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Abstract. The reflection model of object surfaces is an essential part in
photorealistic rendering. While analytical models are unable to express
all significant effects of all materials, we turn to data-driven models,
which, however, cost a large amount of memory and more computa-
tional resources. The non-parametric factor microfacet model designed
by Bagher et al. [1] is intended to solve these problems. In this paper, we
present a new non-parametric factor microfacet model which has triple
specular lobes but retains the original number of parameters by sharing
factors among three color channels. The fitting method called AWLS is
also extended to solve for the G factor, which makes the fitting process
more robust. Moreover, we use the D factor of our model for importance
sampling as in the case of analytical models and find it effective for
the specular materials. Finally we generalize our model and our fitting
method to fit the 150 anisotropic materials. With only 2010 parameters
(8KB), it can reconstruct the original data (2 MB) well, which further
proves the expressiveness of our microfacet model.

Keywords: BRDF compression and factorization · Microfacet model
Isotropic · Anisotropic · Importance sampling

1 Introduction

In computer graphics, bidirectional reflection distribution function (BRDF) [2]
has been extensively used to represent material appearance. For a specific wave-
length λ, BRDF is a 4D function fλ(θi, φi, θo, φo), which returns the ratio of
outgoing radiance to the incoming irradiance incident on the surface. All the
notations used in this paper are shown in Fig. 1.

BRDF models are simply divided into analytical models and data-driven
models. Analytical models give exact analytical forms with only a few param-
eters to fit different materials. The microfacet model is one kind of analytical
models, which is derived from the microfacet theory. The microfacet theory [3]
assumes that rough surface consists of adequate microfacets, which have the
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Fig. 1. Notations used in this paper.

same reflection properties and whose orientations obey some kind of distribu-
tion. For a given wavelength λ (or color channel), the basic structure of the
microfacet model is simple:

ρ(θh, θd, φd) = d + s(
D(θh, φh)F (θd)G2(θi, θo)

cos θi cos θo
) . (1)

If both the index of refraction and the extinction coefficient of the material
of interest are known, then F (θd) is determined. The indices of refraction and
the extinction coefficients of some materials can be checked in the handbook
[4]. Additionally, the masking (or shadowing) factor G can be derived from D,
which is first proposed by Smith et al. [5] and generalized by Brown et al.
[6] and Walter et al. [7]. If a simple kind of masking-shadowing function G2,
e.g. G2(θi, θo) = G(θi)G(θo), is chosen, then the biggest difference among the
microfacet models is normal distribution function D(θh, φh).

There are lots of choices for D(θh, φh). Some of the most commonly used
distributions can be found in [7–12]. It should be noted that the GGX distri-
bution is the same as the Trowbridge-Reitz distribution. The SGD distribution
is a mix of the Trowbridge-Reitz distribution and the Beckmann-Spizzichino
distribution. Generally speaking, the shape of the Blinn-Phong distribution is
very close to the Beckmann-Spizzichino’s. The Trowbridge-Reitz, SGD and ABC
distributions have a narrower peak with a stronger tail but the ABC distribu-
tion is only suitable for glossy surfaces. By observing measured data, we can
design a more accurate normal distribution function. Actually, with the method
Ashikmin et al. [13] introduced, we can arbitrarily design normal distribution
functions regardless of whether the corresponding materials exist or not.

However, all the factors derived above are subject to some assumptions, which
limit their capability to express some special reflection effects as well as the range
of materials their corresponding models suitable to be used. In order to express
all the reflection effects and not be bounded to the categories of materials, we can
directly use the measured reflection data. However, acquiring accurate and dense
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measured reflection data is a challenging and time-consuming work. Fortunately,
there is a large enough isotropic BRDF database called MERL [14], which has
been analyzed by a lot of researchers. Moreover, UTIA1 BRDF database [15]
contains measured reflection data for 150 anisotropic materials. Although it is
not that dense, it still can be directly used in a renderer with an appropriate
interpolation method. However, directly using the measured data not only needs
a large amount of memory storage, but also loses the flexibility for users to edit
the material appearance and the simplicity for importance sampling.

