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Abstract. High dynamic range (HDR) imaging has seen a lot of progress in
recent years, while an efficient way to capture and generate HDR video is still in
need. In this paper, we present a method to generate HDR video from frame
sequence of alternating exposures in a fast and concise fashion. It takes advantage
of the recent advancement in deep learning to achieve superior efficiency
compared to other state-of-art method. By training an end-to-end CNN model to
estimate optical flow between frames of different exposures, we are able to
achieve dense image registration of them. Using this as a base, we develop an
efficient method to reconstruct the aligned LDR frames with different exposure
and then merge them to produce the corresponding HDR frame. Our approach
shows good performance and time efficiency while still maintain a relatively
concise framework.
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1 Introduction

Due to the limit of sensors used by most image capturing device currently on trade, they
lack the capability to capture the wide range of luminance in real world as human eyes
can perceive. Thus high dynamic range (HDR) imaging techniques are developed to
address this problem. While methods to capture still HDR images have been extensively
researched, HDR video is still a comparably less popular subject.

Large portion of HDR video applications up to date have been focused on specialized
HDR camera systems [1–4]. These custom hardwares are often either expensive or
inconvenient to use, making them hard to be ported for practical use or common
consumer market. On the other hand, it’s already a common function of digital cameras
to capture still HDR image. Utilizing camera’s exposure bracketing function, we can
take several LDR pictures of same scene with different exposures and merge them to
recover larger dynamic range than that of sensors, thus obtaining a HDR image [5, 6].
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Similarly, we can also use off-the-shelf cameras to capture a LDR video sequence
with alternating exposures. And the aim of HDR video methods is to reconstruct the
missing LDR frame of different exposure for each frame in the sequence so they can be
merged into a HDR sequence. A sample of the process with our method is shown in
Fig. 1. The reconstructed LDR frame should be well-aligned to the original frame of
different exposure and temporally coherent to other frames of same exposure, otherwise
there will be artifacts like ghosting or jittering in the results. Therefore the process often
requires accurate image registration between frames of different exposure due to motions
in the sequence. The problems of multi-exposures image registration poses the main
challenge for most HDR video application, as traditional motion estimation methods
like optical flow often fail in such scenario.

Fig. 1. Sample of HDR reconstruction process. (Top Row): Input sequence of two alternating
exposures generated from ‘showgirl’ sequence of HdM-HDR-2014 dataset [18]. (Bottom Row):
HDR sequence (tone-mapped) reconstructed with our method.

On the other hand, recently convolutional neural networks (CNN) have become quite
popular in the fields of computer vision after achieve state-of-art performance in prob‐
lems like object detection, classification, segmentation, etc. Inspired by the research of
FlowNet [7] that uses CNN in optical flow estimation, we propose to train an end-to-
end CNN model that can handle motion estimation under illumination change using
custom-built synthetic dataset.

In this paper, we present a new method to reconstruct HDR video from sequence of
alternating exposures using the trained CNN model for motion estimation across
different exposure. Leveraging the CNN model’s good estimation performance and fast
speed, we are able to obtain dense registration between frames of different exposures.
A fine registration combined with our occlusion fixing and refinement process, we can
achieve good reconstruction results in an efficient way while maintain a relatively simple
framework.

In summary, our paper intends to present two main contribution: (1) an end-to-end
CNN model trained on custom dataset that can handle multi-exposure motion estima‐
tion; (2) an efficient and concise approach to reconstruct HDR video from sequence of
alternating exposures by utilizing the above CNN model. We will demonstrate our
method and results more specifically in the rest of the paper.
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2 Related Work

HDR imaging is a frequently studied subject in this field while there are only a few that
are developed specifically for HDR video. And as we mentioned above, a lot of these
application are based on custom hardwares like special sensors [1, 2] or devices that
register two cameras to capture one scene with different exposures simultaneously [3,
4]. For brevity, in this section we only discuss methods that reconstruct HDR video from
LDR sequence of alternating exposures captured by single conventional camera.

