
Recognition of Offline Handwritten
Mathematical Symbols Using Convolutional

Neural Networks

Lanfang Dong(&) and Hanchao Liu

School of Computer Science and Technology,
University of Science and Technology of China, Hefei, China

lfdong@ustc.edu.cn, lhanchao@mail.ustc.edu.cn

Abstract. This paper presents a method of Convolutional Neural Networks
(CNN) to recognize offline handwritten mathematical symbols. In this paper, we
propose a CNN model called HMS-VGGNet, in which the Batch Normalization
and Global Average Pooling methods and only very small, specifically, 1 � 1
and 3 � 3 convolutional filters are applied. HMS-VGGNet uses only offline
features of the symbols and has achieved the state-of-the-art accuracies in
Competition on Recognition of Online Handwritten Mathematical Expressions
(CROHME) 2014 test set and HASYv2 dataset. In CROHME 2016 test set, our
result is only 0.39% less than the winner of CROHME 2016 who has used both
online and offline features. The models proposed in this paper are accurate yet
slim, which will be shown in our experiments.

Keywords: Batch normalization � Global average pooling
Very small convolutional filters � CROHME � HASYv2

1 Introduction

Handwritten mathematical symbols recognition is an essential component of hand-
written mathematical expressions recognition which could convert the handwritten
mathematical symbols images or traces to specific styles which could be shown and
edited in computers, for example LATEX. This task, which has both offline and online
model, is still a great challenge owning to its large scale classes, great differences in
handwritten styles and very similar symbols. The input of online handwritten mathe-
matical symbols recognition is the timing sampling point sequences gotten from
pen-based or touch-based devices, such as smartphones and tablets, while in offline
model the input is the images of symbols after written.

Currently, online handwritten mathematical symbols recognition has been studied
widely and has achieved great performance. Competition on Recognition of Online
Handwritten Mathematical Expressions (CROHME) has been held 5 times from 2011
to 2016 [1–3], attracting the researchers around the world. CROHME represents the
highest performance of online handwritten mathematical expression recognition.
Recognition of handwritten mathematical symbols has become an isolated task of the
competition since CROHME 2014. Owning to the available tracing information, online

© Springer International Publishing AG 2017
Y. Zhao et al. (Eds.): ICIG 2017, Part I, LNCS 10666, pp. 149–161, 2017.
https://doi.org/10.1007/978-3-319-71607-7_14

http://orcid.org/0000-0002-0267-9905
http://orcid.org/0000-0002-7470-9077


data can be converted to offline images. In recent years, researchers used the offline
features extracted from the symbol images as an auxiliary to recognize the online
mathematical symbols and got great achievements. Álvaro et al. [2, 4] combined 9
offline features including PRHLT and FKI features and 7 online features extracted from
symbol images and the original online data separately. They used the Bidirectional
Long Short Term Memory Recurrent Neural Networks (BLSTM) to classify the fea-
tures and achieved 91.24% recognition rate in CROHME 2014. Dai et al. [5] used
Convolutional Neural Network (CNN) and BLSTM to classify the symbol images and
online data separately and combined the results and got 91.28% in CROHME 2014 test
set. Davila et al. [6] also used a combination of online features such as normalized line
length and covariance of point coordinates and offline features such as 2D fuzzy
histograms of points and fuzzy histograms of orientations of the lines to recognize
online symbols. MyScript [3], the winner of CROHME 2016 also extracted both online
and offline features and processed with a combination of Deep MLP and Recurrent
Neural Networks. MyScript achieved 92.81% in CROHME 2016 test set and this is the
best result in that set as far as we know.

Nevertheless, researchers didn’t give much attention on the recognition of offline
handwritten mathematical symbols and little work was published. Since the datasets of
offline handwritten mathematical symbols are rare, online data of CROHME were used
by Ramadhan et al. [7] to generate symbol images for offline symbol recognition.
Ranadhan et al. designed a CNN model that was trained using the images converted
from CROHME 2014 training set and got 87.72% accuracy in CROHME 2014 test
images drawn from online data [7]. However, due to the absence of the features of online
data and the rough designed network architecture, the accuracy of [7] is obviously lower
compared to the online handwritten mathematical symbols recognition results.