One possible way to solve the problems aforementioned is using 1D arrays
to substitute all the factors in the basic structure of the microfacet model. The
model after substitution is called non-parametric factor microfacet model in
Bagher et al. [1]. As for G2, they used the simplest but inaccurate one, G2 =
G(θi)G(θo). Bagher et al. [1] used two slightly different models, the best of
which was called Independent-G model. As its name suggests, the G factor is
independent and is not derived from the D factor in the Independent-G model.
Following the format of the MERL database, each of the factors D(θh), F (θd)
and G(θi) (or G(θo)), has 90 elements. The fitting objective is

E =
∑

j

wj(ρ(θh, θd, φd)j − ρ∗
j )

2 (2)

where ρ∗
j is a BRDF measurement and ωj is the compressive weight. Those who

are interested in the weighting scheme can find detailed formulations in [1].
By fitting the MERL measured data, each element of the 1D array and the

other two coefficients can be determined. Then using the Independent-G model,
original reflection data of each material is approximated with 816 floating-point
parameters. It should also be noticed that the Independent-G model is always
better than the compared analytical models. So we only use the Independent-
G model to compare with our model in the experiments. In addition, we also
compare our model with the so-called Bivariate model, which use 10× more
parameters and each parameter has no physical meaning. Taking the images
rendered with the original reflection data as the reference images, the PSNRs
between the images rendered with the Independent-G model and the reference
images are shown in Fig. 8 in [1]. Although the result seems good enough, there
is still much room for improvement.

We change the structure of the Independent-G model from a single spec-
ular lobe to three specular lobes. However, by sharing factors among three
color channels, our model only uses six extra parameters. Moreover, shar-
ing factors conforms to the microfacet theory, which makes our model more
explainable and intuitive. More importantly, it’s more suitable for user-editing
and importance sampling. In addition, we still can use the simple and easily
implemented fitting method which is called alternating weighted least-squares
(AWLS) in Bagher et al. [1] to fit the data. The AWLS repeatedly updates
each factor in sequence until convergence. Its basic idea is finding the zero
point(s) of the first derivative of the fitting objective 2 in order to get the
1 http://btf.utia.cas.cz/.

http://btf.utia.cas.cz/
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minimum of it. It is easy to prove that its second derivative is positive so the
zero point must be the minimum. We do not introduce the AWLS in detail
here, but in the next section, we extend it to solve for the G factor. Bagher
et al. [1] thought the AWLS was not suitable for the G factor because of the
non-trival factor dependency and used the GSS (golden section search) to guar-
antee to reduce the fitting objective. After extended, the AWLS is also able to
reduce the fitting objective steadily while updating the elements of the G fac-
tor without using GSS. Finally, microfacet theory does not confine to isotropic
materials. So we also use our modified model to fit the anisotropic data.

In the following sections, we first introduce our models for the isotropic and
anisotropic measured data respectively. Then we talk about the extended AWLS
for the G factor and the simple importance sampling method which helps dra-
matically decrease the number of samples needed to render some specular mate-
rials. After that, we show the fitting results and further analyses about the
resulting parameters. The limitations of our model are concluded in the end of
the paper.

2 Parameters Sharing Multi-items Model

2.1 Our Model for the Isotropic Materials

In the Independent-G model, the D, F and G factors are different for each color
channel. Although such a model can fit the measured data well, it loses the orig-
inal physical meaning. For example, the D factor represents normal distribution
of object surfaces. Therefore, for different color channels (or wavelengths), the
D factor is the same. The same conclusion can also apply to the G factor. Only
the F factor, the fresnel factor, is dependent on the wavelength of the incident
light so it is different for different color channels. Therefore, we share the D
and G factors among different color channels, which helps reduce the number of
parameters.

Furthermore, experiments conducted by Ngan et al. [16] indicated that two
specular lobes helped reduce the fitting error. Lafortune et al. [10] used three
specular lobes but Ngan et al. [16] indicated that it made the fitting process very
unstable. However, with the extended fitting method AWLS, it is not a problem.
In order to compare with the Independent-G model fairly, our model uses three
specular lobes, which only adds 6 unavoidable parameters. Obviously, the total
number of parameters our model uses is 3+3∗3+90∗3∗3 = 822. The resulting
model is

ρC(θh, θd, φd) = dC +
m<=3∑

m=1

sm
C (

Dm(θh)FC(θd)Gm(θi)Gm(θo)
cos θi cos θo

) (3)

where the C stands for R, G or B. In addition, it is necessary to notice that,
because the D and G factors are shared among three color channels, solving
for each element of these two factors uses all the samples from all three color
channels.
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2.2 Our Model for the Anisotropic Materials

For anisotropic materials, the D factor is dependent on both θh and φh, and the
G factor is dependent on both θi (or θo) and φi (or φo). Moreover, to be aligned
with the format of the UTIA database, both the factor D and G should be a
6 × 48 2D array. Since the F factor is dependent on wavelength λ and θd, and
there are only three color channels, the F factor is still a 90-element 1D array
for each color channel. So the resulting model is

ρC(θi, φi, θo, φo) = dC +
m<=3∑

m=1

sm
C (

Dm(θh, φh)FC(θd)Gm(θi, φi)Gm(θo, φo)
cos θi cos θo

) (4)

where the C stands for R, G or B.
Therefore, our model for the anisotropic materials needs 3+3∗3+6∗48∗3∗

2 + 90 ∗ 3 = 2010 parameters (about 8KB). We use the tri-linear interpolation
method to get the intermediate value for the D and F factor. A helpful trick in
practice is to store the weights and positions for each sample before fitting in
order to avoid transforming the parametric space over and over again.

