

 Skip to main content

 Advertisement

 [image: SpringerLink]

 Log in

 Menu

 Find a journal

 Publish with us

 Track your research

 Search

 Cart

[image: Book cover]

International Conference on Informatics in Schools: Situation, Evolution, and Perspectives
ISSEP 2017: Informatics in Schools: Focus on Learning Programming
 pp
 3–11Cite as

 	
 Home

	
 Informatics in Schools: Focus on Learning Programming

	
 Conference paper

 The Computer Science Way of Thinking in Human History and Consequences for the Design of Computer Science Curricula

 The Computer Science Way of Thinking in Human History and Consequences for the Design of Computer Science Curricula

 	Juraj Hromkovič15 &
	Regula Lacher15

 	Conference paper
	First Online: 19 November 2017

 	
 1366 Accesses

	
 8
 Citations

	
 3

 Altmetric

 Part of the book series:
 Lecture Notes in Computer Science ((LNTCS,volume 10696))

 Abstract
Teaching computer science offers more than algorithmic thinking (or more general and as recently presented: computational thinking). To understand this claim, one has to have a more careful look at the development of human culture, science, and technology. This helps not only to recognize that the computer science way of thinking was crucial for the development of human society since anyone can remember, but it helps to make a good choice of topics for sustainable computer science education in the context of science and humanities. This leads to the creation of textbooks that do not focus on particular knowledge for specialists, but offer serious contributions in the very general framework of education.

 Download conference paper PDF

 1 Introduction
The recent technological development has led to a situation where many of our children will be working in a profession that does not yet exist, and they will be working on the solution of problems that have not even materialized yet. To prepare them for this, we need to change our approach to teaching. Our fundamental principle for designing educational curricula for any subject is the following:

 Do not teach the final products of science, technology, and humanities, and do not consider it the highest goal to train to successfully apply them. For the latest knowledge may be found outdated with time. Teach the process of discovering new knowledge, teach the need to search for new solutions, teach the ways of collecting experience and formulating hypotheses, teach the ways of verifying hypotheses, teach how others can be convinced about the truth discovered, teach the constructive way of thinking in order to create new products and finally new technology, and teach the processes of testing and improving the products of our work.

We consider this principle to be the base of the so-called “critical thinking,” becoming the fundamental goal of teaching science in leading universities. It is based on the understanding of the development of human societies, which was only possible with the evolvement of science, humanities, law, and technology. We should teach those aspects that have the biggest impact on the development of our way of thinking. The whole of human history can be seen as a process of developing research instruments to understand the world around us and to find solutions for our problems. The goal of this article is to look at computer science as an integral part of science since ever and to use this view to recognize the main contributions and consequently to design how to teach them in the context of other educational subjects.

