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Abstract. Edge detection is a basic operation in the field of image processing
and computer vision. However, to the best of our knowledge, there is less math‐
ematical work has been proposed beyond the first- and the second-order derivative
operator for edge detection in the past decays. We propose a mathematical model
called Lagrange detector for edge detection. Based on Lagrange polynomial
interpolation theory, this detector calculates Lagrange remainder as the strength
of edge and points at the features in various orders of discrete data or signal.
Lagrange remainder combines the first-order derivation and the first- and second-
order derivative of neighborhood by multiplication. We use the truncation error
of polynomial interpolation to estimate Lagrange remainder. Lagrange detector
performs well in detecting both outlines and tiny details. Furthermore, Lagrange
detector can be used to detect high-frequency information like as corner, point,
Moiré pattern and etc. The research of Lagrange detector opens an new window
for low level image processing, and will be used as the basis for further studies
on image processing.
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1 Introduction

Edge detection is a first-step operation used in image processing and computer vision
applications, resulting in significantly reducing the amount of data, filtering out useless
information and preserving the important structural properties in an image. Edge detec‐
tion refers to the process of identifying and locating sharp discontinuities in an image.
The discontinuities are obviously changes in pixel intensity which characterize boun‐
daries of objects in a scene.

This field possesses many mathematical models, including Sobel operator, Roberts
operator, Prewitt operator, Laplace operator, LoG detector [1], Canny detector [2] and
etc. [3]. These operators are based on first-order derivative or second-order derivative.
The methods based on first-order derivative detect edges by first computing a measure
of edge strength, usually first-order derivative expression such as the gradient magni‐
tude, and then searching for local directional maxima of the gradient magnitude using
a computed estimate of the local orientation of the edge, usually the gradient direction.
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The methods based on second-order derivative detect edges by searching for zero cross‐
ings in a second-order derivative expression, usually the zero-crossings of the Laplace
operator or the zero-crossings of a non-linear differential expression.

Many methods and techniques have been developed based on these mathematical
theories. Data driven methods is the newly and hottest studies, by learning the possibility
distributions of features, including methods based on CNN [4]. However, to the best of
our knowledge, there is less mathematical work has been proposed beyond the first- and
the second-order derivative operator for edge detection in the past decays.

We propose a mathematical theory called Lagrange detector, which is the Lagrange
form of the remainder of Taylor’s theorem. Polynomial interpolation theory provides
basis for the calculation of Lagrange reminder. Lagrange detector identifies the high-
order components in images, charactering, extracting and processing points that present
edges or curves.

2 Related Work

2.1 Edge Detection

Edge detection aims at capturing boundaries and curves by detecting sharp changes in
image brightness. All of mathematical operators detecting edge are based on first-order
derivative or second-order derivative. Essentially we need to get the extremum value of
brightness variations that is the first-order derivative. The methods based on calculating
the second-order derivative are just to get the extremum point of first-order derivative
[3] (Fig. 1).

2.2 First-Order Methods

The methods based on first-order derivative include Sobel operator, Roberts operator,
Prewitt operator and Canny detector. One of them Sobel operator has concise mathe‐
matical expressions and Canny detector uses Sobel operator as pretreatment. So we
mainly explore the mathematical theory of Sobel operator [3].

Sobel operator has clear and definite mathematical expressions. Sobel operator is
defined as

Sx,y =

√
d2

x
+ d2

y (1)

where dx is the gradient in x, dy is the gradient in y.
Practically we use two 3 × 3 matrices to calculate the differences Δx,Δy as approx‐

imate the values of dx, dy. We have that

Δx =

⎛⎜⎜⎝
−1 0 +1
−2 0 +2
−1 0 +1

⎞⎟⎟⎠ × A (2)
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Δy =

⎛⎜⎜⎝
+1 +2 +1
0 0 0
−1 −2 −1

⎞⎟⎟⎠ × A (3)

where A is the data matrix of the image. While the gradient orientation can be estimated
as

𝜃 = tan−1 (Δy

/
Δx

)
(4)

2.3 Second-Order Methods

The methods based on second-order derivative include Laplace operator and LoG
detector. Laplace operator also has clear and definite mathematical expressions [3]. LoG
detector combines Laplace operator and Gaussian filter [1].

