig. 2. Common CNN architecture with convolution layers (C), pooling layers (P) and fully
connected layers (FC).
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Considering one-dimensional convolution operator with a kernel x½m� of length M
for a 1-D input signal x½i�, the output y½i� is defined as

y½i� ¼
XM
m¼1

x½iþ d � m�x½m�; ð4Þ

where d is the dilation rate for input sampling. Thus common convolution operation
can be seen as a special case of dilated convolution with a dilation rate of 1. In practice,
as shown in Fig. 3, the dilated convolution operator with kernel size of k � k and
dilation rate of d just inserts d � 1 zeros between consecutive filter values, trans-
forming kernel size of k to kþðk � 1Þðd � 1Þ without additional computation and
memory.

Due to dilation rate in convolution operation, the effective kernel size increases, but
the number of filter parameters remains the same because of insertion of zero values.
By aggregating dilated convolution in a chain of layers with proper stride and padding,
a CNN can produce feature maps with desired resolution and larger receptive fields,
which contains more context information and benefits for semantic representation.

Fig. 3. Illustration of common convolution operation and dilated convolution operation in one
dimension. (a) Common convolution (dilation rate of 1). (b) Dilated convolution (dilation rate of
2, insert zero between adjacent filter values).
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2.3 Multi-task Loss

The proposed single-CNN framework is trained with a multi-task loss composed of two
loss functions. The first loss Lact involves a H �W � C convolutional feature maps, in
which each H �W plane represents an activation map of the category. The second loss
Lcls involves a discrete probability over C categories.

Each input image is labeled with a multi-label ground-truth and instances
ground-truth. A multi-task loss L is used to jointly train for multi-label classification:

L ¼ Lact þ kLcls; ð5Þ

where the hyper-parameter k controls the balance between the two task losses.

Local Instance Constraint. As discovered in [9], CNN can learn hierarchical features
due to its deep architecture, and higher complex features are sensitive to local structures
in the input images. Following these works, we propose a loss function that considers
precise instance location and activation values in convolutional feature maps, allowing
the network to capture local structures of each individual object instance.

Based on [12], the dilated convolution operator described in Sect. 2.2 is employed
to expand receptive fields, and after the last convolution operation, a 1� 1 convolu-
tional layer with the same number of filters as the number of categories is adopted. In
this way, as shown in Fig. 1, each plane of convolutional feature maps stands for one
specific category, thus higher activations in specific feature map indicate higher
existing probability of the category. For local instance constraint, a Euclidean distance
based loss function is adopted for penalizing the position with no object and con-
straining the activation values where there are objects corresponding to the category.
Thus, for N training samples, the loss function Lact is Euclidean distance between

convolutional feature map f c;i and sum of instance bounding box masks
PTðc;iÞ

t¼1 bc;it
over C categories, which can be expressed as:

Lact ¼
XN
i¼1

XC
c¼1

f c;i �
XTðc;iÞ

t¼1

bc;it

�����

�����; ð6Þ

where bc;it 2 f0; 1g (1 indicates the position with instances and 0 indicates the position
without instance) is the t - th instance bounding box mask for category c and Tðc; iÞ is
the number of instances in the category c in the i - th image. There may exist over-
lapped instances in each individual category and we encoded its overlapped regions of
instances by summing all of the individual binary masks to make the loss function Lcls
surely aware of the higher activation values of objects.

Global Label Representation. For global representation, previous works mainly
choose Euclidean distance [6, 7] or cross-entropy [8] for distance metric, but no work
discusses pros and cons of the two metric learning for multi-label image classification.
For each input image with a ground-truth class label u and predicted class label v, by
adopting Euclidean distance the loss function Lcls can be defined as:
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Lcls ¼ 1
N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XC
c¼1

ðuc;i � vc;iÞ2
vuut ; ð7Þ

and by adopting cross-entropy the loss function Lcls can be defined as:

Lcls ¼ � 1
N

XN
i¼1

XC
c¼1

ðuc;i log vc;iÞ; ð8Þ

where uc;i is the ground-truth label indicator for category c for i - th image and vc;i

corresponds to its prediction. The two losses will be compared in Subsect 3.3.

3 Experimental Results

3.1 Datasets and Baseline

Our method is evaluated on the VOC datasets [13], which is widely used as benchmark
datasets for multi-label object recognition task. Following [5–8], VOC 2007 and VOC
2012 are chosen as our experimental datasets, which has been split into 3 parts:
TRAIN, VAL and TEST. Like [6–8], we take TRAIN and VAL as our training datasets
and TEST for model evaluation. Details of these datasets are shown in Table 1, in
which the 20 classes are airplane (aero), bike, bird, boat, bottle, bus, car, cat, chair,
cow, table, dog, horse, motorbike (motor), person, plant, sheep, sofa, train and tele-
vision (tv). The evaluation metric is average precision (AP) and mean average precision
(mAP). In particular, for VOC 2007 TEST, the scores are evaluated with standard VOC
evaluation package and for VOC 2012 TEST, the scores are evaluated on VOC
evaluation server.

We compare the proposed method with several state-of-the-art approaches [6–8,
15–17, 19] in terms of metric mAP and the results are shown in Sect. 3.3.

