Correction to: Modern Digital Radio Communication Signals and Systems

Correction to:

S. -M. M. Yang, Modern Digital Radio Communication Signals and Systems, https://doi.org/10.1007/978-3-319-71568-1

This book was inadvertently published without updating the following corrections:

Cover:

Spine- Michael Yang corrected to Yang

Chapter 2:

Page 40:
\>0 corrected to >0
\<0 corrected to <0
This is shown in the figure (LHS) corrected to This is shown in the figure below.

[^0]$\operatorname{Pr}\{r(k)|A(k)=+1 d|\}$ corrected to $\operatorname{Pr}\{r(k) \mid A(k)=+1 d\}$
$\operatorname{Pr}\{r(k)|A(k)=+1 d|\}$ corrected to $\operatorname{Pr}\{r(k) \mid A(k)=-1 d\}$

Page 42:

For to two possible errors, see Fig. 2.13. corrected to Two possible errors; see Fig. 2.13.

Page 43:

\>0 corrected to >0

Page 45:

This is illustrated by the figure on LHS. corrected to This is illustrated by the figure above.

Page 46:

(Table 2.1) reference has been removed

Page 48:

$\frac{d}{\sigma}=\sqrt{\frac{\frac{E_{s}}{T}}{\frac{N_{0}}{2} B}} \frac{3}{M^{2}-1}=\sqrt{\frac{3}{M^{2}-1}\left(2 \frac{E_{s}}{N_{\mathrm{o}}}\right)}$ corrected to $\frac{d}{\sigma}=\sqrt{\frac{\frac{E_{s}}{T}}{\frac{N_{0}}{2} B} \frac{3}{M^{2}-1}}=\sqrt{\frac{3}{M^{2}-1}\left(2 \frac{E_{s}}{N_{\mathrm{o}}}\right)}$
for M-PAM (Fig. 2.19) has been corrected to for M-PAM (Fig. 2.19), insert (Fig. 2.19) as .. Note that the above expression of SER (Fig. 2.19) is the same as BPSK.

Page 58:

$\frac{1}{\pi} \int_{0}^{\pi-\frac{\pi}{M} \exp \left(-\frac{\frac{E_{s}}{N_{o}} \sin ^{2} \frac{\pi}{M}}{\sin ^{2} \theta}\right) d \theta}$ corrected to $\frac{1}{\pi} \int_{0}^{\pi-\frac{\pi}{M}} \exp \left(-\frac{\frac{E_{s}}{N_{o}} \sin ^{2} \frac{\pi}{M}}{\sin ^{2} \theta}\right) d \theta$

Page 59:

as shown in the LHS figure is corrected to as shown in the figure above

Page 68:

Fig. 2.20, 2.21, 2.22, 2.23 reference has been removed
$2^{\mathrm{L}}>-1$ has been corrected $2^{\mathrm{L}}-1$
modulo- 2π is corrected to modulo 2π

Page 84:

Fig. 2.51 reference has been corrected to Fig. 2-52

Page 85:

Fig. 2.52 has been removed

Page 91:

In Fig. 2.59
$\theta(t)=2 \pi \times\left[\frac{h}{2} \times \sum_{n=-\infty}^{\infty} a_{n} q(t-n T)\right]+\theta_{0}$
Is corrected to
In Fig. 2.59
$\theta(t)=2 \pi\left[\frac{h}{2} \sum_{n=-\infty}^{\infty} a_{n} q(t-n T)\right]+\theta_{0}$

Page 95:

Fig. 2.65 reference is corrected to Fig. 2.66

Page 102:

$E\{x(t) x(t+\tau)\}=\sum_{n=-\infty}^{n=+\infty} \sum_{k=-\infty}^{k=+\infty} E\left\{a_{n} a^{n}{ }_{k}\right\} h(t-n T) h(t+\tau-k T)$
Is corrected to
$E\{x(t) x(t+\tau)\}=\sum_{n=-\infty}^{n=+\infty} \sum_{k=-\infty}^{k=+\infty} E\left\{a_{n} a_{k}\right\} h(t-n T) h(t+\tau-k T)$.

Page 103:

References of table Table 1.1 in Sect 1.2 is corrected to Table 9.1 in Sect. 9.1.2

Page 111:

. . .symbol mapping table and a function of addition. . . has been corrected to symbol mapping table and a function of additional...

