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Abstract. In recent years, sparse representation has shown its competitiveness
in the field of image processing, and attribute profiles have also demonstrated
their reliable performance in utilizing spatial information in hyperspectral image
classification. In order to fully integrate spatial information, we propose a novel
framework which integrates the above-mentioned methods for hyperspectral
image classification. Specifically, sparse representation is used to learn a pos-
teriori probability with extended attribute profiles as input features. A classifi-
cation error term is added to the sparse representation-based classifier model and
is solved by the k-singular value decomposition algorithm. The spatial corre-
lation of neighboring pixels is incorporated by a maximum a posteriori scheme
to obtain the final classification results. Experimental results on two benchmark
hyperspectral images suggest that the proposed approach outperforms the related
sparsity-based methods and support vector machine-based classifiers.
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1 Introduction

Hyperspectral imagery (HSI) has been widely used in the field of remote sensing for the
past decade. Its capability to acquire hundreds of images with a wide range of wave-
lengths makes HSI a powerful tool in many areas, such as military surveillance, natural
resources detection, land cover classification, etc. [1]. However, the unique properties
of HSI have posed difficult image processing problems; for instance, it has been
identified as a challenging task to analyze the spectral and spatial information simul-
taneously for HSI classification [2].

Many attempts have been made to solve this problem. In [3], the authors proposed a
new sampling strategy to extract both spectral and spatial information. In addition,
Markov Random Field (MRF) is considered to be a powerful method for integrating
both spectral and spatial information [4]. However, its efficiency and effectiveness are
questionable due to the high computational complexity and the uncertainty of the
smoothing parameter to be chosen. Another category of approaches to deal with
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contextual information is based on attribute profiles (APs) which are constructed by a
set of attribute filters (AFs). AFs operate only on the connected components based on a
criterion that evaluates the attribute against a threshold. When multiple layers of HSI
are considered, the stack of individually computed APs can be referred to as an
extended attribute profile (EAP) [5]. Moreover, if different attributes are considered and
multiple EAPs are stacked together, an extended multi-attribute profile (EMAP) can be
constructed [6]. EMAP can effectively deal with both spectral and contextual infor-
mation [7].

Sparse representation-based classifiers (SRCs) have been found to be efficient tools
in many image processing areas in the last few years [8–10]. SRC assumes that each
signal can be expressed as a linear combination of prototypes selected from a dic-
tionary. The advantages of applying SRC as a classification method have been
investigated [11–13]. SRC can achieve good performance on HSI classification
because the pixels with highly correlated bands can be sparsely represented. Usually a
SRC dictionary is directly constructed by training atoms, which limits the HSI clas-
sification accuracy due to the large number of training atoms. Hence it is sensible to
construct a reliable dictionary for the classification problem.

Based on the aforementioned knowledge, a novel framework using both EMAP and
SRC is developed and presented in this paper particularly for HSI classification, which
we name it as extended SRC (ESRC) method. Apart from spectral information, EMAPs
have been constructed to initialize the dictionary for SRC. Thus, both spectral and
spatial context can be considered to maximize among class separability. Subsequently,
we optimize the dictionary using an effective method known as k-singular value
decomposition (K-SVD) [14]. Similar to Jiang [15], we add a classification error term
to the SRC model, then the reconstruction error and the classification error can be
modelled simultaneously. Finally, the class label can be derived via the MRF-based
maximum a posteriori (MAP) method, where the spatial energy term is improved by a
Gaussian framework in this paper. It should be noted that the spatial information is
utilized via EMAPs and then regularized by the MRF-MAP method, therefore our
ESRC can further improve the classification results.

The remainder of this paper is organized as follows. The proposed framework is
described in Sect. 2. The effectiveness of the framework is demonstrated by the
experiments in Sect. 3. Finally, we conclude and provide some remarks in Sect. 4.