2 History
2.1 Computer Science, Languages, and Writing
Writing was developed in many cultures, and it became one of the most important human technologies. The oldest known writing was developed in Mesopotamia more than \(5\,000\) years ago. The motivation for this development would be recently considered a “pure computer science task”: The people of Mesopotamia needed to save (store) and process (update) tax and property data of some \(1\,000\,000\) people living between Euphrates and Tigris. The starting point during the development of a writing is the choice of symbols, called an alphabet, and then the representation of data (numbers, words, texts) as finite sequences of symbols. In this framework, we can speak about “coding” of information. The development of number representations is a wonderful story about different systems being in competition with each other (each to each) for many years with respect to understandability (transparency), the length of the description, and the efficiency of performing arithmetic operations on them.
As more and more people learned to read, the need to keep some of that written information secret, i.e., understandable for a selected group of people only, was formulated. The oldest traces of attempts to decrease readability are some \(3\,500\) years old, where the order of some symbols was exchanged in Mesopotamia. \(2\,500\) years ago, different secret writings were used in Palestine, India, China, Egypt and Greece. They used concepts of mixing the order of symbols and exchanging symbols (coding of symbols by other symbols) which are still used in modern cryptographic protocols.
The above mentioned activities are all strongly related to the expertise of computer scientists, some of them are even considered as a proper part of computer science, e.g., cryptography. Indeed, computer scientists are true experts in developing writings for specific purposes. Some examples for teaching this topic can be found in [1, 5, 8].
Another example is compression, which is strongly related to measuring the information content of texts. Coding texts as short as possible, without losing any information, in order to shorten communication messages, was developed even before computer science was established as an independent discipline (see [1, 8] for an example of a teaching sequence).
Self-correcting codes [10] are robust writings which automatically recognize and correct mistakes in texts. Current e-commerce cannot work without such codes because any small misprint could cause a wrong money transfer or wrong online order.
Later on, computer scientists developed numerous writings for data representations for different purposes. Some focused on performing selected data operations (data structures), others focused on creating databases (information systems) with a very fast search capability (see [1, 8]).
Driven by the construction of (physical) computers, the binary alphabet and many ways of representing data by sequences of bits were introducedFootnote 1 (see [1, 8] for a teaching sequence).
Another strong relationship between languages and computer science is in the development of programming languages. Programming languages are languages with very well defined syntax and semantics, and looking at the development of formal language theory as a product of computer science one observes a big intersection with the development of linguistics. The formal concept of a grammar, context-sensitivity and context-freeness are all concepts developed in cooperation with linguistics (see [2] for a textbook for high schools on this topic).
2.2 Computer Science and Mathematics
If one wants to understand what mathematics is about, it is helpful to view mathematics as a language with the following two features:
	
 (i)

 All sentences have an unambiguous meaning for everybody mastering the language of mathematics.

	
 (ii)

 All argumentation in mathematics is verifiable.

The demand to create a language such as mathematics was obvious. There is no objectivity in science if one cannot communicate in such a way that everybody interprets each claim in the same way. Additionally, without verifiable argumentation the notion of truth is very relative (see [11] for more details).
This is how mathematics, together with experiments, became the main research instrument of humans. The relation with computer science lies mainly in abstraction and in the development of algorithms as a method for solving different tasks.
Computer science uses digital technology and so it cannot omit the formal language of mathematics that codes everything as sequences of symbols of a fixed alphabet. Abstraction in computer science means to be able to represent objects and real situations by mathematical concepts and finally as sequences of bits. All this is a part of the expertise of computer scientists as well. The contribution of computer science is using the formal language of mathematics to describe computation processes and to investigate them.
Algorithm is a key word of computer science, but this term is not new. Already Euclid formulated algorithms in his “Elements” [4], among them the famous Euclid’s algorithm. The term “algorithm” is due to al-Khwarizmi, who wrote a book about Indian digits around the year 825. Humans tried to develop algorithms as long as anyone can remember. People generated knowledge in order to understand the world around them and especially to apply this knowledge to develop “procedures” to reach their goals. This was key for the development of the first human societies because it allowed jumps in performance and efficiency increase. The point is that becoming an expert in performing a previously developed procedure was much easier than to learn to develop such procedures or to discover new facts. One nice example from ancient Greece is the Theorem of Pythagoras that became a procedure applied in the construction of buildings. We know due to Pythagoras that \(3^2 + 4^2 = 5^2\) and that the triangle with sides of length 3, 4, and 5 units always contains a right angle. Therefore, to create a right angle, it is sufficient to take 3 ropes of the corresponding lengths (3, 4, and 5 units) to construct the right angle. There is a huge gap between the qualification of creating this triangle and the intellectual potential to discover the Theorem of Pythagoras, not to mention the capability to prove why it is true. In this way, many technologies became available to big parts of society in spite of the fact that only few people had the expertise to understand them or even to be able to develop them.
The above was also the reason why Leibniz described mathematics as a science of automation of human work. The idea of Leibniz was to translate the problems of the real world into the language of mathematics and then to solve them by formal calculations. His first dream was to develop a calculus for logical argumentation similar to formal arithmetics. This dream was satisfied 200 years later when logic was developed and became the formal system for automatic calculation of the correctness of mathematical proofs. The second dream of Leibniz was to create a type of mathematics in which all real problems can be described and solved.
During the time of technical revolution, Hilbert [7] specified Leibnizs second dream more precisely. He considered a problem as a collection of potentially infinitely many problem instances. An algorithm for solving the problem was therefore a method that was able to calculate the correct solution for any of the instances of the problem. The dream of Hilbert included finding an algorithm for each problem that can be formulated in the language of mathematics. However, in 1930, Kurt Gödel [6] proved that there exist claims in mathematics for which the truth cannot be decided inside of mathematics. In other words, Kurt Gödel proved that the description power of the language of mathematics is stronger than its argumentation power. One can formulate claims in mathematics for which there exist no proofs whether they are correct or not. This finding was the nucleus that started the founding of “computability” as the first sub-discipline of computer science with the goal to classify problems into algorithmically solvable and algorithmically unsolvable ones. The related formal definitions of the term “algorithm” offered by Turing [18] and Church [3] are now considered as the birth of computer science.
There are so many intersections between mathematics and computer science in the subsequent development, that we do not try to list them here.
2.3 When and Why Computer Science Became an Independent Discipline
Computer science became a distinguished discipline when the following two conditions were satisfied:
	