In recent years, convolutional neural network that was proposed by LeCun [8] for
offline handwritten digits recognition has enjoyed a great success in lots of computer
vision tasks, such as image recognition [9–12], object detection [13, 14] and semantic
segmentation [14]. In this paper, we apply CNN to the recognition of offline hand-
written mathematical symbols. And we design a deep and slim CNN architecture
denoted as HMS-VGGNet. Previous research results have shown that the deeper the
network is, the better results the network gets [9–12]. However, when the network goes
deeper, it becomes harder to train and the model size usually grows larger. To over-
come the difficulties of training and to keep the model size reasonable HMS-VGGNet
which is elaborately designed for the recognition of offline handwritten mathematical
symbols has applied Batch Normalization (BN) [15], Global Average Pooling
(GAP) [16] and very small convolutional kernels. Considering the lack of offline data
and for the convenience of comparing results, we use both the images drawn from
CROHME dataset and the data of HASYv2 [17] to train and evaluate our models. As
shown in our experiments, HMS-VGGNet raises the accuracy of offline handwritten
mathematical symbols recognition significantly.

The rest of the paper is organized as follows. In Sect. 2, we give a brief introduction
to BN, GAP and the benefits of 1 � 1 and 3 � 3 convolutional kernels. The details of
the datasets used in our experiments are shown in Sect. 3, and our network configu-
rations are present in Sect. 4. In Sect. 5, our training methods, experiments results and
analyses are presented. Section 6 concludes the paper.

150 L. Dong and H. Liu



2 A Brief Introduction of BN, GAP and Very Small
Convolutional Kernels

2.1 Batch Normalization

In the training process of CNN, it is especially hard when the network goes deeper by
the fact that the inputs to each layer are affected by the parameters of all preceding
layers [15]. Each layer in the network needs to adapt to the change of the inputs
distribution, making the training process difficult and slow. Batch Normalization with
benefits of accelerating training and achieving better performance is a solution of this
problem by guaranteeing the inputs distribution of each layer stable.

In order to achieve the goal, BN takes two steps of input data processing. Firstly,
BN normalizes the inputs distribution of each layer in every training step to make it
with the mean of 0 and the variance of 1. For one dimension x kð Þ of the input x, BN
normalizes the input by

x̂ kð Þ ¼ x kð Þ � E x kð Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var x kð Þ½ �

p ð1Þ

where E x kð Þ� �
and Var x kð Þ� �

are the mean and variance of x kð Þ. However, this nor-
malization step may destroy what the preceding layer can represent. To recover the
features that should be learnt by the preceding layer, BN sets two parameters c and b to
learn in the second step. By the processing of

y kð Þ ¼ c kð Þx̂ kð Þ þ b kð Þ ð2Þ

BN can finally make the inputs distribution of layers stable.

2.2 Global Average Pooling

Fully connected layers, following the convolutional or pooling layers, are common in
classical CNN models such as LeNet-5 [8], AlexNet [9] and VGGNet [11]. However,
fully connected layers are easy to overfit because of the huge number of parameters. In
2013, Lin et al. [16] proposed a new method called global average pooling to replace
fully connected layers. In the layer of global average pooling, all the parameters in one
feature map are averaged to generate the result, as illustrated in Fig. 1.

GAP layers have 3 benefits: (1) There are no extra parameters in GAP layers thus
overfitting is avoided at GAP layers; (2) Since the output of GAP is the average of the
whole feature map, GAP will be more robust to spatial translations; (3) Because of the
huge number of parameters in fully connected layers which usually take over 50% in
all the parameters of the whole network, replacing them by GAP layers can signifi-
cantly reduce the size of the model, and this makes GAP very popular in model
compression [18].

Recognition of Offline Handwritten Mathematical Symbols 151



2.3 1 � 1 and 3 � 3 Convolutional Kernels

In recent years, 1 � 1 and 3 � 3 filters are widely used in new CNN models [10–12,
18, 19] for their benefits of reducing computations, pruning parameters and improving
accuracies.

As a result of keeping the size of feature maps and reducing the number of feature
maps with little effect on accuracies, 1 � 1 convolutional layers were used to reduce
parameters and avoid computational blow up in [10, 19]. At the same time, 3 � 3
filters are the smallest filters that could capture the notion of left/right, up/down and
center. Although the receptive fields of 3 � 3 filters are small, a few continuous 3 � 3
layers can get the same receptive field of bigger filters, for example, a stack of two
3 � 3 convolutional layers has an effective receptive field of 5 � 5, with the advan-
tages of deeper layers and fewer parameters [11, 19].