Page 112:

CPSKs is corrected to CPFSKs

Page 112:

pp. 143-145 has been removed from reference [2]

Chapter 3:

Page 117:

Footnote " ${ }^{2}$ We assume $g_{X}(t)$ to be real. When it is complex the matched filter is in general $g_{X}^{*}(-t)$. In other words, time reversal and conjugation of $g_{X}(t)$ will be a matched filter. Unless otherwise stated, we consider only a real impulse response. When $h(t)$ is real, $h(-t)=h^{*}(-t)$." has been added

Page 118:

impulse had a pair as $g_{X}^{*}(-t) \leftrightarrow G_{X}{ }^{*} X(f)$; its frequency is corrected to impulse had a pair as $g_{X}^{*}(-t) \leftrightarrow G_{X}^{*}(f)$; its frequency

Page 122:

so the transmission power to be unified; $P s=1.0$. Is corrected to so the transmission power to be unity; $P s=1.0$.

Page 125:

illustratedin the figure below (Fig. 3.9). Is corrected to can be graphically illustrated in Fig. 3.9.
$\frac{N o}{2}=\int_{-\infty}^{\infty}\left|G_{R}(f)\right|^{2} d f$ is corrected to $\frac{N o}{2} \int_{-\infty}^{\infty}\left|G_{R}(f)\right|^{2} d f$

Page 136:

This basic configuration in Fig. 3.13 can be adjusted to a situation is corrected to This basic configuration in Fig. 3.12 can be adjusted to a situation.

Page 137:

The configuration in Fig. 3.13 can be made into a pair of standard components is corrected to The configuration in Fig. 3.12 can be made into a pair of standard components

Page 138:

a shape parameter, k, as shown in the above figure (RHS); is corrected to a shape parameter, k, as shown in Fig. 3.14 (RHS);

Page 139:

This LPF design tolerance spec is shown in Fig. 3.16 (LHS) above. Is corrected to This LPF design tolerance spec is shown in Fig. 3.16 (LHS).

Page 149:

With the approximation, we obtain $r(n) \cong a(n) h_{0}+a(n-1) \bar{h}_{1}+w(n)$ is corrected to With the approximation, we obtain $r(n) \cong a(n) h_{0}+a(n-1) h_{1}+w(n)$

Chapter 4:

Page 214:
Mobile fading channel model has been added

Chapter 5

Page 228:
where $\quad D^{(m+\varepsilon)}(p T)=\sum_{l=0}^{N-1} C_{l}(p T) e^{\frac{2 \pi \pi l(m+e)}{N}} \quad$ is corrected to where
$\hat{D}^{(m+\varepsilon)}(p T)=\sum_{l=0}^{N-1} C_{l}(p T) e^{\frac{j \pi(l(m+\varepsilon)}{N}}$.

Page 230:

OFDM symbol boundary discussed in 5.4 above is corrected to OFDM symbol boundary discussed in 5.1.4 above

Page 238:

it is natural to implement 'windowing' a filter is corrected to it is natural to implement a 'windowing' filter.

Page 239:

OFDM symbol boundary can be recovered by correlation discussed in 5.4. is corrected to OFDM symbol boundary can be recovered by correlation discussed in 5.1.4.

Page 276:

Reference of (Fig. 5.52) has been removed

Chapter 6

Page 280:

then if $\sum_{i}\left[y_{i}\right] \& g t ;=0,+1$ is decided otherwise corrected to then if $\sum_{i}\left[y_{i}\right] \geq 0,+1$ is decided otherwise

Page 281:

The performance of $n=3$ repetition code performance with SD and HD is corrected to The performance of $\mathrm{n}=3$ repetition code with SD and HD

Page 298:

Again the event u_{j} is defined as c_{0} and is mistaken as $\mathrm{c}_{\mathrm{j}} ; u_{\mathrm{j}}: \mathrm{c}_{0} \rightarrow \mathrm{c}_{\mathrm{j}}$ with $j \neq 0$. Is corrected to Again the event u_{j} is defined as c_{0} is mistaken as $\mathrm{c}_{\mathrm{j}} ; u_{\mathrm{j}}: \mathrm{c}_{0} \rightarrow \mathrm{c}_{\mathrm{j}}$ with $j \neq 0$.