2.3 The Extended AWLS for the G Factor

The AWLS fitting methods for D, F, d and s are introduced in detail in [1]. For
the G factor, Bagher et al. [1] applied linear interpolation method in the θi and
θo space while evaluating the G factor or the cosine factors. Firstly, they used
a standard AWLS update step to solve for the G(θi) and G(θo) separately and
then averaged them. After that, they used a simple Gaussian smoothing filter
to remove high-frequency oscillations. If the first iteration did not reduce the
fitting objective, they applied a GSS update.

In order to make the G factor smoother, we use a Catmull-Rom spline to
interpolate the G factor and the cosine factors. We forward readers to the Pharr
et al.’s book [17] about how to use a Catmull-Rom spline to interpolate 1D
control points. So G(θi) (or G(θo)) for arbitrary θi (or θo) can be expressed as
a weighted sum over four control points, where the weights and the particular
control points depend on the θi (or θo).

Then, we directly use the basic idea of AWLS to solve for the G factor.
Assume we want to update the kth element of G1 (updating G2 and G3 is totally
the same), denoted by G1

k. All the other factors are held constant, including d,
s, G2, G3 and all the other elements of G1. If evaluating BRDF of a specific
parametric location with our model needs to use G1

k, which means G1
k is one

of the four control points when evaluating G(θi) or G(θo), then we call such a
parametric location has some relationship with G1

k. We denote such parametric
locations of all BRDF samples by (θh, θd, φd)k, for which the jth parametric
location is (θh, θd, φd)kj and the corresponding measured BRDF is (ρ∗

C)kj where
C stands for R, G or B. It is important to emphasize again that the RGB
channels of our models is dependent, so G1

k is the same for each color channel.
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Because the structure of our model is the same for each color channel, we only
take the red channel as an example.

For convenience, we will denote G1
k by x, s1R

[D1(θh)]kj [FR(θd)]kj

[cos θi cos θo]kj
by yj and

(ρ∗
R)kj − dR −

m<=3∑

m=2

sm
R

[Dm(θh)]kj [FR(θd)]kj [Gm(θi, φi)]kj [Gm(θo, φo)]kj

[cos θi cos θo]kj

by zj .
We need to consider three situations. To distinguish these three situations,

we use three different subscripts, r, t and s respectively, to substitude j. The
first situation is that [G1(θi)]kr is dependent on G1

k but [G1(θo)]kr is not. So
[G1(θo)]kr is a simple constant and we denote it by Gr

o. Since all the other
elements of G1 are held constant, [G1(θi)]kr = ai

r +ci
rx, where ai

r and ci
r are also

constants. Then the fitting objective for this situation is

Er(x) = wr[zr − yr(ai
r + ci

rx)Gr
o]

2 . (5)

The second situation is reverse. So its fitting objective is similar:

Et(x) = wt[zt − yt(ao
t + co

t x)Gt
i]
2 . (6)

Finally, the third situation is that both [G1(θi)]kr and [G1(θo)]kr are depen-
dent on G1

k. The corresponding fitting objective is

Es(x) = ws[zs − ys(ai
s + ci

sx)(ao
s + co

sx)]2 . (7)

Then the total fitting objective correspond to Eq. 2 is ER(x) = Er(x) +
Et(x) + Es(x). Unsurprisingly, its first derivative is just a cubic function, that
is, E

′
R(x) = ax3 + bx2 + cx + d. In practice, we use the GSL library to solve

the cubic equation ax3 + bx2 + cx + d = 0. In most case, there is only one real
root. If there are three real roots then we need to check which is the best one.
Before updating the G1

k, it needs to be checked whether it actually reduces the
fitting objective. Therefore, it is guaranteed to reduce the fitting objective after
updating all the elements of G1 with such a method.

