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Abstract. Blind image restoration is a challenging problem with
unknown blurring kernel. In this paper, we propose a new algorithm
based on a new Tikhonov regularization term, which combines three
techniques including the split Bregman technique, fast Fourier trans-
form and spectral decomposition technology to accelerate the computa-
tion process. Numerical results demonstrate that the proposed algorithm
is simple, fast and effective for blind image restoration.

1 Introduction

Blind image restoration has been widely applied in remote sensing, astronomy,
medical imaging, video cameras and so on (see, e.g. [8,10,18]). For example, when
taking the photograph of a moving object, the shutter speed and the speed of the
object are unknown. The process of degradation can be modeled as: g = h∗f +n,
where g stands for the degraded image, f represents the original image, h is the
blurring kernel (also called as point spread function (PSF)), n expresses the
noise, and ∗ denotes convolution operation. As the PSF is unknown, a lot of
restoration techniques have been proposed (see, e.g. [1,3,5,11–14,16,17,19,26]).
It is becoming one of the most challenging problems for its complication and
difficulty.

Regularization is one way to avoid the problems due to the ill-posed nature
of blind image restoration. You and Kaveh [26] used the minimizing formulation
with H1 regularization terms for both the image and the PSF:

min
f,h

{1
2
‖h ∗ f − g‖22 + λ1‖f‖2H1 + λ2‖h‖2H1

}
. (1)

Chan and Wong [5] regularized both the image and the PSF by the famous total
variation (TV) regularization terms (see, e.g. [5,21]) instead of the H1-norm:

min
f,h

{1
2
‖h ∗ f − g‖22 + λ1TV (f) + λ2TV (h)

}
. (2)

The TV regularization is considered to be one of the best approaches to
recovering edges of image, but also one of the hardest to computing because
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of the nonlinearity and non-differentiability of the TV regularization term. The
split Bregman (SB) method is shown to be efficient to handle the TV term with
notable stability and fast convergence rate (see, e.g. [4,5,7,9]). Based on the
SB method, the minimization problem can be divided into several subproblems.
The important and difficult subproblems are to effectively find the solutions f
and h alternatively, so we need to solve large linearized systems of equations.
To solve large equations, the cosine preconditioned conjugate gradient method
and the fixed-point method are proposed in [5]. Coupled systems of f and h
are evolved by a time marching method, which is based on the gradient descent
method [9]. Chang et al. [25] applied an algebraic multigrid (AMG) method
and Krylov subspace acceleration technique to solve the linearized systems of
equations [25]. We also noticed that the 2D fast Fourier transform (FFT) [4,14]
is fast and simple. Moreover, the spectral decomposition technology (SDT) [24]
is efficient for handling a new Tikhonov regularization term [6,15]. The SDT not
only reduces the amount of calculation, but also saves the storage space.

The purpose of this paper is to briefly describe a combined algorithm of the
SB method, FFT and SDT, which agglomerates advantages of the above three
methods, and realize blind image restoration with a TV regularization term and
a new Tikhonov regularization term.

The organization of this paper is given as follows. Section 2 exhibits our new
combined algorithm based on the SB method, FFT and SDT. Computational
results are shown in Sect. 3. Finally, some conclusions are given in Sect. 4.

2 Proposed Algorithm

In this section, we propose a fast combined algorithm to solve blind image
restoration problem with the TV regularization term for h and the new Tikhonov
(NT) regularization term for f [6] using the SB technique, FFT and SDT. We
denote the proposed algorithm as NT-SB algorithm.

2.1 NT-SB Algorithm

To induce our new algorithm, we need to modify the model (2) as follows:

min
f,h

{1
2
‖h ∗ f − g‖22 +

λ1

2
‖Lλf‖22 + λ2

∑
i

√
(∇xh)2i + (∇yh)2i

}
, (3)

where λ1, λ2 > 0 are regularization parameters, ‖Lλf‖22 is a regularization term,
which can filter high frequency information such as noise. We will show the
detailed definition of Lλ in (12) later.

Introducing two auxiliary variables c1, c2 similar to [7], we make the following
substitutions for the model (2), ∇xh → c1,∇yh → c2. This yields the following
equivalent constrained problem:

min
f,h,c1,c2

{1
2
‖h ∗ f − g‖22 +

λ1

2
‖Lλf‖22 + λ2‖(c1, c2)‖2

}
,

s.t. ∇xh = c1,∇yh = c2.

(4)
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Notice that here we only need two auxiliary variables, since there is only one
TV regularization term. While for the following TV-SB algorithm in Sect. 3, we
have to introduce four variables.