Kang et al. [8] propose first practical HDR video approach using sequences of alter‐
nating exposures as input. It is a optical flow based method that unidirectionally warp
the previous/next frames towards target frame using a variant of the Lucas and Kanade
[9] technique in a Laplacian pyramid framework. As for over/under-exposed regions
where the optical flow estimation is unreliable, they bidirectionally interpolate the
previous/next frames using optical flow between them and further refine the alignment
using a hierarchical homography-based registration. Mangiat and Gibson [10] instead
choose a block-based motion estimation method in order to overcome the problems of
gradient-based method Kang et al. used. They also present a refinement stage that use
filtering methods to remove artifacts of mis-registration or block boundary. However,
these methods still suffer from the accuracy of motion estimation between multi-expo‐
sures frames and often fail when non-rigid or fast motion is present.

The more recent research of Kalantari et al. [11] probably represents the state-of-art
result of HDR video reconstruction. They propose a patch-based HDR synthesis method
that combines optical flow with a patch-based synthesis approach similar to Sen et al.
[12]. Their method enhance temporal coherency using patch-based synthesis and enforce
constraints from optical flow estimation to guide patch-based synthesis with a search
window map. In this way, they are able to handle more complex motion in the sequence
and produce high-quality HDR video output. Although perceptually insignificant, it is
still reported that the unstable performance of optical flow estimation may result in
artifacts around motion boundaries such as blurring or distorting [13]. Besides, the iter‐
ation and optimization process required by the method result in higher running time and
complexity compared to other methods.

As the main challenge for HDR video reconstruction is finding correspondences
between frames with different exposures, the performance of reconstruction can benefit
a lot from an improvement in motion estimation method like optical flow. One of the
reasons most variation-based optical flow methods fail when dealing multi-exposures
data is the brightness constancy assumption they hold, which was introduced in classical
optical flow literature by Horn and Schunck [14]. There were also many attempts to gain
robustness against illumination change. Brox et al. [15] added a gradient constancy
assumption to the original variational optical flow framework. Mileva et al. [16] tried
to make use of photometric invariants in computing an illumination-robust optical flow.
Still, the challenge posed by registering frames of different exposure may combine
dramatic illumination change, large displacement motion and loss of information due
to saturation. It is difficult to design a framework that handles all these issue.

Meanwhile, deep learning techniques, especially CNN, have demonstrated remark‐
able performance in many computer vision tasks. It is shown to be able to extract features
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that otherwise hard to represent in normal ways by learning from large training datasets.
Recently, Dosovitskiy et al. [7] first constructed an end-to-end CNN which are capable
of solving the optical flow estimation problem as a supervised learning task. However,
there is still no learning-based methods developed to overcame the incapability of most
motion estimation methods that they can’t deal with multi-exposures data.

3 Multi-exposure Optical Flow Based on CNN

Inspired by previous works about CNN-based optical flow, we construct an end-to-end
CNN with three main components to predict dense motion vector field between images
with different exposures. Besides, in order to supply the networks with sufficient training
data to learn from, we build a custom dataset from available flow datasets for multi-
exposures motion estimation.

3.1 Network Structure

As shown in Fig. 2, our end-to-end model consists of three main components: low-level
feature network, fusion feature network, and motion estimation network.

Fig. 2. Our end-to-end CNN consist of three main components: low-level feature network, fusion
feature network, and motion estimation network. Given enough training data of multi-exposure
image pairs and ground truth flows, our end-to-end model can be trained to predict dense optical
flow fields accurately from input images with different exposures.

The low-level feature network contains three convolution layers for each input
image. It constructs two separated processing streams for them, which can effectively
promote the feature representation and the deep training in the different exposures.

While low-level feature network only focuses on the respective features of the input
images rather than their correspondences, we introduce the correlation layer of FlowNet
[7] to perform the matching and fusion of two low-level features, and construct a fusion
feature network to finally obtain the representation of multi-exposure motion features.
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Taking the outputs of the correlation layer from low-level feature network as input, the
fusion feature network itself consists of the correlation layer and the convolution layers,
which can efficiently handle the matching process between two groups of low-level
features and obtain the motion features in the different exposures.

With the entire contracting part completed, we then introduce the motion estimation
network in the expanding part, which uses upconvolution layers including unpooling
and convolution. It contains seven combination layers, which not only include upcon‐
volution layers but also integrate the outputs of the low-level feature network and the
fusion feature network respectively. Each of the combination layers can predict a corre‐
sponding coarse flow with 2 outputs, and then upsample the flow as the input of its next
layer. In a word, the various features are fused in the motion estimation network, and
they are effectively processed by a set of upconvolution and upsampling operations.