3 Datasets

In our experiments we use the images converted from CROHME online data and the
images of HASYv2 dataset to train and evaluate our models for the lack of offline data
and the convenience of comparing results. CROHME is the most commonly used
dataset when recognizing handwritten mathematical symbols and HASYv2 which has
151 k handwritten mathematical symbol images is the biggest public offline hand-
written mathematical symbols dataset to our best knowledge.

3.1 CROHME Offline Data Generation

There are 101 different classes of mathematical symbol in CROHME 2016 dataset. The
online data is given in Ink Markup Language (InkML) [20]. In the InkML file, a
symbol S is consisted with a set of trances T1;T2; . . .; Tnf g. Each trace Ti i ¼ 1; . . .; nð Þ
consists of a set of timing sampling points pi1; pi2; . . .; pimf g, and each point
pij i ¼ 1; . . .; n; j ¼ 1; . . .;mð Þ records its position. When generating symbol images
from online data, we connect the points pij and pijþ 1 from the same trace with a single
line and finish the generation after all the traces from the same symbol are drawn. Due
to the different data acquisition devices used in CROHME, the size of symbols differs a
lot. In our generation approach, as shown in Algorithm 1, we normalize the symbols
size.

Fig. 1. Process of global average pooling

152 L. Dong and H. Liu



Since the aspect ratio, which is an important feature of symbols, differs a lot from
different mathematical symbols, the longer side of the images we get from Algorithm 1
is 70 pixels while the shorter is different from each other. We expand image I with white
pixels to make its size to 70 � 70. Taking into account that ‘COMMA’, ‘.’ and ‘\prime’
are relatively small in real handwritten symbol images, the longer side are fixed to 16
pixels when drawing these symbol images. After generation we expand these images
with white pixels to 70 � 70 pixels. At last we resize the images generated from online
data to 48 � 48. The first row in Fig. 2 shows some samples of the generated images.

3.2 Data Enrichment

As a result of the expressive power of deep networks, overfitting is a common problem
that is hard to deal. Researchers have proposed some methods to prevent overfitting
such as Dropout [21] and Batch Normalization. However, the most effective way to
prevent overfitting is enriching the training set to make the networks learn more uni-
versal features. In the training set of CROHME 2016 there are only 85802 symbols and
there are 369 classes of 151 k training samples in HASYv2. In addition to the lack of
training samples, the distributions of training set of CROHME and HASYv2 are also
bias, for example the sample number of symbol ‘-’ is 8390 and there are only 2 samples
of ‘9’ in the training set of CROHME 2016. These drawbacks of the datasets will pull
the accuracies down.

To avoid the drawbacks we use elastic distortion [22] to enrich our training set.
There are two random matrices Dx x; yð Þ ¼ rand �1; 1ð Þ and Dy x; yð Þ ¼ rand �1; 1ð Þ
representing the horizontal and vertical axis displacement of the pixel x; yð Þ in elastic
distortion algorithm. The matrices are convolved with a Gaussian kernel, whose size is
n � n and standard deviation is r. All the pixels in the original image are moved
following the convolution results Dconv x and Dconv y. After the movements we
rotate the images by a random angle h. In this paper, r = 5, n = 11 and h is in the

Recognition of Offline Handwritten Mathematical Symbols 153



range of �25� � 25�. Using elastic distortion, we have enriched the samples of each
class to about 4000 and 1000 in CROHME and HASYv2 training sets. The second and
third rows in Fig. 2 show several samples generated by elastic distortion.

As HASYv2 covers most of the CROHME symbol classes, we use the samples of
HASYv2 whose class is also included in CROHME when conducting the experiments
of CROHME. Since the size of images in HASYv2 is 32 � 32, the images from
HASYv2 used in CROHME experiments are resized to 48 � 48. We use the symbols
of CROHME 2013 test set as the validation set and the test set of CROHME 2014 and
2016 to evaluate our models in CROHME experiments. In HASYv2 experiments, we
use cross validation as suggested in [17]. Table 1 shows the details of the datasets used
in our experiments.