Page 299:

we define the event of u_{j} is defined as c_{0} and is mistaken as c_{j}, is corrected to the event of $u_{\mathbf{j}}$ is defined as c_{0} is mistaken as c_{j},

Page 302:

With the integration region; $R: 1+\mathrm{n}_{1}+1+\mathrm{n}_{3} \& \mathrm{lt} ; 0$ and is corrected to With the integration region; $R: 1+\mathrm{n}_{1}+1+\mathrm{n}_{3}<0$ and
$1+\mathrm{n}_{1}+1+\mathrm{n}_{3} \& \mathrm{lt} ; 0$ and $1+\mathrm{n}_{1}+1+\mathrm{n}_{2} \& \mathrm{lt} ; 0$ and $1+\mathrm{n}_{2}+1+\mathrm{n}_{3}<0$, is corrected to $1+\mathrm{n}_{1}+1$ $+\mathrm{n}_{3}<0$ and $1+\mathrm{n}_{1}+1+\mathrm{n}_{2}<0$ and $1+\mathrm{n}_{2}+1+\mathrm{n}_{3}<0$,

Page 305:

$\ldots+u_{\mathrm{k}-1} \mathrm{X}^{k--1} \mathrm{~g}(\mathrm{X}) \quad$ (6.25) is corrected to $\ldots+u_{\mathrm{k}-1} \mathrm{X}^{k-1} \mathrm{~g}(\mathrm{X})$

Page 314:

Reference of (Fig. 6.14) has been removed

Page 321:

Reference of (Fig. 6.15) has been removed
Decoding process in summary: is updated to Decoding process in summary (Fig. 6.15)

Page 330:
$D_{\text {free }}$ is defined as $d_{\text {free }} \equiv \min$ is corrected to $d_{\text {free }}$ is defined as $d_{\text {free }} \equiv \min$

Page 336:

As we discussed in Sect. 2.3, is corrected to As we discussed in Sect. 6.2.3
This was discussed in Sect. 3.1.2 using a transfer function. Is corrected to This was discussed in Sect. 6.3.1.2 using a transfer function.

Page 338:

and then use CM decoding discussed in Sect. 2.3.1. Is corrected to and then use CM decoding discussed in Sect. 6.2.3.1.

Page 352:

In particular we look at Fig. 6.35 is corrected to In particular we look at Fig. 6.1 Reference of (Table. 6.16) has been removed
$\{10,10,10,10,11,01,01,11,00\}$ and red bits in error. Is corrected to $\{10,10,10$, $10,11,01,01,11,00\}$ and red bits in error (see Tables 6.16, 6.17 and 6.18)

Page 357:

Reference of (Table. 6.18). has been removed
Reference of (Table. 6.19). has been removed

Page 371:

Sub section references (4.3.1, 4.3.2, and 4.3.3), has been corrected to (6.4.3.1, 6.4.3.2, and 6.4.3.3),

Page 381:

Theorem 6.1 in Subsection 4.4.2 later is corrected to Theorem 6.1 in Subsection 6.4.5.2 later

Page 387:

connection. Code side $=(\mathrm{n}, \mathrm{k})=(1944,972)$ is corrected to connection. Code size $=(\mathrm{n}, \mathrm{k})=(1944,972)$

Page 390:

Reference of Sect. 3.3 is corrected to Sect. 6.3.3

Page 395:

Sub section references 3.3.4 has been corrected to 6.3.3.4
$p_{0}=1 /\left(1+\mathrm{e}^{-2 r / \sigma^{2}}\right) p_{1}=1 /\left(1+\mathrm{e}^{+2 r / \sigma^{2}}\right) \frac{1}{\sigma}=\sqrt{\frac{2 E \mathrm{~s}}{N \mathrm{o}}} \quad$ is corrected to
$p_{0}=1 /\left(1+\mathrm{e}^{-2 r / \sigma^{2}}\right), p_{1}=1 /\left(1+\mathrm{e}^{+2 r / \sigma^{2}}\right), \frac{1}{\sigma}=\sqrt{\frac{2 E \mathrm{~s}}{N_{\mathrm{o}}}}$

Page 396:

Reference of Fig. 6.58 has been removed

Page 398:

Reference of Sect. 5.4 is corrected to Sect. 6.5.4

Page 400:

Reference of Sect. 5.4 is corrected to Sect. 6.5.4
+0.5 (if $|\mathrm{x}-\mathrm{y}| 1.5$) is corrected to +0.5 (if $|\mathrm{x}-\mathrm{y}| \leq 1.5$)

Page 438:

Section 6.6.3 and 6.6.9 is corrected to Section 6.6.3 and 6.6.5

Chapter 7:

Page 449:

Reference of Sect. 1.4 is corrected to Sect. 7.1.4.3

Page 450:

IEEE std 802.11^{TM} is corrected to IEEE std $802.11^{\mathrm{TM}}-2012$

Page 464:

Reference Sects. 1.2.1, 1.2.2, and 1.2.3. has been corrected sections 7.1.2.1 to 7.1.2.3.