2 Design of Framework

2.1 EMAP Feature Extraction

EAPs are built by concatenating many attribute profiles (APs), and each AP is gen-
erated for each feature in a scalar hyperspectral image. That is:

EAP ¼ fAPðf1Þ;APðf2Þ; . . .;APðfnÞg ð1Þ
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APs are a generalized form of morphological profiles, which can be obtained from
an image by applying a criterion T . By using n morphological thickening (uT ) and n
thinning (;T ) operators, an AP can be constructed as:

APðf Þ ¼ fuT
n ðf Þ;uT

n�1ðf Þ; . . .;uT
1 ðf Þ; f ;/T

1 ðf Þ; . . .;/T
n�1ðf Þ;/T

n ðf Þg ð2Þ

Generally, there are some common criteria associated with the operators, such as
area, volume, diagonal box, and standard deviation. According to the operators
(thickening or thinning) used in the image processing, the image can be transformed to
an extensive or anti-extensive one. In this paper, area, standard deviation, the moment
of inertia, and length of the diagonal are used as the attributes to compute EMAP
features for classification tasks. The stack of different EAPs leads to EMAPs, and the
detailed information of EMAPs can be found in the report [7].

2.2 Dictionary Learning for SRC

Suppose xif gNi¼1 represents N training samples from a L-dimensional hyperspectral
dataset, and x belongs to c labelled classes while yi 2 1. . .:cf g is the label of each
observed pixel xi. For each class c, there exists a matrix DC 2 Rm�nc N ¼ Pc

i¼1 nc
� �

containing nc prototype atoms for columns. Each pixel with a c-th label can be rep-
resented approximately as follows:

xi � DCrci ; rci
�� ���K; 8yi ¼ c ð3Þ

where rc 2 Rm is the representation coefficient of signal x, �k k0 is a l0 norm which
counts the number of nonzero atoms in a coefficient vector, and K is a predefined
sparsity constraint. Assuming that the global dictionary D ¼ ½D1;D2. . .Dc� is known,
the corresponding representation coefficients r ¼ ½r1; r2. . .rc� can be computed by
solving the following equation:

rci ¼ argmin
r

xi � Drci
�� ��2

2 s:t: 8i; rik k0 �K ð4Þ

There exist many algorithms to optimize this problem, for example, orthogonal
matching pursuit (OMP) [16] is one of the most efficient methods. OMP is a greedy
method which simply selects the dictionary prototypes in sequence. The pixels belong
to the class which has the minimum class-wise reconstruction error eci , where e

c
i ¼ xi -

DCrci :

ŷi ¼ argmin
c

eci
�� ��2

2 ð5Þ

The main goal of this paper is to find a dictionary D which can help maximize
classification accuracy. In order to minimize the reconstruction error and the classifi-

cation error simultaneously, a classification error term H�WTr
�� ��2

2 which has the
sparse code directly as a feature for classification, is included in the objective function.
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Following the solution by Jiang et al. [15], the objective function for learning optimal
dictionary and sparse code can be redefined as follows:

\D; r;W [ ¼ arg min
D;r;W

X � Drk k22 þ a H �WTr
�� ��2

2

s:t:8i rik k0 �K
ð6Þ

where H ¼ ½h1; h2. . .hN � 2 Rc�N represents the class labels of the training samples;
hi ¼ ½0; 0. . .1. . .0; 0� 2 Rc, where the nonzero c-th position represents the c-th class
that contains xi; Wr is a linear classification function that supports learning an optimal
dictionary; and a is a scalar controlling corresponding terms.

In order to use K� SVD as the efficient solution, Eq. (6) can be rewritten as the
following:

\D; r;W [ ¼ arg min
D;r;W

Xffiffiffi
a

p
H

Dffiffiffi
a

p
WT

� �
r

����
����
2

2

s:t:8i rik k0 �K

ð7Þ

The initial dictionary is obtained by EMAPs; given the initialized D, the original
K�SVD is employed to obtain r, and r can be used to compute the initial W with linear
support vector machine (SVM); both D and W are updated by the K�SVD algorithm.

Let Xnew ¼ ðXT ;
ffiffiffi
a

p
HTÞT , Dnew ¼ ðDT ;

ffiffiffi
a

p
W ÞT , then Eq. (7) can be rewritten as:

\Dnew; r[ ¼ arg min
Dnew;r

f Xnew � Dnewrk k22g
s:t:8i; rik k0 �K

ð8Þ

Then K�SVD algorithm is employed to optimize this problem. Let dk and rk
represent the kth row in D and its corresponding coefficients, respectively. The overall
processing steps of K�SVD is summarized in the report by Ahron et al. [14]. Dnew and
r are computed by K�SVD, and then D ¼ fd1; d2. . .dkg and r ¼ fr1; r2. . .rkg can be
obtained from Dnew. The representation error vector can be computed from
eic ¼ xi � Dcrci . Additionally, the posterior probability qðyic=xiÞ is inversely propor-
tional to eic[17]:

qðyic=xiÞ ¼ 1

eick k22l
ð9Þ

where yic refers to labelled class c for the pixel xi and l is a normalized constant.