Fig. 2. Samples of the dataset used in our experiments. The first row shows the images drawn
from online data, the second and third rows are the samples generated by elastic distortion.
Samples of the second and third rows are generated by the images of the first row in the same
column.

Table 1. Datasets used in our experiments

Experiments Usage Dataset Image
size

Dataset scale
Before
distortion

After
distortion

CROHME Train CROHME 2016
train + HASYv2 (part)

48 � 48 132120 403729

Validation CROHME 2013 test 48 � 48 6081 –

Test CROHME 2014 test 48 � 48 10061 –

CROHME 2016 test 48 � 48 10019 –

HASYv2 Train HASYv2 train 32 � 32 151406 ± 166 366566 ± 1356
Test HASYv2 test 32 � 32 16827 ± 166 –

154 L. Dong and H. Liu



4 Network Configurations

In order to make the effects of BN, GAP and small kernels clear, we have designed four
networks with similar architecture and the details of these networks are shown in
Table 2. Network C is the baseline of our contrast experiments. Network A uses fully
connected layers while global average pooling layers are used in C. The only difference
of B and C is that C uses Batch Normalization while B doesn’t. Compared to C, D adds
two extra 1 � 1 convolutional layers to reduce the dimension.

In Table 2, the convolutional layer parameters are denoted as “Conv-(filter size)-
(number of filters)-(stride of filters)-(padding pixels)”. All max-pooling layers in our
network are performed over 2 � 2 pixel window, with stride 2. All convolutional/fully
connected layers are equipped with the rectification non-linearity. And all convolu-
tional layers are equipped with Batch Normalization before ReLU except those in
network B. We omit the ReLU and BN for brevity in Table 2. The ratios of all the
Dropout operations used in our networks are 0.5.

Table 2. HMS-VGGNet configurations (shown in columns). The detailed differences are shown
in the contents of this section.

Input: 48 � 48 (CROHME)/32 � 32
(HASYv2) RGB images
A B C D

Conv-3-32-1-1
Conv-3-32-1-1
MaxPool
Conv-3-64-1-1
Conv-3-64-1-1
MaxPool
Conv-3-128-1-1
Conv-3-128-1-1

Conv-3-128-1-1
Conv-1-64-1-0
Conv-3-128-1-1

MaxPool
Conv-3-256-1-1
Conv-3-256-1-1

Conv-3-256-1-1
Conv-1-128-1-0
Conv-3-256-1-1

MaxPool MaxPool
Dropout

FC-512
Dropout

Conv-1-101-1-0
(CROHME)/
Conv-1-369-1-0
(HASYv2)

FC-512
Dropout
FC-101 (CROHME)/
FC-369 (HASYv2)

AveragePool

Softmax

Recognition of Offline Handwritten Mathematical Symbols 155



The architecture of the networks, which is denoted as HMS-VGGNet, is inspired by
VGGNet [11]. However, there are several improvements in our networks for the
handwritten mathematical symbols recognition task compared with the original
VGGNet. Firstly, the images of handwritten symbol images are much smaller and
simpler than the natural images used in VGGNet, so we have pruned several layers and
filters to fit our task. The second improvement is that Batch Normalization layers are
added after all the convolutional layers of Net A, C and D to accelerate the training
process and improve the accuracies. Thirdly, we use global average pooling layers to
replace the fully connected layers in B, C and D and reduced the model size by a large
margin. Besides, we also apply 1 � 1 filters which could reduce the model size further
and effect the accuracy negligibly to Network D. All the conclusions above will be
proven in the experiments of Sect. 5.

5 Experiments

5.1 Experiments in CROHME Dataset

Training Methods. Our experiments were conducted on Caffe framework [23] using a
GTX 1060 GPU card. The training used stochastic gradient descent with 0.9
momentum. The initial learning rate was 0.01 and reduced to 10% every 40k iterations.
The batch size was set to 40 and the training stopped after 202k iterations (around 20
epochs). Besides, we used the “xavier” algorithm to initialize the weights of all the
convolutional layers in our networks.

Results and Analyses. In the CROHME experiments, we use the symbols of
CROHME 2013 test set as the validation set. And we use the test sets of CROHME
2014 and 2016 to evaluate the models. Table 3 shows the results of the four networks
in these datasets.