2.4 The AWLS Method for the Anisotropic Materials

As for the anisotropic materials, using the AWLS method to solve for the D and F
factor is similar but there are some problems needed to be addressed. The UTIA
measured data is parameterized by {θi, φi, θo, φo}. Before evaluating the D and F
factor, we need to transform the parameter space to {θh, θd, φd}. We simply use
linear interpolation to evaluate the D and F factor. So each parametric location
has relationship with 4 control points of the D factor and 2 control points of
the F factor. {θh, θd, φd}kj represents the jth parametric locations of all BRDF
samples that have relationship with the kth element of D1. In the following, we
take updating the kth element of D1 as an example. Updating the elements of
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the F factor is totally the same. For conciseness, we denote the kth element of
D1 by x,

s1R(
[FR(θd)]kj [G1(θi, φi)]kj [G1(θo, φo)]kj

[cos θi cos θo]kj
)

by yj and

(ρ∗
R)kj − dR −

m<=3∑

m=2

sm
R

[Dm(θh, φh)]kj [FR(θd)]kj [Gm(θi, φi)]kj [Gm(θo, φo)]kj

[cos θi cos θo]kj

by zj .
So the fitting objective for the red channel is ER(x) =

∑
j wj(zj − (aj +

cjx)yj)2, which is a simple quatratic function, whose first derivative also can
be easily calculated. Finally, because of the parameter space used in the UTIA
database, it is easier to update the elements of the G factor but it is still needed
to consider the three situations mentioned in the last subsection. There is no
need to repeat those fomulations.

2.5 Importance Sampling

There is no satisfying sampling method if we directly use measured data. The
default sampling method in pbrt-v2 samples the unit hemisphere with a cosine-
weighted distribution. Instead, Bagher et al. [1] used a kind of sampling method,
which needed to construct a 2D CDF for each view-slice. It is time-consuming
unless we calculate all the CDFs beforehand and store them, which obviously
costs too much memory (at least 4G). We use such a method to render noise-free
images for comparing, ignoring that it costs too much memory space.

Fortunately, after fitting the measured data to our model, we can use the
D factor for importance sampling as in the case of the analytical models. The
Independent-G model is unable to do so because the D factors are different for
three color channels but our model shares the same D factor instead. For each
material in the scenes, it is only needed to calculate D(θh) cos θh and normalize
it before rendering. That is, D(θh) cos θh is multiplied by a constant c in order
to make sure that

π2

90

90∑

i=1

c[D(θh) cos θh sin θh]i = 1 . (8)

The normalization formalation 8 can be derived by starting from

∫ 2π

0

∫ π
2

0

D(θh) cos θh sin θhdθhdφh = 1 . (9)

Then the resulting cD(θh) cos θh is the pdf (distributed dense function) to
draw sample from. We use the Distribution1D class to implement this importance
sampling method in pbrt-v3. The pdf cD(θh) cos θh is calculated before rendering
and is stored in memory in order to avoid to be calculated whenever it is needed
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to sample an incoming direction given the outgoing direction. Because our model
has three specular lobes and every D factor has 90 elements, 270 extra floating-
point numbers are needed to help with the importance sampling.

Using our method, it is only needed to render red-specular-metallic or black-
obsidian with 128 samples per pixel to get a good result. The rendering results
are shown in Fig. 2.

Fig. 2. For each material, the most left is the reference image and to the right are one
image rendered with the default method with 4 K samples per pixel and two images
rendered with our importance sampling method with 64 and 128 samples per pixel
respectively. For clarity, only the lower left corners of the spheres are shown (Color
figure online).

3 Experimental Results and Analysis

3.1 Result for the Isotropic Materials

In order to compare our model with the Independent-G model, both models
are used to reconstruct the reflection data following the format of the MERL
database for all the materials, which are then used to render images with 4096
samples per pixel. We also use the HDR environment map (EM) [18] in rendering.
In the experiments, two scenes are rendered. One is a sphere in the Grace EM
and the other one is the Stanford Buddha in the Grove EM.

Figure 3 shows the average rendering PSNRs of the two scenes for all the
materials in the MERL database. We sort the materials by increasing rendering
PSNRs of the Independent-G model. It is showed that our model is at least as
good as the Independent-G model and in up to 88 cases our model is better
than it. It should be noticed that the Bivariate model uses 10× parameters so
in most cases it gets the highest rendering PSNR among all the models showed
in Fig. 3. In terms of the rendering PSNRs, our model is closer to the Bivariate
model than the Independent-G model and for some materials, our model are
even better than the Bivariate model.