3.2 Parameters Configuration

Our CNN architecture is based on VGG16 [3], which is pre-trained on ImageNet.
Following DeepLab [12], layer fc6 and fc7 are converted into convolutional layers and
the dilated convolution operator is employed in layers conv5_1, conv5_2, conv5_3,
and fc6. More details of CNN architecture can be seen in Table 2. We fine-tune the
VGG model from [12] using SGD with initial learning rate 10�5, 0.9 momentum,

Table 1. Datasets information.

Dataset #TRAINVAL #TEST #Classes

VOC 2007 5011 4952 20
VOC 2012 11540 10991 20
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0.0005 weight decay through caffe deep learning framework [14]. The hyper-parameter
in k Eq. 5 is set to 1 in all experiments.

3.3 Multi-label Classification Results

Multi-label Image Classification on VOC 2007. Table 3 reports our experimental
results compared with the state-of-the-arts on VOC 2007. In the upper part of Table 3
above the double strike, we compared with those methods without using bounding box
annotations for training, while the lower part shows the methods with bounding box
information. For the state-of-the-art methods, INRIA [15] and FV [16] are hand-crafted
based methods, and CNN-SVM [17] uses OverFeat [18] as a feature extractor, and the
rest are CNN-based methods mainly fine-tuning pre-trained models on ImageNet.

Table 2. CNN architecture of the proposed method.

No. Convolution Pooling
Kernel Stride Padding Dilation #Filter

1 3 1 1 1 64 No
2 3 1 1 1 64 Yes
3 3 1 1 1 128 No
4 3 1 1 1 128 Yes
5 3 1 1 1 256 No
6 3 1 1 1 256 Yes
7 3 1 1 1 512 No
8 3 1 1 1 512 No
9 3 1 1 1 512 Yes
10 3 1 2 2 512 No
11 3 1 2 2 512 No
12 3 1 2 2 512 Yes
13 4 1 4 6 4096 No
14 1 1 1 1 4096 No
15 1 1 1 1 20 No

Table 3. Average precision (AP in %) comparison for the state-of-the-art methods on VOC
2007 TEST. The upper part shows the results of methods without using ground-truth annotations
and the lower part shows methods with bounding box information.
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From Table 3 it can be seen that the CNN-based methods outperform the
hand-crafted methods with a large margin of more than 10%, which indicates that
hierarchical features of CNN greatly benefits for image representation. PRE-1000C
[19] fine-tunes pre-trained models on ImageNet with limited VOC data. Compared with
PRE-1000C, 2% improvement can be achieved by our d-CNN (CNN with dilated
convolution operation) which takes advantage of dilated convolution operator to learn
more semantic information. HCP-1000C [6] is a proposal-based method that relies on
proposal extraction method to prepare input patches. Compared with HCP-1000C, both
our CNN-L-GE (CNN with local instance constraint and global representation of
Euclidean distance) and CNN-L-GC (CNN with local instance constraint and global
representation of cross-entropy metric) get higher mAP, which shows a positive effect
on multi-task learning because the two tasks, separately involving with local and global
information, influence each other through shared parameters. In terms of loss function
measuring global representation, cross-entropy achieves a further 2.2% performance
than that of Euclidean distance, which verifies the discovery that Euclidean distance is
not suitable for distance metric of sparse data in high dimension [20]. Compared with
the state-of-the-art method CNN-RNN that uses CNN and RNN to model label
dependency and image-label representation, our CNN-L-GC with only one network
achieves competitive performance, which demonstrates the effectiveness of the
multi-task learning both the local and global information. In particular, the proposed
method outperforms the state-of-the-art methods with a large margin when the objects
are nearly squared (i.e., bus, chair, table, motor, plant, and sofa), mainly due to local
instance constraint from bounding box annotations.

Multi-label Image Classification on VOC 2012. Table 4 reports our experimental
results compared with the state-of-the-art methods on VOC 2012. Similar to Table 3,
we compare with methods without using bounding box annotations in the upper part
and methods with bounding box information in the lower part.

The multi-label classification results on VOC 2012 in terms of mAP are consistent
with those in Table 3. Compared with HCP-2000C [6] pre-trained on ImageNet with
2000 categories and PRE-1512C [19] pre-trained on ImageNet with 1512 categories,
our CNN-L-GC pre-trained on ImageNet with only 1000 categories outperforms the
two state-of-the-art methods by 1.7% and 3.1%. Compared with the state-of-the-art

Table 4. Average precision (AP in %) comparison for the state-of-the-art methods on VOC
2012 TEST. The upper part shows the results of methods without using ground-truth annotations
and the lower part shows methods with bounding box information.
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proposal-based FeV [7] with two-stream CNN, our CNN-L-GC has an improvement of
1.9%. Similar to results on VOC 2007, the proposed method takes advantage of
squared objects because of local instance constraint with bounding box annotations.

4 Conclusions

In this paper, we presented an end-to-end proposal-free single-CNN based method
multi-label image classification framework with a multi-task loss. Without region
proposals extraction, the training phase of our work is a single-stage pipeline. Com-
pared with the existing works, our method adopted the dilated convolution operation to
expand receptive fields without additional parameters. Further, the proposed method
utilized instance constraint for local information and cross-entropy metric for global
information representation at the same time to leverage a multi-task learning for
boosting the discriminative capacity of CNN. The experimental results on VOC 2007
and VOC 2012 showed that the proposed method achieved the state-of-the-art
performance.
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