3.2 Training Data

In order to effectively train a large-scale CNN, sufficient training data is needed. Besides,
neural networks require data with ground truth to learn to perform a prediction task from
scratch. These requirements make it difficult to prepare training data for our multi-
exposure application as it’s quite hard to capture ground truth motion flows from real
world scenes.

While there are several public optical flow datasets that contain ground truth flow,
most of them are generated from synthetic scenes and, more importantly, maintain the
same exposure setting. Therefore we choose to build a custom multi-exposure optical
flow dataset using available datasets as bases.

First we choose the public datasets to build on. There are three state-of-art candidates:
the Middlebury dataset, the Kitti dataset and MPI-Sintel dataset. The Middlebury dataset
is widely used for optical flow evaluation. But it only contains 8 synthetic image pairs
with small displacement motions, and thus is too small for learning. The Kitti dataset is
a real world scenes dataset captured by automobile platform. Its complexity in lighting
and texture makes it a challenging benchmark. Yet due to the limit of capturing device,
its ground truth flows are sparse, which makes it unsuitable for our need. MPI-Sintel
dataset consists of sequences from an animation movie which include various motion
types and scenes. All things considered, we choose the ‘final’ version of MPI-Sintel
dataset with realistic rendering effects such as motion blur and atmospheric effects to
get closer to the more complex real world scenes.

After that we need to generate multi-exposure data from the selected dataset. As
exposure value (EV) of camera is a number that represents the combination of shutter
speed and f-number, with a difference of 1 EV corresponding to a standard power-of-2
exposure step. We utilize gamma correction to synthesize the multi-exposure effect. By
increase one frame’s exposure while decrease another’s, the process create image pairs
with drastic brightness change similar to that of exposure difference while maintain same
ground truth motion. By comparing results of our post processing with real image with
different exposures, it can be observed that our simple simulation can effectively reflect
the change between different exposures though not perfectly accurate.
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Using the new multi-exposure dataset, we trained our networks on a computer with
a CPU of Intel Xeon E5-2620, 16 GB memory and an NVIDIA Tesla K20 GPU. The
resulting model converged well and demonstrated good performance on the task of
multi-exposure motion estimation, which effectively support our HDR reconstruction
application.

4 HDR Video Reconstruction

As mentioned above, the raw data input used for HDR video reconstruction is a LDR
video captured with conventional camera that alternates between different exposures for
each frame. We will take a two-exposure sequence as example here.

The goal of our method is to reconstruct the missing LDR frame of different exposure
for each of the frame in the sequence. As the each frame has different exposure from its
neighboring frames, the reconstruction process requires drawing information from its
next/previous frame which may be of the same exposure. And that’s where an accurate
pixel correspondences or motion estimation come into play.

Figure 3 shows a brief structure of our method’s process. For certain frame Fn in the
alternating exposure sequence, we try to reconstruct the missing LDR image L with a
different exposure, shown with dashed red square. Other HDR video methods often use
optical flow result as a rough estimation or initiation for the registration of correspond‐
ences between frames with different exposures. While by taking advantage of our trained
CNN model, we can directly estimate a good motion field as optical flow between Fn

and its neighboring frame Fn−1∕Fn+1, which are different in exposure. The improvement

Fig. 3. Reconstruction process of frame n from a sequence alternating between two different
exposure levels, which only capture certain exposure at each frame (shown with solid black
squares). Our method reconstructs the missing exposure for the current frame F

n
 using a warp and

refine scheme based on optical flow f (shown with solid blue circles) between current frame and
its neighboring frame, computed by our CNN model for multi-exposure motion estimation. Once
the missing LDR image has been reconstructed, it can be merged together with current frame to
produce the HDR frame, which will then form the entire HDR video. (Color figure online)
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in quality of motion estimation between frames of different exposure enables us to utilize
a more concise and straightforward scheme in the reconstruction of missing LDR frame
L. Moreover, in this way we don’t need to linearize the image and boost its intensity for
better registration like many other methods require, which may involve camera response
function (CRF) estimation and therefore limit the application.