2.3 Spatial Information Regularization

We have described the mechanism that is used to obtain the class probability in the
previous section. In this section, we will show how to implement the spatial infor-
mation characterization.
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By utilizing the MAP theory, a pixel is likely to have the same label with its
neighboring pixels. According to the Hammersley-Clifford theory [18], the MAP
estimation of y is represented as follows:

ŷ ¼ argmin
y
ð�

X
i2NðiÞ

logqðyi=xiÞ � log qðyÞÞ

qðyÞ ¼ e
r
P
i2NðiÞ

dðyi�yjÞ
ð10Þ

where the term qðyi=xiÞ is the spectral energy function and can be estimated from
previous Eq. (8). qðyÞ is regularized by a unit impulse function dðyi � yjÞ, where
dð0Þ ¼ 1 and dðyÞ ¼ 0 for y 6¼ 0; additionally, r is a smoothing parameter. This term
attains the probability of one to equal neighboring labels and zero to the other way
around. In this way, non-probability might result in a misclassification for some mixing
regions. In this paper, we modify this term by a Gaussian radial basis network to make
it a more efficient way, and the entire image is decomposed into local patches with a
neighborhood size N � N. For j 2 NðiÞ, the function applied on the pixels constrained
by the neighborhood size can be represented as:

dðyi � yjÞ ¼
1; if yi ¼ yj

expð� uij
suij

� 	2
� vij

svij

� 	2
Þ if yi 6¼ yj

(
ð11Þ

We improve the unit impulse function by optimizing the weight of different class
probability using a smoothing function. dðyi � yjÞ is a function of standardized
Euclidian distance between pixels xi and xj, where uij and vij are the horizontal and
vertical distances from xi and xj, respectively. suij and svij represent the stand deviation
in each direction. The range of Eq. (11) can meet the definition of probability con-
strained by (0,1]. Given the prior class information and spatial locations of pixels, this
improvement can be trained quickly and efficiently.

The value 1 is assigned to qðyi ¼ yjÞ which indicates that the pixels tend to appear
around those of the same class. Since homogenous areas are dominant, the improved
function will yield a good approximation for the regions, especially for the edge area.

Hyperspectral 
Image

EMAP 
Features 

Training 
Samples

Final 
Classification 

MAP

Posterior 
Probability

Feature 
Extraction

Spatial 
Regularization

SRC 
Model

MAP 
Segmentation

Fig. 1. Flowchart of the proposed framework
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As shown in Eq. (11), the spatial relationship is modelled directly by the spatial
locations.

In this paper, we utilize the / �expansion algorithm to optimize this combinatorial
problem. To better understand the main procedures of presented framework, the
flowchart is shown as in Fig. 1.

3 Experiment Analysis

3.1 Experimental Setup

Two benchmark hyperspectral images are used to evaluate the proposed method. The
attribute values used for EMAPs transformations are described as follows. Area of
regions: 5000, length of the diagonal: 100, moment of inertia: 0.5, and standard
deviation: 50. Smoothing parameter r is set as 0.2 in this paper.

The best parameters are chosen via cross-validation for classifiers in this paper, and
the results are compared with those acquired by kernel SVM (KSVM), sparsity rep-
resentation model using OMP (SRC), Kernel SVM with EMAP features (EKSVM),
sparsity representation model using OMP with EMAP features (ERAP), SVM proba-
bility with EMAP features and original MRF (SVM_AP), and original MRF with
probability obtained with ERAP (referred as ERAP_MRF).

All experiments are implemented with Matlab 2015b. Average accuracy (AA),
Overall accuracy (OA), kappa coefficient (k) are calculated as the accuracy assessment,
which are commonly used for classification tasks.

3.2 Experiments on Indian Pines Data Set

The Indian Pines data set was acquired by Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) in 1992. It covers 145 � 145 pixels with a spatial resolution of
20 m. After removing 20 water absorption bands, 200 spectral bands from 0.2 to
2.4 µm as the original features. There are 16 labelled classes, which are shown in
Table 1, as well as the numbers of training and testing datasets.

The average results of ten experiments repeatedly run on different randomly chosen
training and testing datasets are shown in Table 2. The classification maps as well as
the ground truth are shown in Fig. 2.