Thus the iterative scheme of our new algorithm based on the SB technique
is as follows:

(fk+1, hk+1, ck+1
1 , ck+1

2 ) =

arg min
f,h,c1,c2

{1
2
‖h ∗ f − g‖22 +

λ1

2
‖Lλf‖22 + λ2‖(c1, c2)‖2

+
γ2
2

(‖c1 − ∇xh − sk
1‖22 + ‖c2 − ∇yh − sk

2‖22)
}

,

(5)

and

sk+1
1 = sk

1 + ∇xhk+1 − ck+1
1 ,

sk+1
2 = sk

2 + ∇yhk+1 − ck+1
2 ,

(6)

where the parameters λ1, λ2 > 0 fit the fidelity term and the regularization
terms, γ2 > 0 regulates the penalty function terms. The minimization problem
(5) can also be decoupled into the following subproblems:

1: h-subproblem: for fixed fk, ck
1 , c

k
2 , s

k
1 , s

k
2 , we need to solve

hk+1 = arg min
h

{
H(h) +

γ2
2

(‖ck
1 − ∇xh − sk

1‖22 + ‖ck
2 − ∇yh − sk

2‖22)
}

, (7)

where H(h) = 1
2‖fk ∗ h − g‖22.

According to the optimality condition, which requires us to solve

(fk)T ∗ (fk ∗ hk+1 − g) + γ2∇T ∇hk+1

+γ2(∇T
x (sk

1 − ck
1) + ∇T

y (sk
2 − ck

2)) = 0.
(8)

That is,

hk+1 = F−1[
F((fk)T g + γ2(∇T

x (ck
1 − sk

1) + ∇T
y (ck

2 − sk
2))

F((fk)T fk − γ2�)
], (9)

where ∇T ∇ = −�,∇T = −div.
2: f -subproblem: for fixed hk+1, we need to solve

fk+1 = arg min
f

{
F1(f) + F2(f)

}
, (10)

where F1(f) = 1
2‖H̃f − g‖22, F2(f) = λ1

2 ‖Lk+1
λ f‖22, and H̃ is the BCCB (Block

Circulant with Circulant Blocks) blur matrix got by the blurring kernel h with
periodic boundary conditions [20,22]. We apply the spectral decomposition tech-
nology for the blurring matrix H̃, and have

H̃ = F ∗ΣF, (11)
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where F is a 2D unitary discrete Fourier transform (DFT) matrix, the conjugate
transpose of a complex matrix F , denoted F ∗ and the diagonal matrix Σ =
diag[σ̂1, σ̂2, · · ·, σ̂n] (see, e.g. [6]), where σ̂1, σ̂2, · · ·, σ̂n are eigenvalues of H̃.
Construct the regularization matrix Lλ as:

Lλ = DλF, (12)

where

D2
λ =⎛

⎜⎜⎜⎝

max(λ2 − σ̂2
1 , 0)

max(λ2 − σ̂2
2 , 0)

. . .
max(λ2 − σ̂2

n, 0)

⎞
⎟⎟⎟⎠ .

(13)

According to the NT method proposed in [15], we have

f = F ∗(σ̂∗σ̂ + λ1(Dk+1
λ )∗Dk+1

λ )−1σ̂∗Fg. (14)

3: c1, c2-subproblems: for fixed fk+1 and hk+1, we need to solve

(ck+1
1 , ck+1

2 ) = arg min
c1,c2

{
λ2‖(c1, c2)‖2

+
γ2
2

(‖c1 − ∇xhk+1 − sk
1‖22 + ‖c2 − ∇yhk+1 − sk

2‖22)
}

.
(15)

By shrinkage formulation (see, e.g. [7,23]), the solutions of (15) are

ck+1
1 =

∇xhk+1 + sk
1

W k
max{W k − λ2

γ2
, 0},

ck+1
2 =

∇yhk+1 + sk
2

W k
max{W k − λ2

γ2
, 0},

(16)

where W k =
√

(∇xhk+1 + sk
1)2 + (∇yhk+1 + sk

2)2.
We summarize the NT-SB algorithm as follows:

NT-SB Algorithm

1. Initializing f0, c01, c
0
2, s

0
1, s

0
2,

2. While ‖fk+1 − fk‖2/‖fk‖2 > tol, do
a: solve (9) to get hk+1,
b: solve (14) to get fk+1,
c: solve (16) to get ck+1

1 , ck+1
2 ,

d: update sk+1
1 , sk+1

2 by (6).
end do
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Here, tol denotes the tolerance value for iteration scheme, and the order of the
h and f subproblems can not be transposed.