To actually reconstruct L with the motion estimation results, we generate two inter‐
mediate results by warping the previous/next frame F

n−1∕F
n+1 towards current frame F

n

to obtain two warped frames W
n−1∕W

n+1. However, we can’t directly generate target
frame L from the two warped frames, even though the good motion estimation result
may yield high quality warped results. Due to occlusion, large-displacement motion or
small amount of unreliable flow, it is usually necessary to further refine the results.
Therefore we introduce a refinement process to obtain the final reconstructed L with
higher quality.

The refinement process uses two main constraints to ensure a satisfactory result.
They can be formulated as energy functions below:

E = E
c

(
F

n
, L
)
+ E

t
(F

n
, F

n−1, F
n+1) (1)

In Eq. (1), first term E
c
 represent the consistency between F

n
 and L, as they are

supposed to be the same frame with different exposures. To measure the consistency in
content or structure between two images with different exposures, we employ two
metrics. As the two images are supposed to contain the same content and geometry, we
assume that there are similar details or gradient where the two images are both well
exposed. Besides, to further utilize the performance of our multi-exposure CNN model,
we estimate optical flow between the two frames with the model, which can be used to
ensure there are no motion between them where the flow are reliable. These two
constraints enforce the consistency the original and reconstructed frames and thus help
to avoid the ghosting artifacts in HDR merge process. Their formula is shown in the
function below:

E
c

(
F

n
, L
)
= α ∗ d

(
∇F

n
,∇L

)
+ 𝛽 ∗ m(F

n
, L) (2)

where α resemble the approximation map of how well a pixel is exposed in both image
and d(x, y) is L2 distance. While 𝛽 measures how reliable a motion vector in the optical
flow map is, and m(a, b) is the motion distance of each pixel between the two image.

Second term E
t
 in Eq. (1) maintain the time coherence between reconstructed frame

and its previous/next frame with the same exposure. Our refinement procedure
approaches this with two main operations. On one hand, we enhance the smoothness of
optical flow by comparing all flow fields between the three frames and also the warped
results in a bidirectional way to verify the motion’s reliability and continuity, which
helps to avoid video jittering caused by erroneous motion. On the other hand, sometimes
due to large-displacement motion, there are noticeable region of occlusion present which
would cause ghosting from previous/next frames in the warped images. To deal with
occlusion, we first extract regions of occlusion by comparing motion vectors’ origin and
destination of flow from neighboring frame to current frame, the difference of which
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can be used to extract the occlusion map. Then we fix the region of occlusion in one
warped image by drawing information from the other warped image which contains
content from another neighboring frame with different occlusion area. The process of
handling occlusion is shown in the above Fig. 4. In summary, these operations enforce
the constraint of time coherence between reconstructed frame and its neighboring frames
with the same exposure, which can be formulated as the function below:

E
t

(
F

n
, F

n−1, F
n+1

)
=
∑

i∈pixels

(
d
(
F

i

n
, F

i+u

n−1

)
+ d

(
F

i

n
, F

i+u

n+1

))
(3)

where i is a pixel location in F
n
, while u represent the motion displacement at i between

F
n
 and its neighboring frame F

n−1 and F
n+1. This ensures similarity and coherence

between frames and thus solves the jittering artifacts.

Fig. 4. Example of occlusion fixing process. (Left Column): current reference frame (Left-Top)
and its next frame (Left-Bottom). (Middle-Top): optical flow estimated by our CNN model from
current frame to its next frame. (Middle-Bottom): directly reverse warped result using the flow,
which shows ghosting at regions of occlusion. (Right-Top): occlusion map extracted from optical
flow map. (Right-Bottom): warped LDR result after our occlusion fixing process.

Finally, after the refinement process we combine the two refined warped images to
obtain the reconstructed LDR frame of different exposure at current frame time as result.
With that, we merge them to achieve the HDR frame and tone-map it for display.
Besides, the reconstructed LDR frame can also help to refine the reconstruction process
of its neighboring frame.

5 Results and Discussion

We demonstrate and analyze some results of our HDR reconstruction method in this
section. All results displayed here are fused and tone-mapped using the exposure fusion
method by Raman et al. [17].