We show two of the best rendering results and two of the worst rendering
results of our model in Fig. 3. It is hard to see the differences so the PSNRs are
shown in the lower left corner of each image. From [1] we know that there is
obvious visual error in their fit for silver-metallic-paint but Fig. 3 shows that our
model is much more better than the Independent-G model. However, for some
other materials like violet-acrylic or nylon, there is no much improvement.
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Fig. 3. Average rendering PSNRs for the MERL isotropic materials. (a) and (b) are
two of the best rendering results of our model. (c) and (d) are two of the worst rendering
results of our model (Color figure online).

3.2 Result for the Anisotropic Materials

Just like last section, we render a sphere in the Grove EM and the woven cloth
using our anisotropic model and the original measured data. The average ren-
dering PSNR of our model is 106.80 and only for 8 materials the rendering
PSNRs are lower than 100. We also calculate the reconstruction fidelity, which
is also evaluated by the standard PSNR but is calculated between the original
measured data and the one reconstructed by our model. We call such a PSNR
numerical PSNR. Both the rendering PSNR and the numerical PSNR are shown
in Fig. 4. We can compare the numerial PSNR with Fig. 6 in [15]. Although such
a compare seems to be meaningless because the purpose of Filip et al. [15] is just
to find a fixed number (e.g. 1438) of the most important parametric locations
to reconstruct the measured data instead of using any model to fit the mea-
sured data. By directly comparing the results numerically it is convinced that
our model is good enough even for the anisotropic materials.

3.3 Data Analysis

We show the resulting factors for some materials in Fig. 5. Obviously, the curves
of the D factor for aluminium and violet-acrylic are similar to the curves of
the analytical models. This is the reason why the analytical models, e.g. Löw’s
ABC model [12], fit aluminium and violet-acrylic as well as the Independent-G
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Fig. 4. The rendering PSNRs and the numerical PSNRs for the UTIA anisotropic
materials. (a) is one of the worst rendering results. (b) and (c) are two of the best
rendering results. For each pair of images, the image rendered with our model is on
the left and the reference image is on the right. There is little visual error even for the
worst result.

model (see the results in the supplementary material of Bagher et al. [1]). But
the curve of the D factor for polyurethane-foam is totally different. So analytical
models do not fit it well. Moreover, the curves of the F factor are similar for
each color channel. It is convinced that using the same F factor for each color
channel leads to little loss. For some specular materials, e.g., aluminium and
violet-acrylic, there are high-frequency oscillations in the G factor if we do not
use the Gaussian smoothing filter after updating the G factor. Although using
the Gaussian smoothing filter results in a higher fitting objective, the rendering
PSNR for aluminium or violet-acrylic is almost the same. Additionally, it is not
necessary to use the Gaussian smoothing filter for the diffuse materials because
there are few high-frequency oscillations in the G factor. Therefore, we only use
the Gaussian smoothing filter for the specular materials.

4 Limitation and Future Work

Both our model and the Independent-G model simply use the Lambertian model
as the diffuse lobe. Actually, few materials in the MERL database show the
Lambertian respond. So a more complicated diffuse component used in [19] is
considered to be added in our model. Such a diffuse component considers the
remaining energy, after substracting the total energy from the energy for the
specular reflection. However, a new fitting method is needed for such a compli-
cated model.
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Fig. 5. The D, F and G factors for aluminium, violet-acrylic and polyurethane-foam
respectively.

Furthermore, we only use a simple shadowing-masking function G2(θi, θo) =
G(θi)G(θo), which completely ignores the correlation between the masking and
shadowing. As Heitz et al. [20] indicates, since some correlations always exist,
such a G2 always overestimates the shadowing. Although we have the other
three more complicated forms for G2 (see Heitz et al. [20]), the fitting process
is troublesome if we continue to use the AWLS fitting method. Again, a new
fitting method is needed to help us deal with this complicated model.

5 Conclusion

By using triple specular lobes and sharing factors among three color channels,
we design a new model with 822 parameters to fit the MERL isotropic data and
with 2010 parameters to fit the UTIA anisotropic data. We do not change the
weighting scheme used in Bagher et al. [1] but we do extend their AWLS method
to solve for the G factor, which makes updating the elements of the G factor
reduce the fitting objective steadily. We offer a simple method for importance
sampling which dramatically reduces the number of samples per pixel needed
by the specular materials. Our model is better than the Independent-G model
for most materials and even better than the Bivariate model for some materials.
Note that the Bivariate model uses 10 times number of parameters our model
uses. Finally, our model for the UTIA data is also good. The rendering PSNRs
for almost all the materials are above 100 and there is no noticeable visual error.
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