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Abstract. In this paper, we propose an Adaptive Coding based Compressed
Video Sensing (ACCS) scheme for Distributed Video Coding. Our scheme
mimics the traditional video coding method and performs the mode decision
both at the encoder and the decoder. At the encoder, the ACCS divides the frame
blocks into three categories: the SKIP mode, INTER mode and COMBINED
mode according to the residual of the blocks, and the adaptive sampling rate is
chosen for these modes. At the decoder, we adopt different decoding methods
for different modes. For the COMBINED mode, we apply adaptive decoding
scheme by exploiting the intra-frame and inter-frame sparsity. Experimental
results show that the proposed algorithm outperforms existing state-of-the-art
video CS approaches at a very low sampling rate.

Keywords: Compressed sensing � Distributed video coding
Adaptive measurements � Sparse representations

1 Introduction

The resolution of today’s video is much higher than before, and it brings huge chal-
lenges to the limited network. What’s more, the attractive 3D videos have increasingly
come into the public sight, which give people even better quality of experience. How to
capture and compress the videos becomes a big problem. High Efficiency Video coding
(HEVC) [1], as the latest video coding scheme, has a very high compression efficiency
by exploiting the spatial and temporal structure for the video sequences, but it is not
suited for the inexpensive video recording devices such as cellphones, wireless video
cameras, which have limited computing capability and battery capacity.

Compressed sensing (CS) [2], as a novel signal processing theory, can acquire a
signal at a sampling rate much lower than Nyquist rate via linear projection onto a
random basis, and the original signal can be reconstructed through optimization method
with high probability from some random measurements under certain conditions.

Given a signal x 2 RN with length N, it can be called K -sparse in a domain W
when K entries in its transform coefficients h¼WTx are nonzero, and W is an
orthonormal basis here. CS attempts to reconstruct the K -sparse signal vector from a
relatively small number of samples with linear projection y¼Ux, and the size of U is
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M by N. The dimension of measurement vector y is M, and the values of the nonzero
coefficients can be well recovered if M � N.

In CS, instead of encoding all the coefficients of a signal, we only encode the M
measurements and the reconstruction problem can be solved with the following l0
minimization method

min Wxk k0; s:t: y¼Ux ð1Þ

where xk k0 is a pseudo-norm (l0-norm), which equals the number of nonzero elements
in vector x. Minimizing the number of nonzero entries is difficult. Instead, the opti-
mization problem can be solved with l1 minimization method

min Wxk k1; s:t: y¼Ux ð2Þ

This is a convex optimization problem and can be solved easily via subspace
pursuit [3] or CVX toolbox [4] and so on.

CS has a great potential in image and video applications for its low complexity and
low power consumption. In CS based image compression techniques, an image is
divided into n small blocks, then each one is rearranged into a vector x. Next, the vector
is sampled with the measurement matrix U. Finally, the original image can be
reconstructed by many state-of-the-art algorithms such as BCS-SPL [5], SGSR [6],
GSR [7] and so on.

As for the application of CS to video compression [8–12], the sparsity between the
successive frames with the classic transform domain (e.g. DWT, DCT) is exploited
based on the adjacent frames’ correlation in video sequences. In [8], authors proposed a
reconstruction model based on the idea that the total variation (TV) norm of the
residual between the frame and its prediction, TV norm of the frame, l0-norm of the
frame in a certain transform domain are all very small. The similar idea appeared again
in [9] which introduced the forward and the backward motion-compensated residuals.
The support (location of large valued entries) is estimated based on the idea that the
large valued entries belonging to the adjacent frames are located in almost the same
place [10]. A hierarchical frame structure was proposed to exploit the correlation
between the current frames and the reference frames in [11].

Unlike above methods, Distributed Compressed Video Sensing (DISCOS) frame-
work is introduced in [13], which present the idea that the sparsest representation of a
block is a linear combination of a few temporal neighboring blocks of previous
reconstructed frames or nearby key frames. The same method also can be found in [14].
However, if the blocks are non-rigid objects (dancer in Fig. 1) whose shapes change a
lot. And their sparsest representation is not a linear combination of a few temporal
neighboring blocks, which means that it is unable to be well recovered even at a very
high sampling rate by using DISCOS algorithm. As the result illustrated in Fig. 1, most
of the regions in the frame are decoded perfectly, except for the dander in the back-
ground. Because the regions near the dancer change a lot and cannot be represented by
the reference ones no matter how high the sampling rate is. So these blocks should be
recovered by the image CS algorithms (INTRA). Moreover in [14, 15], a feedback
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channel was used to allocate the different measurement rates to each block at the
encoder. Although it improved the image quality, it may lower the efficiency of the
encoder.