All the four networks have achieved great performance in the three datasets. The
Top-1 recognition rates of Network C in the CROHME 2014 and CROHME 2016 test
sets are about 0.5% to 1% higher than those of Network A and B, while the Top-3 and
Top-5 accuracies are also have an improvement about 0.1%–0.5% compared with
Network A and B. The gaps between the recognition results of C and D are rather small.
C has a 0.39% and 0.15% higher Top-1 performance than D in CROHME 2014 and
2016. And the gaps of Top-3 and Top-5 recognition rates don’t exceed 0.1%. These
results give strong evidence that the usage of BN and GAP can get better accuracies.

Table 4 elaborates the parameter scales of the four models. Replacing the fully
connected layers by global average pooling layers has a sharp decrease of model size.
The number of parameters of C is only 44.92% of that of A. After applying the 1 � 1
convolutional layers, D has a further reduced model size than C and it doesn’t have
much effect on accuracies compared to C, as illustrated in Tables 3 and 4.

Combining isolated classifiers is an effective way to raise the accuracies which is
also used in [4, 5, 9–12]. In order to increase recognition rates further, we have
combined network C with D. The ensemble method is averaging the results of the two
models. The results of our methods and existing systems in CROHME are shown in

156 L. Dong and H. Liu



Table 5. Our networks outperform all the other systems in CROHME 2014 test set with
a 91.82% Top-1 recognition rate. In CROHME 2016 test set, our networks have
achieved the second place with 0.39% less than MyScript, the winner of CROHME
2016, who has used both online and offline features. The accuracies of our networks
have a significant increase compared with the existing methods that use offline features
only in CROHME dataset as shown in Table 5.

Table 6 shows the average computational time of our four networks. Although
network C and D spend more time than network A and B, our four networks are all
quite fast in our CROHME and HASYv2 experiments.

Although we have achieved rather good results in CROHME dataset, there are two
questions shown in our experiments.

Question 1: Why the results of A and B in CROHME 2013 (validation set) are only
slightly lower or even higher than those of C and D? There are some symbol classes
difficult or even impossible to discriminate without context information due to the very
confusable handwritten styles, such as ‘x-X-�’, ‘1-|’, ‘0-o-O’. We have analyzed the
test sets of CROHME 2013, 2014 and 2016 and find 24 symbol classes that are difficult
to classify. The percentage of these classes of CROHME 2013 test set is higher than
those of CROHME 2014 and 2016 test sets, as shown in Table 7. This makes it harder
to classify in CROHME 2013 test set, so the gaps of recognition rates of A, B, C and D
are relatively small. This is also the reason why the Top-1 accuracy is significantly
lower than Top-3 and Top-5 accuracies. Some misclassified symbols are illustrated in
Fig. 3.

Table 4. Parameter Scales of HMS-VGGNets. The model size is the size of caffemodel file
generated by Caffe. Since the only difference of B and C is the usage of BN, the parameter scales
of B and C are the same.

Network Number of parameters Model size

A 2.67 M 10.7 MB
B 1.20 M 4.8 MB
C 1.20 M 4.8 MB
D 0.87 M 3.5 MB

Table 3. Accuracies of our models in CROHME datasets

Dataset CROHME 2013 test CROHME 2014 test CROHME 2016 test

Network Top-N accuracies
(%)

Top-N accuracies
(%)

Top-N accuracies
(%)

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

A 88.46 99.14 99.62 90.93 98.20 99.04 91.63 98.66 99.41
B 87.80 99.23 99.65 90.85 98.32 99.05 91.32 98.71 99.44
C 88.11 99.18 99.62 91.81 98.67 99.18 92.16 99.08 99.51
D 88.39 99.19 99.67 91.42 98.76 99.12 92.01 99.16 99.52

Recognition of Offline Handwritten Mathematical Symbols 157



Question 2: Why the results of our methods are still less than that of MyScript? Since
online data has the tracing information while offline data doesn’t, online data has
advantages when classifying symbols who have similar shapes and different writing
processes such as ‘5’ and ‘s’. Our networks only use offline features so it is hard for
them to classify those symbols.

Table 5. Top-1 accuracies of our networks compared with other systems on CROHME. Top 3
accuracies in each dataset are bolded.

