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Abstract. Focus stacking is a promising technique to extend the depth
of field in general photography, through fusing different images focused
at various depth plane. However, existing depth propagation process in
depth-based focus stacking is affected by colored texture and structure
differences in guided images. In this paper, we propose a novel focus
stacking method based on max-gradient flow and labeled Laplacian depth
propagation. We firstly extract sparse source points with max-gradient
flow to remove false edges caused in large blur kernel cases. Secondly,
we present a depth-edge operator to give these sparse points 2 different
labels: off-plane edges and in-plane edges. Only off-plane edges are then
utilized in our proposed labeled-Laplacian propagation method to refine
final dense depthmap and the all-in-focus image. Experiments show that
our all-in-focus image is superior to other state-of-the-art methods.
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1 Introduction

In general photography, optical imaging systems always have limited depth-of-
field: optical lenses focus on a specific plane, while leaving other regions of the
scene blurred. Although decreasing the aperture size could extend the DOF in
some extent, this would lead to lower signal-to-noise ratio and longer exposure
time. To overcome this limitation, focus-stacking has become more popular with
the development of digital imaging technology [2,5,14]. It captures a sequence of
images focused at various planes and fuses them into a single all-in-focus image.

The focus stacking technique has attracted a lot of attentions in the
last decade, which could be divided into 2 categories: transform domain
fusion approaches and depth-based approaches. For transform domain fusion
approaches, source images are converted in transform domain, then correspond-
ing transform coefficients (DWT [10], DSIFT [7], DCT [3]) are fused, finally the
all-in-focus image is reconstructed by the inverse transform. These methods are
usually complicated and unstable with variation of transform coefficients.

In depth-based methods [9,11,15], they firstly extract some sparse pixels
whose depth values are the sharpest index across the stack, then propagate them
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to the dense depthmap, finally the all-in-focus image is generated by fusing pixels
in the stack according to the depthmap. Suwajanakorn et al. [11] used sharp-
ness measurement and formulated the fusing problem as a multi-labeled MRF
optimization problem. Moeller chose well-known modified Laplacian (MLAP)
function as the measure of contrast, and propagated the resulting depth esti-
mates in a single variational approach (VDFF [9]). Aguet et al. [1] also esti-
mated the all-in-focus image with a model based 2.5D deconvolution method. In
all methods above, the depth values of extracted sparse points are affected and
noised by false edges occurred in large blur kernel case. To remove false edges,
we proposed max-gradient flow [15] to extract true source points, and gave an
iterative anchored rolling filter to estimate the all-in-focus image. However, in
all the sparse-to-dense propagation processes in these depth-based methods, the
final depthmap is affected by colored texture and structure differences in guided
images.

In this paper, we propose a novel focus stacking method based on max-
gradient flow and labeled Laplacian depth propagation. Firstly, we construct
sparse depthmap with the max-gradient-flow proposed in our previous MGF-
ARF method [15]. Then we design a depth-edge operator to give these sparse
points 2 different labels: off-plane edges and in-plane edges. Here in-plane edges
are image edges at the same depth plane, while off-plane edges are image edges
at boundaries of different depth planes. Only off-plane edges are then utilized in
the labeled-Laplacian depth propagation to generate final dense depthmap which
is smoothed at textures in the same depth plane and strengthened at bound-
aries between different depth planes. Experiments show that our depthmap is
smoothed at textures in the same depth plane and sharpened at depth bound-
aries, while the all-in-focus image is refined and superior to other state-of-the-art
methods.

2 Sparse Depthmap with Max-Gradient Flow

In this section, we introduce the max-gradient flow [15] briefly to extract sparse
depthmap. Max-gradient flow could model the propagation of gradients in the
stack and remove the false edges produced in large blur kernel cases. To introduce
max-gradient flow in detail, We capture a sample stack with Imperx B4020 mono
camera equipped with a SIGGMA 50 mm/F1.4 lens. This stack consists of 14
images with large blur kernels, and is utilized to describe our method in the rest
of our paper. Figure 1 shows 3 images focused at different depth planes from our
stack.