Traditional video coding techniques, as we all know, can achieve high compression
ratio by making complicated mode decision in the encoder. And can we perform the
mode decision both in the encoder and decoder in the framework of CS? Therefore, we
propose a new CS based video coding framework based on mode decision in this
paper. We employ different measurement rates for different block modes at the encoder,
and perform mode decisions at the decoder side.

The paper is organized as follows. Section 2 proposes CS video scheme based on
adaptive coding. Experimental results are given in Sect. 3, and we conclude this paper
in Sect. 4.

2 Adaptive Coding Based on Video CS

Motivated by the above analysis, we propose the adaptive coding for compressed video
sensing scheme (ACCS). The architecture of our proposed ACCS framework is
depicted in Fig. 2, and we will show the details in the next subsections.

2.1 Adaptive CS Video Encoder

At the encoder, firstly, video sequences are divided into group of pictures (GOP), and
each GOP contains two categories: key frames (K-frames) and non-key frames (CS
frames), as shown in Fig. 3 (K stands for key frames, and CS stands for non-key
frames). Be different from [14], the K-frames and CS-frames in the paper are both
coded using CS principles. K-frames are sampled at a high sampling rate, while
CS-frames are sampled at adaptive sampling rate.

Origin DISCOS

Fig. 1. The performance of DISCOS (the 5th frame and the sampling rate is 0.08)

Adaptive Coding for Compressed Video Sensing 199



In this paper, we propose an adaptive sampling method for CS-frames by con-
sidering different characteristics of blocks in a frame. Firstly, we classify the blocks
into three kinds of mode: SKIP, COMBINED and INTER based on the l1 -norm of the
residual between the current frame and the reference ones. If the residual is very small,
which means the block changes very little with the co-located blocks in the reference
frames, we only transmit a flag indicating the SKIP mode, which does not need any
measurements so the sampling rate here is zero. If a block has very large change with
respect to its co-located block, we will assign the COMBINED mode to it, which needs
a high sampling rate and would be decoded both by INTRA and INTER. While the
remainder blocks with minor change will take a small sampling rate, we refer to this
coding mode as INTER mode, which decoded by INTER. The decoder schemes for
three modes (SKIP, INTRA, INTER) will be explained in the next section. Figure 4
shows three kinds of mode of blocks in image, which is marked by different colors. The
dark-red blocks show the COMBINED blocks, the light-red ones choose the INTER
mode, and the rest blocks select the SKIP mode. The above description can be rep-
resented as follows

MODE ¼
SKIP; difference\ threshold1

COMBINED; threshold1\ difference\ threshold2
INTER; difference [ threshold1

8
<

:
ð3Þ

Block based measurement

Input Video

Key-frames

CS-frames

GSR

INTER

INTRA/INTER

SKIP

Dictionary Output Video

Encoder Decoder

INTER

COMBINED

SKIP

Fig. 2. Block diagram of the proposed CS scheme.

K CS CS CS CS K...

Fig. 3. GOP structure. Every CS-frame is recovered with two K-frames.
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where difference means the l0 -norm of the difference between the blocks in current
frame and the references. thresholds1 and threshold2 are thresholds, respectively,
which are set by experimental results.

2.2 Adaptive CS Video Decoder

At decoder, we decode the K-frame by GSR, which can achieve the excellent per-
formance in CS without using the information of the reference frames. For CS-frames,
there are three kinds of blocks, and each of them will adopt different decoding schemes.
The SKIP blocks can be decoded by copying the co-located block in the reference
frames. The INTER blocks can be decoded by solving Eq. (2), whose redundant
dictionary comes from the blocks near the co-located blocks in previously recon-
structed frames. COMBINED blocks, which are the most complicated blocks, will
perform the mode decision at the decoder. It recovered both by GSR (INTRA) and
Eq. (2) (INTER). INTER blocks can be represented by the redundant dictionary
sparsely, which is suitable for the blocks with complex local details but simple motion,
while GSR cannot reconstruct the details finely at a low sampling rate, although it is a
state-of-the-art scheme. As the blocks with complicated motion cannot be represented
by the reference ones no matter how high the sampling rate is, they should be recovered
by GSR. Then, we will decide which recovered block to be chosen by comparing the
residual of the measurements based on the idea that the residual between the original
(x) and the prediction (x̂) is proportion to the residual of the measurements, as shown in
(4). When the residual between the original measurements and the recovered mea-
surements (by INTER) is smaller than the residual between the original and the
recovered (by INTRA), we will choose block recovered by INTER and vice versa.