3 Experimental Results

To show the superiority of the proposed algorithm, we compare the NT-SB algo-
rithm with the TV-SB algorithm that solves the original model (2) using split
Bregman method. First, we simply show the TV-SB algorithm. Using several
auxiliary variables b1, b2, c1, c2, we need to solve the following equivalent con-
strained problem:

min
f,h,b1,b2

c1,c2

{
1
2‖h ∗ f − g‖22 + λ1‖(b1, b2)‖2 + λ2‖(c1, c2)‖2

}
,

s.t. ∇xf = b1,∇yf = b2,∇xh = c1,∇yh = c2.
(17)

For the h-subproblem, we can get the same solution (9). For the f -subproblem,
we get

fk+1 = F−1[
F((hk+1)T g + γ1(∇T

x (bk
1 − tk1) + ∇T

y (bk
2 − tk2))

F((hk+1)T hk+1 − γ1�)
]. (18)

By shrinkage formulation as above, we obtain

bk+1
1 =

∇xfk+1 + tk1
V k

max{V k − λ1

γ1
, 0},

bk+1
2 =

∇yfk+1 + tk2
V k

max{V k − λ1

γ1
, 0},

ck+1
1 =

∇xhk+1 + sk
1

W k
max{W k − λ2

γ2
, 0},

ck+1
2 =

∇yhk+1 + sk
2

W k
max{W k − λ2

γ2
, 0},

(19)

where
V k =

√
(∇xfk+1 + tk1)2 + (∇yfk+1 + tk2)2,

W k =
√

(∇xhk+1 + sk
1)2 + (∇yhk+1 + sk

2)2.

And the iterative parameters

tk+1
1 = tk1 + ∇xfk+1 − bk+1

1 ,

tk+1
2 = tk2 + ∇yfk+1 − bk+1

2 ,

sk+1
1 = sk

1 + ∇xhk+1 − ck+1
1 ,

sk+1
2 = sk

2 + ∇yhk+1 − ck+1
2 .

(20)

We summarize the TV-SB algorithm as follows:
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TV-SB Algorithm

1. Initializing f0, b01, b
0
2, t

0
1, t

0
2, c

0
1, c

0
2, s

0
1, s

0
2,

2. While ‖fk+1 − fk‖2/‖fk‖2 > tol, do
a: solve (9) to get hk+1,
b: solve (18) to get fk+1,
c: solve (19) to get bk+1

1 , bk+1
2 , ck+1

1 , ck+1
2 ,

d: update tk+1
1 , tk+1

2 , sk+1
1 , sk+1

2 by (20).
end do

Some remarks are in order.

(a) Comparing with the TV-SB algorithm, our proposed NT-SB algorithm uses
less variables (missing b1, b2, t1, t2) and less initial values need to be set
(missing b01, b

0
2, t

0
1, t

0
2).

(b) It is seen that, the computational complexity is obviously reduced for steps
c and d.

(a) (b)

Fig. 1. Original Images

Table 1. ISNR values and computing times using the TV-SB algorithm and the
NT-SB algorithm with different Gaussian Blurs (GB) and Moffat Blurs (MB).

Blur(kernel size) Algorithm Iteration Time(s) ISNR

GB (20) TV-SB 100 34.1719 1.4910

NT-SB 40 23.8906 2.2532

MB (20) TV-SB 44 16.0625 0.8769

NT-SB 24 14.4063 1.3146

GB (30) TV-SB 100 34.1719 1.4910

NT-SB 40 23.8906 2.2532

MB (30) TV-SB 45 17.2969 0.8717

NT-SB 23 13.8281 1.1383
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(a) GB: 20 ×

×

20 (b) TV-SB (c) NT-SB

(d) GB: 30 30 (e) TV-SB (f) NT-SB

(g) MB: 20 × 20 (h) TV-SB (i) NT-SB

(j) MB: 30 × 30 (k) TV-SB (l) NT-SB

Fig. 2. Comparisons of the TV-SB algorithm and the NT-SB algorithm. Column 1:
Blurred images contaminated by different blurs with different blurring kernel sizes
with the variance of σ2 = 1; Column 2: Restored images by the TV-SB algorithm;
Column 3: Restored images by the NT-SB algorithm.
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In this section, we test two gray images (satellite and cameraman images)
in Fig. 1 which are both of size 256 × 256 pixels to show the effectiveness and
feasibility of the TV-SB algorithm and the NT-SB algorithm. In the following
examples, we mainly compare the visual quality of the restored images and the
improvement in signal to noise ratio (ISNR) value [2]. The larger the ISNR
value is, the better the restored result is.

The elements of the noise vector n are normally distributed with zero mean,
and the standard deviation is chosen such that ‖n‖2

‖g‖2
= 0.01. In this case, we say

that the level of noise is 1%. Moreover, the numerical examples are all imple-
mented with MATLAB (R2010a) and the computer of test has 1G RAM and
Intel(R) Pentium(R) D CPU @2.80 GHz.