Laplace operator is defined as

∇2f (x, y) =
𝜕

2f

𝜕x2 +
𝜕

2f

𝜕y2 (5)

We also use a 3 × 3 matrix to calculate the second-order difference as the value of
∇2f (x, y). So we have

(a)

(b)

(c)

Fig. 1. The figure indicates that the mathematical model of edges. (a) The black curve: the
function of the original signal; (b) the blue curve: the first-order derivative of the signal; (c) the
red curve: the second-order derivative of the signal. The green cross-shaped mark is the point that
edge operators detect, of which the first-order derivative takes the extremum value and the second-
order derivative crosses over zero. (Color figure online)
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∇2f ≈

⎛⎜⎜⎝
0 +1 0
+1 −4 +1
0 +1 0

⎞⎟⎟⎠ × A (6)

where A is the data matrix of the image.

3 Lagrange Detector

Lagrange detector is the Lagrange form of the remainder of Taylor’s theorem. The
reminder can be calculated via the difference between the polynomial interpolation and
the true value. For polynomial interpolation, Lagrange Polynomial is

Ln(x) =
∑n

k=0
f (xk)lk(x) (7)

where lk(x) =
n∏

j=0,j≠k

x − xj

xk − xj

(k = 0, 1, 2, … , n), given 
(
xi, f (xi)

)
 (i = 0, 1, 2,… , n). The

Lagrange remainder is

Rn(x) = f (x) − Ln(x) =
f (n+1)(𝜖)

(n + 1)!
∏n

i=0
(x − xi) (8)

where ∀x ∈ (a, b), f (n+1)(x)exists,∃𝜖 ∈ (a, b)makes the formula (8) be workable [5–7].
We have proved that Rn has obviously positive correlation with signal frequency. So we
are able to use Rn to characterize and extract the high-frequency components. After
attaining the high-frequency data, we can do the works well about detecting edge, corner,
point, Moiré pattern [8] and etc.

3.1 1D Signal

From Taylor’s Formula, a 1-dimension signal S(t) can be decomposed into a set of
polynomial expressions:

S(t) =
∑+∞

n=0

S(n)
(t0)

n!
⋅ (t − t0)

n (9)

with S(n)
(t0) is the n-order derivative of S(t) in t = t0 and S(n)

(t0) exists. The Lagrange
remainder during Lagrange polynomial interpolation is

Rn(t) =
S(n+1)

(𝜖)

(n + 1)!
∏n

i=0
(t − ti) (10)

In t ∈ 𝐑 and 𝜖 ∈ (min
(
t, t0,… , tn

)
, max

(
t, t0,… , tn

)
), the n + 1-order derivative of

S(t) exists. When n = 1, the remainder is
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R1(t) =
S(2)

(𝜖)

2
(t − t0)(t − t1) (11)

We take three adjacent points as subject investigated. By linear interpolation with
points on side, we get the valuation of the middle point. Figure 2 indicates that errors
are significantly different between edges and smooth parts. The truncation error δ:

𝛿 = ||R1(t)
|| = ||||

S′′
(𝜖)

2
(t − t0)(t − t1)

|||| (12)

(a) (b) (c)

Fig. 2. The figure indicates that the mathematical model of Lagrange detector. The polynomial
curves pass through three adjacent points. The black circles mean the value of the middle point
that is got by linear interpolation with points on side. (a) and (b) indicate the deviation is large,
corresponding to edges; (c) the deviation is tiny, corresponding to smooth parts. (Color figure
online)

We take the difference between true value and interpolation value as

diff = ||Smid,n=1 − Smid
|| (13)

We can use diff  to detect edges and curves. The method is the formula (13).

3.2 Experiment on 1D Signals

Exp.01: We take sin(2𝜋𝜔t) as source signal and 𝜔s = 100.0 as sampling rate. In an
interval ω ∈ [1, 9], we calculate 𝛿 by the formula (13) and get the relationship curves of
𝛿 and ω. The results follow as Fig. 3. When 𝜔 is larger, the feature of edges is more
obvious.
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Fig. 3. The figure indicates the relationship curves of 𝛿 and ω, that is the relationship of diff and
edges. (a) source signals; (b) the relationship curves of 𝛿 and ω. Using linear interpolation and (13),
we get 𝛿. (Color figure online)

3.3 Experiments on 2D Signals

Exp. 02: Use a Gabor filter [9] to get the source image that is Fig. 4(a). After processing
this image by l = 1 Lagrange detector, we get the result Fig. 4(b). To give firm analyses,
we calculate 𝛿 that is the average of diff