 1.

 One was able to develop algorithms that were unambiguously described in the sense that no human intellect (no expert knowledge, no interpretation) was needed to execute them.

	
 2.

 (Digital) technologies were available that enabled the delegation of execution (of precisely described procedures) to machines.

Hence, the two main components of computer science are:
	
 1.

 To use mathematics to develop – in cooperation with specialists in the respective areas of science and practice – algorithms to automate more and more human activities. Many mathematicians consider this (or big parts thereof) a part of mathematics.

	
 2.

 To contribute to the development of hardware and software technologies, allowing the automation of more and more complex tasks and increasing the performance of computing technologies. A part of this job is the development of programming languages enabling humans to communicate with machines to control them, and to instruct them to execute different activities. This component of computer science is assigned to engineering.

There is no strict boundary between these two and many tasks require the expertise of both components.

3 How to Teach Computer Science
One of the biggest mistakes in the past was to teach the use (application) of digital technologies (e.g., ECDL) instead of the foundations of computer science. If the focus is set on teaching the latest developments in computer science concepts and digital technology, this mistake is continued. Computer science has to learn from physics which typically is taught by following the historical development of our understanding of the physical world. Trying to teach quantum mechanics or relativity theory is of little value for most pupils and tends to end in frustration for most. One has to start with Galileo Galilei and Newton in order to get a first intuition about how the physical world is functioning and in order to learn how to design experiments that enable to verify hypotheses or disprove them. One has to follow the genesis of science, learn from mistakes and especially learn to develop research instruments, namely experiments and mathematics.
If we want to enable future generations to contribute to science and technology, we have to follow the development of basic concepts of computer science step by step. In this way we can contribute to
	
 (i)

 better understanding mathematics and languages and their development,

	
 (ii)

 understanding computer science as a research instrument in science and humanities, and

	
 (iii)

 understanding our technical world and being able to control and develop it.