In order to obtain sequences with alternating exposures as input data for our method,
we make use of the high-quality HDR video sequences dataset by Fröhlich et al. [18].
These sequences are captured using two cameras mounted on a mirror-rig and contained
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various scenes with different challenges such as complicate illumination setting, high
contrast skin tones and saturated colors, etc. By extracting multiple exposures from
original HDR data, synthetic sequences of alternating exposures can be acquired in this

Fig. 5. Examples of test sequences and results. For each group, (Top Row): input triplet of
consecutive frames of two alternating exposures, with middle one as current reference frame;
(Bottom Row): reconstructed LDR result of (Bottom-Left) Kalantari et al. [11] (without
corresponding CRF) and (Bottom-Middle) ours; (Bottom-Right): our HDR result (tone-mapped).
(Color figure online)
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way. Moreover, available ground truth data also offer a better evaluation and comparison
for the performance of our method.

We test our method using different dynamic scenes from the HdM-HDR-2014
dataset [18], which are extracted into sequences with two alternating exposures of −2EV
and +1EV at resolution of 1920*1080 as input. The three scenes in Fig. 5 were chosen
to be displayed here due to the unique and representative features they demonstrate. As
shown in Fig. 5, the first scene ‘carousel fireworks’ is filmed at an annual fair where
color-saturated highlight and fast moving, self-illuminated objects are present the dark
nighttime surroundings. While second scene ‘bistro’ features a dark bistro-chamber
combined with local bright sunlight at the window, creating a high-contrast scene with
difficult lighting situation. And the third scene ‘showgirl’ shows partially illuminated
skin and specular highlights on various reflecting props together in a glamorous tone.
These scenes can demonstrate the performance of our method when faced with different
challenges.

For each frame to be processed, it is combined with its neighboring frames with
different exposures to form a triplet of consecutive frames as input, producing the
reconstructed LDR frame of missing exposure as output, which is then merged with
original frame into the final HDR frame. For brevity, in Fig. 5 we take single triplet from
each sequence as example and display the reconstructed results.

Besides, we also run these test cases with the method of Kalantari et al. [11], which
is considered one of the state-of-art methods of HDR video reconstruction in regards of
reconstruction quality while using conventional camera. Yet it’s shown in Fig. 5 that
their method fail to reconstruct the correct missing LDR image due to the lack of corre‐
sponding camera response function (CRF) for our test data. Though this doesn’t affect
the good performance of their method when CRF are provided, the comparison demon‐
strates our method’s robustness and wider applicability.

In order to achieve a better evaluation for our method, we compare our reconstructed
frame results with the ground truth data generated from original HDR sequence. Using
PSNR as main metric, the evaluation results and running of our method for each test
sequence are listed in Table 1. From it we can see that our method shows good and stable
performance in HDR reconstruction quality as well as high processing speed, much
faster than that of Kalantari et al. [11] which may require nearly 10 min to run. It should
also be noted that the operation of motion estimation with our multi-exposure CNN
model only takes only about one second to run, which implies there is still much room
for improvement in time efficiency given better optimization and implementation in
refinement stage.

Table 1. Evaluation results

Testing sequence PSNR/dB (Average) Running time/s (Per frame)
Carousel fireworks 38.83 103.5
Bistro 42.19 99.7
Showgirl 41.56 84.3
Average (over all scenes) 32.16 98.4
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Nevertheless, several limitations are still observed during experiments. When
current reference image present large region of glare/saturation due to high exposure
time or motion blur caused by fast movement, the optical flow result of our motion
estimation may not be accurate because lack of coherence in content between frames,
which then leads to a decrease in performance. In addition, sometimes there will be
regions of occlusion in current frame that are not present in neighboring frames, causing
the algorithm unable to draw information from adjacent frames by using motion as cue,
which may require other matching method to fix. Moreover, we also observed that the
performance of current CNN model is somehow sensitive to image scale and motion
type possibly due to the training data we provided.

To address these problems, our future work will focus on trying different CNN
structure design and training scheme in order to solve the current limitations in a more
unified framework. And other plans include making better use of similarity between
frames in same sequence for achieving better time efficiency.

6 Conclusion

In this paper, we present a new method for HDR video reconstruction from sequence of
alternating exposures, which utilize a CNN model with capability of motion estimation
across multiple exposures. By training a CNN end-to-end to learn predicting optical
flow from image pairs with different exposures, we manage to overcome the problems
of image registration between different exposures where many other motion estimation
methods failed, and thus use a more concise framework for HDR video reconstruction.
With effective refinement process, the results of our method demonstrate competitive
performance in both reconstruction quality and efficiency. It also shows the potentials
of further application of CNN in the field of HDR synthesis.
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