𝟐D. Figure 4(b) indicates the relation of 𝛿 and
the frequency. The results indicate that our approach is an isotropy detector.
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Fig. 4. The figure indicates the results of processing images via Gabor filter. (a) a matrix of the
source images; (b) a matrix of the results in which top-to-bottom the column correspond to 0, π⁄
4, π⁄2, 3π⁄4 on phase.

diff
𝟐D =

|||I′

l
− I

|||(l = 0, 1,… , N) (14)

Figure 4(b) indicates Lagrange detector has the feature of isotropy on capturing
edges, so we can just take one direction to contrast results of using Sobel operator,
Laplace operator and Lagrange detector to process these images. Follow as Fig. 5:
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Fig. 5. Figures (1), (2), (3) and (4) are source images of which frequencies increase successively,
that means the features of these patterns change from smooth to sharp. Figures (5), (6), (7) and
(8) are the results by Sobel operator; for based on first-order derivative, operation region is two
adjacent points, Sobel operator is sensitive on both smooth components and edges. Figures (9),
(10), (11) and (12) are the results by Laplace operator of which processing on three adjacent points
to calculate second-order derivative, resulting in losing some important information. Figures (13),
(14), (15) and (16) are the results by Lagrange detector. From formula (12), Lagrange detector
combines first-order derivative and second-order derivative. As a result, Lagrange detector can
filter smooth components to some extent and capture as much edge information that change
sharply as possible.
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4 Lagrange Detector Processes Images to Capture Edges

4.1 Approach Description

After above all the analyses and experiments, we have the approach (Fig. 6):

(1) (2) (3) (4)

Fig. 6. The figure is the flow chart of Lagrange detector. (1) Get the gray image or RGB single
channel from the source image, and use Gaussian filter to depress the noise; (2) take 1-order
Lagrange interpolation at four directions 0, 𝜋∕4, 𝜋∕2, 3𝜋∕4; (3) then get the sum of their absolute
values and remove weak points by taking a threshold; (4) search edges at directions 0, 𝜋∕4, 𝜋∕2,
3𝜋∕4, to remove short and tiny curves or points. (Color figure online)

(a)

(b)

(c)

(d)

Fig. 7. These figures are test results of Canny detector, LoG detector and Lagrange detector. (a)
source images; (b) results of using Canny detector; (c) results of using LoG detector; (d) results
of Lagrange detector. (Color figure online)
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4.2 Experimental Results

We perform some tests for making comparison between different edge detectors and
Lagrange detector on the images, of which from left to right 1 is from MCM dataset [10],
2 is from Kodak dataset [11], 3 is from Sandwich dataset [12], 4 is from McGill dataset
[13] and 5 is standard Lena image. The results are Fig. 7. Canny detector and LoG
detector have been developed for many years, improved by researchers and developer
for lots of times. So they perform well in presenting edges by curves, which means their
strategies at processing the data from Sobel operator or Laplace operator. To a certain
extent, Lagrange detector performs well in both outlines and tiny details.

5 Lagrange Detector Analysis and Conclusion

We propose a novel mathematical theory named Lagrange detector for edge detection.
Based on Lagrange polynomial interpolation theory, this detector takes Lagrange
remainder as an operator. The formulas (12) and (13) are the mathematical basis of
detecting edges. By combining the first-order derivative and the second-order derivative,
Lagrange detector can filter smooth components to some extent and capture as much
edge information that change sharply as possible.

Like as Sobel operator and Laplace operator, Lagrange detector also has solid and
definite mathematical expression shown in formula (2). While used to detect edge,
Lagrange detector can presented as formula (12). At this case, the expression of
Lagrange detector is equivalent to the truncation error S′′

(𝜖), which is the second-order
derivation of neighborhood. Lagrange detector includes the characteristics of the first-
order derivative and the second-order derivative. The distinction between traditional
edge detection operators and Lagrange detector is that the traditional operators aim at
get the extremum value of brightness variations that is the first-order derivative, but
Lagrange detector uses Lagrange remainder to combine the first-order derivation and
the first- and second-order derivative of neighborhood by multiplication. By calculating
the truncation error of polynomial interpolation, we can estimate Lagrange remainder.
Lagrange detector performs well in detecting both outlines and tiny details.

Lagrange detector provides a new theoretical approach for edge detection, which
open a new window for low level image processing, and will be used as the basis for
further studies on image processing.
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