Table 2. ISNR values and computing times using the TV-SB algorithm and the
NT-SB algorithm with different Gaussian Blurs (GB) and Moffat Blurs (MB) and 1%
Gaussian noise.

Blur Algorithm Iteration Time(s) ISNR

GB (σ2 = 1) TV-SB 50 18.8125 1.4161

NT-SB 20 12.0625 1.6982

MB (σ2 = 1) TV-SB 50 18.2969 1.3533

NT-SB 15 9.4844 1.4057

GB (σ2 = 1.5) TV-SB 50 17.8438 0.7389

NT-SB 20 12.4375 0.8107

MB (σ2 = 1.5) TV-SB 50 17.1719 0.8776

NT-SB 15 8.7500 0.8971

Then, to compare the properties of the TV-SB algorithm and the NT-SB
algorithm, we consider the degraded images contaminated by Gaussian or Moffat
blur and Gaussian noise.

First of all, we consider the cameraman image contaminated by only Gaussian
or Moffat blur, the restored images are shown in Fig. 2. The parameters in the
algorithms are set to be λ1 = 13, λ2 = 0.1, γ1 = 0.1e − 6, γ2 = 0.2. Blurred
images contaminated by the size of 20 × 20 and 30 × 30 Gaussian blurs with
σ2 = 1 are displayed in Figs. 2(a) and (d), blurred images contaminated by the
size of 20 × 20 and 30 × 30 Moffat blurs with σ2 = 1 are depicted in Figs. 2(g)
and (j); restored images by the TV-SB and NT-SB algorithms are shown in the
second and third columns of Fig. 2, respectively. The ISNR values, number of
iterations and computing times are listed in Table 1. We can see that the NT-SB
algorithm has better restoration effect with larger ISNR values and needs fewer
number of iterations and fewer computing times (cf. Table 1).

Next, we consider the blurred-noisy satellite image contaminated by Gaussian
or Moffat blur and 1% Gaussian noise in Fig. 3. Since the background color of
satellite image is black, the noise is not so obvious in the contaminated images



New Tikhonov Regularization for Blind Image Restoration 121

(a) GB: σ2 = 1 (b) TV-SB (c) NT-SB

(d) GB: σ2 = 1.5 (e) TV-SB (f) NT-SB

(g) MB: σ2 = 1 (h) TV-SB (i) NT-SB

(j) MB: σ2 = 1.5 (k) TV-SB (l) NT-SB

Fig. 3. Comparisons of the TV-SB algorithm and the NT-SB algorithm. Column 1:
Blurred-Noisy images contaminated by 10 × 10 Gaussian or Moffat blur with differ-
ent ambiguous degrees and noise of 1%; Column 2: Restored images by the TV-SB
algorithm; Column 3: Restored images by the NT-SB algorithm.



122 Y. Shi et al.

(the first column of Fig. 3). The parameters in the algorithms are set to be
λ1 = 1, λ2 = 0.05, γ1 = 0.1e − 4, γ2 = 8. Blurred-noisy images contaminated by
Gaussian and Moffat Blurs with σ2 = 1 and 1% Gaussian noise are exemplified
in Figs. 3(a) and (g), respectively, blurred-noisy images contaminated by the size
of 10 × 10 Gaussian and Moffat Blurs with σ2 = 1.5 and 1% Gaussian noise are
exemplified in Figs. 3(d) and (j), respectively; restored images by the TV-SB
and NT-SB algorithms are shown in the second and third columns of Fig. 3. We
tabulate the ISNR values, number of iterations and computing times of the two
algorithms in Table 2, which shows that the NT-SB algorithm has almost the
same ISNR values as the TV-SB algorithm, but the NT-SB algorithm needs
less number of iterations and fewer computing times (see Table 2).

By observing Figs. 2 and 3, the NT-SB algorithm behaves better for the
blurred-noisy images in visual and faster than the TV-SB algorithm with the
same parameters.

4 Conclusions

In this paper, we introduced a new Tikhonov regularization term to replace the
TV regularization term for blind restoration problem, and applied the split Breg-
man technique to separate the minimum formulation with the TV regularization
term for the blurring kernel and the new Tikhonov regularization term for the
image into several subproblems. In the process of solving the subproblems, we
combined the FFT and the SDT to accelerate the computation. The TV-SB
and NT-SB algorithms were shown to be effective by several numerical exper-
iments. The NT-SB algorithm needed less space, fewer number of iterations,
shorter computing times and better restored effect comparing with the TV-SB
algorithm.
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