System CROHME 2014 test
top-1 accuracy

CROHME 2016 test
top-1 accuracy

Features used

MyScript [2,
3]

91.04% [2] 92.81% [3] Online + Offline

Alvaro [2, 4] 91.24% [2] – Online + Offline
Dai (1) [5] 89.39% [5] – Offline
Dai (2) [3, 5] 91.28% [5] 92.27% [3] Online + Offline
Davila [2, 3, 6] 88.66% [2] 88.85% [3] Online + Offline
Ramadhan [7] 87.72% [7] – Offline
Ours C 91.81% 92.16% Offline
Ours D 91.42% 92.01% Offline
Ours C + D 91.82% 92.42% Offline

Table 6. Computational time of our networks in our experiments

Network CROHME test HASYv2 test

A 1.40 ms 1.31 ms
B 1.61 ms 1.52 ms
C 1.38 ms 1.25 ms
D 0.91 ms 0.81 ms
C + D 2.84 ms 2.59 ms

Table 7. Percentage of symbols hard to classify. These symbol classes are ‘COMMA, (, 0, 1, 9,
c, C, ., g, l,/, o, p, P, \prime, q, s, S, \times, v, V, |, x, X’

Datasets Total Symbols hard to classify Percentage

CROHME 2013 test 6081 1923 31.62%
CROHME 2014 test 10061 2776 27.59%
CROHME 2016 test 10019 2762 27.57%

Fig. 3. Misclassified Samples of our networks

158 L. Dong and H. Liu



5.2 Experiments in HASYv2 Dataset

When conducting experiments in HASYv2 dataset, we have used cross validation to
test our models as suggested by [17]. There are 10 folds in HASYv2, so we have
evaluated 10 times using different folds in our experiments. The training method is
almost the same as that in Sect. 5.1. We totally trained 185 k iterations (around 20
epochs) and divided the learning rate by 10 after every 35 k iterations.

Since the HASYv2 dataset is proposed lately, the other experiments on HASYv2
are still rare. We have compared our results with the model baselines in [17], as shown
in Table 8. All the four networks proposed in this paper have higher accuracies than the
baselines. Besides, the parameter scales of our networks are significantly smaller than
TF-CNN which keeps the highest accuracy in the baselines due to the usage of small
convolutional filters, GAP and well-designed architectures. Our models have achieved
the state-of-the-art accuracy in HASYv2 dataset to our best knowledge.

There are 369 classes in HASYv2 dataset and it has more classes that are hard to
discriminate than CROHME, such asH,H and H; ! , ↦ ,*, and↪. Besides, some
symbols are even difficult to tell in printed form, such as \Sigma and \sum. These
difficulties make great challenges for our task, so our four networks perform similarly
and don’t get better accuracies any more.

6 Conclusion

In this paper, we have elaborately designed a CNN architecture called HMS-VGGNet
for offline handwritten mathematical symbols recognition. Experiments show that our
models have achieved very competitive results in CROHME (91.82% and 92.42%
Top-1 accuracy in CROHME 2014 and 2016 and around 99% Top-3 and Top-5
accuracies for both datasets) and HASYv2 (85.13% Top-1 accuracy, 97.38% Top-3
accuracy and 98.52% Top-5 accuracy) datasets using this slim and deep architecture.
From our experiments results we also analyse the benefits of BN, GAP and very small

Table 8. Accuracies of our networks compared with the model baseline of HASYv2

Classifiers Top-N accuracies Number of parameters
Top-1 Top-3 Top-5

TF-CNN [17] 81.0% – – 4.59 M
Random forest [17] 62.4% – – –

MLP (1 layer) [17] 62.2% – – –

Ours A 84.70% 97.15% 98.33% 2.15 M
Ours B 84.40% 97.14% 98.35% 1.27 M
Ours C 84.90% 97.25% 98.41% 1.27 M
Ours D 84.81% 97.26% 98.48% 0.94 M
Ours C + D 85.05% 97.38% 98.52% 2.20 M

Recognition of Offline Handwritten Mathematical Symbols 159



filters. We will use these networks in our offline handwritten mathematical expression
recognition system in the future. Since online data can generate offline images, our
networks can also be used as an auxiliary method for online handwritten mathematical
symbols recognition to improve accuracies further.