y� ŷ¼Uðx� x̂Þ ð4Þ

3 Experiment Results and Analysis

To evaluate the performance of our proposed scheme, several CIF video sequences are
used: news, foreman, football, hall, coastguard, mobile, which represent for small,
moderation and large movement videos. In our experiments, the CS measurements are

Fig. 4. The mode decision: (a) foreman (b) news.
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obtained by using random matrix with Gaussian i.i.d entries at the block level, and the
size of block (BS) is set to 32 * 32. threshold1 and threshold2 determine the coding
modes for blocks. In order to determine the threshold1 and threshold2, we design a lot
of experiments as follows. Firstly, we do not use the threshold2, and let the threshold1
vary from 0.05 * BS * BS to 5 * BS * BS. We can find from Fig. 5 that the PSNR is
high when threshold1\3, and we choose threshold1¼ 2 � BS � BS by considering
all sequences. Secondly, in order to determine threshold2, we set the threshold1 to
2 * BS * BS and threshold2 varies from 1 * BS * BS to 10 * BS * BS. As shown in
Fig. 6, we choose threshold2¼ 8 � BS � BS by considering all sequences. In order to
improve the compression ratio, the GOP size is set to 8, the first frame and the eighth
frame are K-frames and others are CS-frames, as shown in Fig. 3. We assumed
K-frames are losslessly available at the decoder in our experiments, as used in [14]. The
high sampling rate (used in COMBINED mode) is five times the low one (used in
INTER mode). We compare our proposed algorithm with two state-of-the-art image/
video CS methods including GSR [7] and DISCOS [13]. GSR is an excellent still-
image CS approach but smooths the details of the image. DISCOS makes full use of the
inter-frame sparsity but it will introduce the blocking artifacts. Coding efficiency is
measured using PSNR and sampling rate.
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Fig. 5. Recovery performance changes with threshold1 in different sequences: (a) coastguard
(b) football.
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Fig. 6. Recovery performance changes with threshold2 in different sequences: (a) coastguard
(b) football.
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Figure 8 shows the rate-distortion curves of the proposed and the other approaches
of all the test sequences. We can see that the rate-distortion performance of our approach
is superior to GSR and DISCOS in most cases. Especially, for news and hall sequences
with non-rigid objects, the proposed method achieves better coding performance
compared to other two methods. For football sequence with large/complicated move-
ment, our scheme will choose the INTRA mode in most cases, so the performance is
similar to GSR. For Mobile sequence with large movement, different to football
sequence, DISCOS achieves the best performance when the sampling rate is very low.
This is due to the fact that mobile sequence has large motion but little shape-changing.
Our scheme may choose the wrong encoding mode when the sampling rate is very low.
However with the increase of sampling rate, our method achieves better performance
than DISCOS. Besides, PSNR gain for DISCOS is less with the sampling rate increased
[14]. Because the blocks have simple motion can be recovered perfectly even at a very
low sampling rate, while the blocks have complicated motion which are not sparse in
redundant dictionary cannot be reconstructed well.

Figure 7 shows the visual quality comparison for the foreman and news at the
average rate about 0.04 (the actual sampling rates of our proposed scheme are 0.044
and 0.043 in foreman and news respectively) and for football at the sampling rate about
0.2. From Fig. 7, we can see that the proposed algorithm provides better visual quality
than others. Table 1 provides the corresponding average execution time of various
algorithms for reconstructing a frame in different sequences. These data are obtained
using Matlab on a computer with Intel i5-3230, 2.6G CPU and 4 GB memory. From
Table 1, we can see that the complexity of the proposed algorithm can be the medium
one in most cases. Therefore, the proposed method provides a good tradeoff between
visual quality and complexity.

Fig. 7. Visual quality comparison with different algorithm for sequences (the 5th frame):
(a) origin, (b) DISCOS [13], (c) GSR [7], (d) Proposed.
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4 Conclusion

In this paper, a new ACCS method has been proposed, which makes full use of the
intra-frame and inter-frame sparsity. Our algorithm also exploits the fact that when the
sequences have large or non-rigid motion, the sparsest representation of a block in
video sequences is not a linear combination of a few temporal neighboring blocks that
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Fig. 8. Recovery performance comparison with different algorithms: (a) news, (b) foreman,
(c) football, (d) hall, (e) coastguard, (f) mobile.

Table 1. Reconstruction time in minutes.

Foreman (0.04) News (0.04) Football (0.2)

DISCOS 0.4 0.4 0.6
GSR 92.1 102.8 105.0
Proposed 13.3 3.0 42.5
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are in nearby key frames. Experimental results show that the proposed algorithm can
achieve excellent performance even at a very low sampling rate, and outperforms
existing state-of-the-art image/video CS approaches.
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