Chapter 8:
 Page 531:
 $\mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{C} \rightarrow \mathrm{B}$ is corrected to $\underline{\mathrm{E}} \rightarrow \underline{\mathrm{D}} \rightarrow \underline{\mathrm{C}} \rightarrow \underline{\mathrm{B}}$

Page 533:

and cleaning channel occupancy is corrected to and clean channel occupancy

Page 534:

as in Fig. 8.2 and in Fig. 8.5. In particular is changed to as in Fig. 8.2 and in Fig. 8.4. In particular,

Page 534 and 536:

Reference of Fig. 8.4 has been corrected to Fig. 8.5

Page 545:

Reference of Fig. 8.3 has been corrected to Fig. 8.2

Page 546:

Figure 8.6 is updated as Fig. 8.6

Page 548:

b) Digital IF quadrature modulation and upper sideband selection

is corrected to
b) Digital IF quadrature modulation and upper sideband selection

Spectrum of $\mid a_{d}+j b_{d}$

Page 559:

$y(0), y(3), y(4), y(5)$. Is corrected to $y(0), y(1), y(2), y(3)$.
Reference of Fig. 8.36 has been removed

Page 566:

Reference of Fig. 8.19 and 8.20 is corrected to Fig. 8.17

Page 572:

even if assume digital IF is perfect. Is corrected to even if we assume digital IF is perfect.

Page 591:

Reference of Fig. 8.66 has been removed
The figure on the left is a set of frequency is updated to Fig. 8.66 is a set of frequency

Page 594:

clipping as shown on the left figure is corrected to clipping as shown on the above figure

Page 607:

Reference of Fig. 8.33 has been removed

Chapter 9:
 Page 620:
 Use the identity of
 $\int_{-\frac{1}{2 T}}$ and $\int_{-\frac{1}{2 T}}$ corrected to

Use the identity of
$\int_{-\frac{1}{2 \tau}}^{+\frac{1}{2 \tau}} e^{+j \pi f T+j 2 \pi f t} d f$ and $\int_{-\frac{1}{2 \tau}}^{+\frac{i}{2 \tau}} e^{-j \pi f T+j 2 \pi f t} d f$

Page 621 and 622:

$B \ll f_{c}$ is corrected to $B \ll f_{c}$

Page 624:

If it is not clear, Sect. 9.3 updated to If it is not clear, Sect. 9.4

Page 625:
$\sigma^{2}=1 / 4\left(d^{2}+d^{2}\right) 4=2 d^{2}$ for QPSK. $\sigma^{2}=\frac{1}{8}\left(d^{2}\right) 8=d^{2}$
updated to
$\sigma^{2}=1 / 4\left(d^{2}+d^{2}\right) 4=2 d^{2}$ for QPSK.
$\sigma^{2}=\frac{1}{8}\left(d^{2}\right) 8=d^{2}$ for 8 -PSK
$\sigma^{2}=\frac{1}{8}\left(d^{2}\right) 8=d^{2}$ for 8-PSK
Page 629:
$H(e j 2 \pi f)$ corrected to $H\left(e^{j 2 \pi f}\right)$

[^0]: The updated online version of these book can be found at
 https://doi.org/10.1007/978-3-319-71568-1_2
 https://doi.org/10.1007/978-3-319-71568-1_3
 https://doi.org/10.1007/978-3-319-71568-1_4
 https://doi.org/10.1007/978-3-319-71568-1_5
 https://doi.org/10.1007/978-3-319-71568-1_6
 https://doi.org/10.1007/978-3-319-71568-1_7
 https://doi.org/10.1007/978-3-319-71568-1_8
 https://doi.org/10.1007/978-3-319-71568-1_9
 https://doi.org/10.1007/978-3-319-71568-1