References

1. Mouchère, H., Zanibbi, R., Garain, U., et al.: Advancing the state of the art for handwritten
math recognition: the CROHME competitions, 2011–2014. Int. J. Doc. Anal. Recogn. 19(2),
173–189 (2016)

2. Mouchere, H., Viard-Gaudin, C., Zanibbi, R., et al.: ICFHR 2014 competition on
recognition of on-line handwritten mathematical expressions (CROHME 2014). In: 14th
International Conference on Frontiers in Handwriting Recognition, pp. 791–796. IEEE
Press, Crete (2014)

3. Mouchère, H., Viard-Gaudin, C., Zanibbi, R., et al.: ICFHR 2016 CROHME: competition
on recognition of online handwritten mathematical expressions. In: 15th International
Conference on Frontiers in Handwriting Recognition, Shenzhen, pp. 607–612 (2016)

4. Álvaro, F., Sánchez, J.A., Benedí, J.M.: Offline features for classifying handwritten math
symbols with recurrent neural networks. In: 2014 22nd International Conference on Pattern
Recognition, pp. 2944–2949. IEEE Press, Stockholm (2014)

5. Dai, N.H., Le, A.D., Nakagawa, M.: Deep neural networks for recognizing online
handwritten mathematical symbols. In: 2015 3rd IAPR Asian Conference on Pattern
Recognition, pp. 121–125. IEEE Press, Kuala Lumpur (2015)

6. Davila, K., Ludi, S., Zanibbi, R.: Using off-line features and synthetic data for on-line
handwritten math symbol recognition. In: 2014 14th International Conference on Frontiers in
Handwriting Recognition, pp. 323–328. IEEE Press, Crete (2014)

7. Ramadhan, I., Purnama, B., Al, F.S.: Convolutional neural networks applied to handwritten
mathematical symbols classification. In: 2016 4th International Conference on Information
and Communication Technology, pp. 1–4. IEEE Press, Bandung (2016)

8. LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Proceedings of Advances in Neural Information Processing Systems,
Lake Tahoe, pp. 1097–1105 (2012)

10. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: IEEE Conference
on Computer Vision and Pattern Recognition, Boston, pp. 1–9 (2015)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition (2014). arXiv:1409.1556

12. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 770–778 (2016)

13. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, pp. 580–587 (2014)

14. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN (2017). arXiv:1703.06870
15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing

internal covariate shift (2015). arXiv:1502.03167
16. Lin, M., Chen, Q., Yan, S.: Network in network (2013). arXiv:1312.4400
17. Thoma, M.: The HASYv2 dataset (2017). arXiv:1701.08380

160 L. Dong and H. Liu

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1701.08380


18. Iandola, F.N., Han, S., Moskewicz, M.W., et al.: SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and < 0.5 MB model size (2016). arXiv:1602.07360

19. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for
computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, Las
Vegas, pp. 2818–2826 (2016)

20. Ink markup language. http://www.w3.org/TR/InkML/. Accessed 06 Apr 2017
21. Hinton, G.E., Srivastava, N., Krizhevsky, A., et al.: Improving neural networks by

preventing co-adaptation of feature detectors (2012). arXiv:1207.0580
22. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks

applied to visual document analysis. In: 2003 International Conference on Document
Analysis and Recognition, Edinburgh, vol. 3, pp. 958–962 (2003)

23. Jia, Y., Shelhamer, E., Donahue, J., et al.: Caffe: convolutional architecture for fast feature
embedding. In: ACM Proceedings of the 22nd International Conference on Multimedia,
Orlando, pp. 675–678 (2014)

Recognition of Offline Handwritten Mathematical Symbols 161

http://arxiv.org/abs/1602.07360
http://www.w3.org/TR/InkML/
http://arxiv.org/abs/1207.0580

	Recognition of Offline Handwritten Mathematical Symbols Using Convolutional Neural Networks
	Abstract
	1 Introduction
	2 A Brief Introduction of BN, GAP and Very Small Convolutional Kernels
	2.1 Batch Normalization
	2.2 Global Average Pooling
	2.3 1 × 1 and 3 × 3 Convolutional Kernels

	3 Datasets
	3.1 CROHME Offline Data Generation
	3.2 Data Enrichment

	4 Network Configurations
	5 Experiments
	5.1 Experiments in CROHME Dataset
	5.2 Experiments in HASYv2 Dataset

	6 Conclusion
	References