With focal stacks I1, I2,..., In, an all-in-focus image could be produced by
selecting the sharpest pixels across the focal stack. Several different measures
of pixel sharpness have been defined in some shape-from-focus literature [8–10].
In this paper, without loss of generality, magnitude of gradients is calculated as
sharpness measurement, which is defined as
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Fig. 1. Three images captured from real scene focused at 3 focusing plane respectively

where Gi is the gradient magnitude of Ii, the i-th image in the stack. Then depth
value of sparse points could be calculated as:

D(x, y) = argmaxGi(x, y) (2)

Here D(x, y) stores the depth value that gives the sharpest gradient across the
stack. However, traditional methods following Eqs. (1) and (2) would produce
‘false edges’ [15]. False edges, the production of which has been explained in
detail in [15], are those image edges with false depth values because of spreading
of blur kernels of neighbouring strong edges in large blur kernel cases.

To remove these false edges, max-gradient flow is utilized to analysis the
propagation of gradients. The max-gradient flow from [15] is defined as:

MGF (x, y) = [fx(x, y), fy(x, y)]T (3)

Here the two elements are calculated as:

[
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fy(x, y)
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The flow describes the propagation of gradients in the stack and is valid to
divide points in the stack into 2 categories: source points and trivial points.
Source points are points whose depth value calculated by Eqs. (1) and (2) is true
and valid, while trivial points are points with false depth value from Eq. (2).
Points whose max-gradient flow changes its direction oppositely are chosen as
source points, formulated as:

∇ · MGF (x, y) > 0 (5)

Otherwise, the points are defined as trivial points if

∇ · MGF (x, y) < 0 (6)

We only preserve the depth value of source points to get the sparse depthmap.
Figure 2 shows the comparison of performance of sparse depthmap with and
without applying max-gradient flows. We could find that with max-gradient
flow, the false edges are effectively suppressed and true edges are preserved as
many as possible.
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Fig. 2. (a) Depth values without applying max-gradient flow. (b) Depth value for
source points extracted with max-gradient flow

3 Labeled-Laplacian Depth Propagation

Laplacian matting is a traditional sparse-to-dense propagation method. Similar
with other propagation methods, it causes depth artifacts and noises at textures
on the same depth plane because of color and structure differences of guided
image. Therefore, to generate a refined depthmap, it is critical to differentiate
image edges on the same depth plane with those points at boundaries of depth
planes to propagate these 2 labels of sparse points respectively. In this section, we
propose a novel two-step depth propagation process. Firstly, we construct a novel
L-matrix to get a coarse dense depthmap which removes effects of colored texture
and structure differences of guided images. Secondly, 2 different labels are given
to sparse points by our depth-edge operators extracted from the coarse dense
depthmap: off-plane edges and in-plane edges. Then, in the second propagation
process, only off-plane edges are utilized to update L-matrix. In this way, two
labels of points are propagated differently to refine the dense depthmap: in-plane
edges are smoothed while off-plane edges are strengthened and sharpened.

3.1 Coarse Dense Depthmap

In traditional Laplacian propagation methods [6,16], the depth propagation
problem could be formulated as minimizing the following cost energy:

E(d) = dT Ld + λ(d − d̂)
T
D(d − d̂), (7)

D is a diagonal matrix whose element D(i, i) is equal to 1 if the pixel i has
valid depth value. d and d̂ are the dense depthmap and the sparse depth map
which only has valid depth values at source points. Decomposing the Eq. (7),

dT Ld denotes the fidelity of source points while (d − d̂)
T
D(d − d̂) denotes the
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smoothness of depth propagation. The scalar λ controls the balance of these two
parts. L is the Laplacian matrix calculated from color and structure differences
of guided images, and is traditionally calculated as below:

L(i, j) =
∑

k|(i,j)∈ωk

(δij − 1
|ωk| (1 + (Ii − μk)T (Σk +

ε

|ωk|U3)−1)(Ij − μk))

(8)
where δij is the Kronecker delta, U3 is identity matrix, Σk is the covariance
matrix of the colors in patch ωk, Ii and Ij are colors of all-in-focus image as
guided image. From the equation above, differences of RGB-values of patches
of guided image would affect the construction of L-matrix and the cost energy
of Eq. (7). Therefore depthmap would produces depth artifacts and noises at
locations of colored textures of guided images on the same depth plane.