The listed results in Table 2 and Fig. 2 show that our framework outperforms most
techniques and is especially better than KSVM which is known as a state-of-the-art
method. The visual results also show that the spatial information involved techniques
lead to a much smoother classification map than algorithms with only spectral infor-
mation involved.

One can observe that EMAP with normal classifiers have already provided high
classification accuracy, however, the transform of a probabilistic work and including a
MAP segmentation work improve the classification accuracies as it can be particularly
observed in the ERAP_MRF, SVM_AP and ESRC. This confirms the ability of the
work in a probabilistic sense that MAP segmentation can indeed correct the results by
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Table 1. Class information for Indian Pines image

Class No. Class name Train Test

1 Alfalfa 25 29
2 Corn-no till 50 1384
3 Corn-min till 50 784
4 Corn 50 184
5 Grass/trees 50 447
6 Grass/pasture 50 697
7 Grass/pasture-mowed 13 13
8 Hay-windrowed 50 439
9 Oats 10 10
10 Soybeans-no till 50 918
11 Soybeans-min till 50 2418
12 Soybeans-clean till 50 564
13 Wheat 50 162
14 Woods 50 1244
15 Buildings-grass 50 330
16 Stone-steel towers 45 50
Total 693 9673

Table 2. Classification accuracies (%) for Indian Pines image

Method SRC KSVM ERAP EKSVM SVM_AP ERAP_MRF ESRC

1 54.17 48.57 64.63 61.45 70.67 71.23 85.71
2 77.68 74.10 85.12 84.60 90.46 90.36 96.22
3 78.91 73.84 84.49 83.70 92.17 91.00 95.96
4 50.48 45.43 60.33 57.18 68.87 74.74 83.09
5 86.43 83.94 90.51 88.76 92.26 94.53 97.41
6 94.91 93.82 96.34 96.25 97.92 97.66 98.92
7 95.65 91.67 95.83 100.00 96.00 100.00 100.00
8 98.34 97.93 98.56 97.96 99.59 98.77 99.79
9 73.08 72 82.61 79.17 90.48 90.00 90.91
10 69.55 65.52 78.23 75.70 84.35 87.33 91.93
11 83.82 80.83 89.85 88.81 93.63 93.51 96.85
12 72.60 68.90 81.56 78.31 87.31 86.63 93.79
13 97.17 97.17 98.12 98.10 98.59 99.05 99.53
14 97.89 97.56 98.48 98.80 99.18 99.27 99.45
15 60.58 54.92 69.81 68.54 78.35 80.00 89.05
16 83.04 80.87 86.24 86.11 90.29 94.00 95.92
OA 80.90 77.63 86.90 85.71 91.38 91.98 95.76
AA 79.64 76.69 85.05 83.97 89.38 90.50 94.56
k 78.44 74.78 85.17 83.84 90.23 90.90 95.17
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regularizing the spatial information. It also should be noted that our proposed ESRC
obtains the best result, which classifies most of regions accurately.

As for a SRC based method, the proposed ESRC exhibits the best performance
especially in the edge areas, which can be observed from the classification maps. In
addition, ESRC has also shown its potential effectiveness in dealing with the small
training data sets, which is meaningful for practice applications. ESRC achieves the
best result when compared to EKSVM and SVM_AP, which further confirms that our
method can learn a discriminative dictionary and implement a more accurate spatial
regularization. The results show that the proposed ESRC method is more accurate than
original MRF-based spatial regularization methods. Particularly, ESRC performs well
on the minority classes (e.g. Class 1 and Class 7).

The visual comparison of ERAP_MRF and SVM_AP also confirms the competitive
efficiency of optimization model for SRC used in this paper. However, both of them
fail to identify Class 9. This is due to the insufficient training samples for this class. The
experiments also indicate that the improved method has a potential to obtain a more
accurate result with a smaller training set.

For ERAP_MRF and ESRC, a window size 8 � 8 is applied. The former method
over-smooths the oat-covered region and misclassifies Oats as Grass/Trees or
Corn-min. This is because each oat pixel is dominated by Class 3 (Corn-min) and Class
6 (Grass/Trees). The improvement of spatial regularization gives a weight of pixels far
away from the central pixel via spatial locations, which is helpful for the dominated
regions.