To remove these depth noises, we assume that all pixels in each patch ωk are
constant, which makes Ii = μk and modify the L into:

L(i, j) =
∑

k|(i,j)∈ωk

(δij − 1
|ωk| ) (9)

From this equation, the construction of L matrix has nothing to do with colored
textures Ii, Ij of guided image. Furthermore, the cost energy in Eq. (7) only
depends on the sparse depthmap d shown in Fig. 3(a) and its distribution D. In
this way, depth noises caused by colored textures of guided images in traditional
propagation methods are removed and the coarse dense depthmap shown in
Fig. 3(b) is produced only according to depth values of sparse source points.
This dense depthmap is utilized to extract depth-edge operators in the next
section.

3.2 Labeled-Laplacian Depth Propagation

From Fig. 3(a) and (b), the coarse dense depthmap, which is blurry at edges
of different depth planes, is not satisfying. Therefore, we propose a labeled-
Laplacian depth propagation which sharpens edges of different depth planes to
refine its estimation. Firstly, we design a novel operator to give source points 2
labels: off-plane edges and in-plane edges.

For each source point as centered, we spread both N pixels along and against
the rising direction of gradient in the coarse dense depthmap to construct a
(2N + 1) * 1 pixels patch ω as our operator. In our operator, the depth value
increases along with the increase of pixel index. From the definition above, we
know that off-plane edges locate at boundaries of objects belonging to different
depth plane, and are usually sharp when the image is focused at the nearer
object. Therefore only the points with relatively small depth value and whose
neighbouring depth value vary in large range should be classified as true off-plane
edges. Therefore, we apply the equation below to calculate the value Ω for each
depth-edge operator. The source point k is labeled as off-plane edges if

Ωk =
ωk(2N + 1) − ωk(N + 1)

ωk(N + 1) − ωk(1)
> ΩTH (10)
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Figure 3 shows the process of setting labels for source points in this section.
Three different example points are displayed in Fig. 3(a). Only the red one is
located at the boundaries of different depth planes, while the green point and
the blue point are both at the same depth plane. Figure 3(b) shows the coarse
dense depthmap generated from Eq. (12), from which we extract operators ω, and
Fig. 3(c) presents the depth-edge operators of three example points. Observing
Fig. 3(c), only the red point is divided as true off-plane edges with Eq. (10).

Fig. 3. (a) The close-up view and the entire source points result, (b) close-up view and
entire performance of coarse dense depthmap (c) the value of feature vectors of three
different points across the (2N + 1) * 1 patch (Color figure online)

From the labels of off-plane edges, the energy minimization equation for
depth-propagation could be updated again as:

E(d) = dT L̂d + λ(d − d̂)
T
D(d − d̂), (11)

where L̂ is modified as:

L̂(i, j)=
∑

k|(i,j)∈ωk

(δij − 1
|ωk| (1+(Ii − χ(i, k))T (Σk+

ε

|ωk|U3)−1)(Ij −χ(j, k)))

(12)
here

χ(i, k) = (1 − Πi)μk + ΠiIi (13)

where Πi = 1 when the point is classified as off-plane edge, and 0 if in-plane
edges.

From the equation above, in our labeled-Laplacian propagation method, only
off-plane edges’ color and structure differences of guided image are utilized to
update the modified L-matrix. This is because that only at off-plane edges, depth
boundaries are aligned with edges of guided image. In this way, we generate the
refined dense depthmap, where sparse points with different labels are propagated
differently: depth differences of off-plane edges are strengthened while depth
values of in-plane edges are smoothed.
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4 Experiments

4.1 Setup

Performance of our method is tested on the focal stack we introduced in Sect. 2.
The movement of the focusing plane when capturing the focal stack would cause
the change of field of view. It is corrected with the image registration technique
[4,8,12]. In our experiments, parameters are set as follows: GTH = 0.05, ΩTH =
20, λ = 0.1, N = 10.

4.2 All-in-Focus Comparison

We first compare our all-in-focus performance with state-of-the-art methods.
Figure 4 shows the ground truth depthmap of the 3 evaluation patches. The
yellow patch and the red patch both contain off-plane edges between differ-
ent planes, while the blue patch only contains on-plane edges on the same
depth plane. We manually set the groundtruth depthmap to produce all-in-focus
patches shown in Fig. 4 by extracting the corresponding content from the focal
stack.

Fig. 4. Left: the focal stack with the evaluation patches (red, blue and yellow rectangle).
Upper right: manually set ground truth depthmap of the patch. The embedded number
represents the index of the in-focus image. Lower right: manually set ground truth of
all-in-focus patch according to the groundtruth depthmap of three different patches
(Color figure online)

The comparison on our test data is presented in Fig. 5. It shows quantitative
evaluation on three extracted patches and whole content of the composited image
of the all the compared methods (DCT, DSIFT, 2.5D deconvolution and MGF-
ARF). The performance is evaluated with Structural SIMilarity (SSIM) [13]
index, the higher SSIM value indicates more similarity between two images. In
Fig. 5, for each method, the left part shows the composited all-in-focus image.
For the right part, the upper row shows the constructed all-in-focus images for
different extracted patches while the lower row presents the local SSIM value map
(error map). To make the error map visualize more distinguishable, we choose
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Fig. 5. Comparison of our method with state-of-the-art methods. (a) Our method
(b) DCT (c) DSIFT (d) MGF-ARF (e) 2.5D deconvolution
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different δSSIM for corresponding patches according to different distributions of
SSIM in different patches, to map the value of [δSSIM , 1] of SSIM to [0, 1] of
brightness of the displayed error map.

From the comparison, we could find that our method (Fig. 5(a)) gives the
highest SSIM over compared methods. Our methods preserve both off-plane
edges and in-plane edges to make the strong edges and weak edges both sharpest
free of artifacts and ghost edges. Whereas, the DSIFT-based method produces
artifacts near both off-plane edges and in-plane edges and enhance the noise, as
shown in Fig. 5(c). The DCT-based method, Fig. 5(b) and the 2.5D deconvolu-
tion method, Fig. 5(f) both produce ghost edges in the off-plane edges, which
makes the strong edges blurry and the weak edges near them disappeared in the
red patch and the yellow patch. The MGF-ARF method, which is presented in
Fig. 5(d), although is free of artifacts of ghost edges, produces noises subject to
colored texture from the guided image on the blue patch belonging to the same
depth plane.

4.3 Depthmap Comparison

Figure 6 presents performance of our final dense depthmap with our labeled-
Laplacian propagation method and the comparison with state-of-the-art
depth propagation methods(Laplacian propagation, ARF [15] and DVFF [9]).
Figure 6(d) presents our refined dense depthmap, where depth values in the
same depth plane are smoothed and depth boundaries are strengthened. We also
choose one patch (red) to display the advantage of our method more clearly. In
Fig. 6(c), depth values are totally wrong because of false edges. In small patches
of Fig. 6(a) and (b), the depth value of the farther box and the boundaries

Fig. 6. Close-up views of red region and entire depthmap generated by: (a) MGF-ARF
(b) traditional Laplacian optimization (c) VDFF (d) our method (Color figure online)
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between two different depth plane are affected by the colored texture. In Fig. 6(d)
produced by our method, however, noises in the farther box are removed and
depth value are smoothed with our labeled-Laplacian propagation.

5 Conclusion

In conclusion, we propose a novel focus stacking method based on max-gradient
flow and labeled-Laplacian depth propagation. We utilize max-gradient flow to
extract true source points to generate sparse depthmap. Then we design a depth-
edge operator to give these sparse points 2 different labels: off-plane edges and
in-plane edges. Only off-plane edges are then utilized in the following labeled-
Laplacian depth propagation to generate final dense depthmap. Experiments
show that our method achieve an all-in-focus image with higher quality than
state-of-the-art methods.
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