The accuracy varies with different sparsity constraint factor K and neighborhood
size N. The effect of K and N on the classification accuracy is shown in Fig. 3. The
sparsity constraint factor plays an important role in the experiment, which produces less

Fig. 2. Classification maps of Indian Pines. (a) Ground truth. (b) SRC. (c) KSVM.
(d) ERAP. (e) EKSVM. (f) SVM_AP (g) ERAP_MRF. (h) ESRC.
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sparse codes when set too small, and makes the dictionary no longer sparse and more
time-consuming when set too large. The neighborhood size is also an important
parameter in the spatial regularization network. As shown in Fig. 3, a too large N may
cause over-smoothing and produce noisy information, while a too small N cannot
preserve enough spatial features. N is set as 8 � 8 throughout the experiment to
achieve the best accuracy.

We apply SRC, ERAP, ERAP_MRF and ESRC with different sparsity level factor
K; ranging from K ¼ 5 to K ¼ 80, and the best accuracy is chosen for this experiment.

The parameter a which controls the contribution of the classification error is
determined by cross validation experiments on training images. For Indian Pines data
set, it is set to 0.001. This small value for a is due to the high dimension sparse vector
of the training samples. The normalized large scale sparse vector results in small
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Fig. 3. The effect of neighborhood size N and sparsity constraint factor K

Table 3. Class information for Pavia University image

Class No. Class Name Train Test

1 Asphalt 50 6631
2 Meadows 50 18649
3 Gravel 50 2099
4 Trees 50 3064
5 Meta sheets 50 1345
6 Bare soil 50 5029
7 Bitumen 50 1330
8 Bricks 50 3682
9 Shadows 50 947
Total 450 42776
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component values for the extracted features, therefore the weight of this controlling
term is lower, compared to the sparse reconstruction errors.

3.3 Experiments on ROSIS Pavia University Data Set, Italy

The image was collected by the Reflective Optics Systems Imaging spectrometer
(ROSIS), and the sensor generates 115 spectral bands covering from 0.43 to 0.86 µm
with a spatial resolution of 1.3 m. In our experiments, 103 bands are used with 12 noisy

Table 4. Classification accuracies (%) for Pavia University image

Method SRC KSVM ERAP EKSVM SVM_AP ERAP_MRF ESRC

1 92.76 92.24 94.42 95.95 96.60 97.70 97.86
2 97.06 96.79 98.09 98.74 98.89 99.21 99.53
3 71.93 70.74 79.57 85.31 86.89 90.56 93.00
4 51.47 50.05 59.82 66.28 69.76 75.67 81.29
5 91.64 91.52 94.31 95.79 94.84 97.18 98.61
6 56.74 55.24 64.90 71.92 74.32 80.09 85.59
7 75.62 74.54 81.42 86.15 87.71 89.82 93.22
8 83.58 82.59 88.32 91.29 92.89 94.25 96.32
9 99.89 99.89 99.89 99.89 99.89 100.00 100.00
OA 79.32 78.14 84.99 88.87 90.27 92.84 94.98
AA 80.08 79.29 84.53 87.93 89.09 91.61 93.94
k 74.20 72.83 80.97 85.74 87.47 90.71 93.44

Fig. 4. Classification maps of Pavia University. (a) Ground truth. (b) SRC. (c) KSVM.
(d) ERAP. (e) EKSVM. (f) SVM_AP (g) ERAP_MRF. (h) ESRC
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bands removed from both data sets. It consists of 610 � 340 pixels with 9 labelled
classes. As discussed above, the sparsity constraint factor T is set to range from 5 to 80
for SRC, ERAP, ERAP_MRF and ESRC. N is set as a 9 � 9 and a is set as 0.005 for
this dataset. Table 3 shows the class information of this data set.

The classification accuracies and classification maps are summarized in Table 4 and
Fig. 4. The classification results for this imagery are consistent with Indian Pines
imagery. Our proposed method (i.e. ESRC) performs better than the other methods in
most cases.

4 Conclusion

In this paper, a novel framework is proposed for HSI classification. This framework is
based on EMAP and SRC. HSI pixels are considered as sparse representation by the
atoms in a selected dictionary. In the proposed algorithm, a classification error term is
added to the SRC model and is solved by the K-SVD algorithm. To improve the
classification accuracy, we also have taken into account the influence of neighboring
pixels of the pixel of interest in the MAP spatial regularization model. Experiments
conducted on two different hyperspectral images show that the proposed method yields
high classification accuracy, which is especially better than the state-of-the-art SVM
classifiers.
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