Rather than dedicating the space of this article to explaining in detail the spiral curriculum of teaching computer science developed at the Center for Computer Science Education of ETH, we give some selected examples to illustrate the approach we followed during the development of our textbooks.
3.1 Data Representation
The first goal is to learn that there is freedom of choice regarding the alphabet used to code information. One can start with different number representations and compare them with respect to transparency, length of the description, and efficiency in working with them. One learns to recognize what they have in common and what are the differences. Finally, one does not only learn the binary representation of numbers and its advantages and disadvantages, but also to design new number representations (see [1, 8] for teaching examples).
Data compression is another topic that is best taught following the historical development. One is not allowed to push to learn the best compression method currently known. The focus must be on learning from examples in order to be able to propose own compression methods and to compare them with other methods presented. One can distinguish between compression methods without and with loss of information. In the latter case, one can play with the tradeoff between the size of the data representation achieved by a compression on one hand, and the amount of information lost on the other hand (see [1, 8] for teaching examples).
Teaching self-verifying codes is very well motivated by the use of digital technologies. There are plenty of codes that can be presented as examples and there is a lot of freedom to design own codes with some required properties. Starting with suitable examples, the main idea is designing efficiently computable and short self-verifying codes. This can be successfully explained without any sophisticated mathematics. Again, the main goal is to learn to design own codes with required properties for small sets of data.
Cryptography as a theory of secret writings is probably the most gratifying topic of data representation. One is not allowed to focus on the correct usage of current cryptographic protocols based on deep knowledge of algebra and number theory. Again, one has to follow the historical development step by step. One should present historic examples of secret writings and cryptosystems, let the pupils find their weaknesses and use these to break them. Following the development of cryptosystems, it becomes natural to understand the concept of the security of a cryptosystem up to the current public-key cryptography. Again, the main achievement is the ability to design new cryptosystems and to break them, and so to discover a demand to design better and better cryptosystems (see [1, 5, 8] for teaching examples).
There are many other data representation topics. An important one deals with suitable data representation for building databases or for special algorithmic tasks. A key point is that there are many levels of deepness and one can create a challenging spiral curriculum for this topic with many creative and constructive tasks.
3.2 Algorithm Design
Algorithms as methods that solve all infinitely many instances of a problem are a very abstract concept and should not be introduced too early. For pupils up to class 4, one is allowed to find solutions to particular problem instances and to develop general strategies on a very intuitive level only.
But even for older pupils, for classes 7 to 9, we do not recommend to teach specialized, concrete algorithms that do not work if one changes the specification of the problem just a little bit. The idea is to teach robust strategies that successfully work for many problems. Our teaching approach starts with training to recognize feasible solutions for a new problem instance, to represent it as a sequence of symbols and to be able to list and count all feasible solutions for concrete instances. Then one can introduce criteria to judge the quality of the solutions in order to choose an appropriate one or even the best feasible solution. This imposes a lot of understanding of the problem setting and introduces the trouble with an exponential explosion of the number of solutions. The next step is to teach to make compromises when looking for a good solution in situations where one cannot list and compare all solutions because there are too many. Again, simple robust strategies as greedy or local algorithms can be explained and discussed. It is interesting to discover that, for some problems, they compute optimal solutions, and for other problems they may sometimes fail by offering solutions that are far from optimal. There is a lot of creative work in discovering problem instances for which certain strategies behave poorly.
Again, this topic is excellent for developing a spiral curriculum starting with collecting experience by solving simple, particular problem instances, and finishing by developing clever algorithms for concrete problems in high school.
3.3 Programming
For a more detailed presentation of this topic, see [9, 12,13,14,15,16,17]. The starting point is not to teach a programming language, but rather to combine problem solving with the communication of the designed algorithm to the computer. Start with as few instructions as possible and force the pupils through modularity to introduce new instructions and to “teach” the computer to understand them. This way, on one hand, the pupils learn how to develop a language in order to make the communication more efficient, and on the other hand they learn modular design, which is one of the most fundamental concepts of engineering. Simultaneously, they follow the genesis of the development of programming languages to some extent and therefore naturally do not see programming languages as final products that must be taken as they are.
The main focus is on the following contributions:
	
 1.

 To learn problem solving by building up experience with solving particular problem instances and finally developing solving strategies.

	
 2.

 To learn to describe the strategies (algorithms) developed first in a meta language and then in exact programming language (learning fundamental concepts of programming).

	
 3.

 To discover the demand of introducing new words to a language in order to simplify communication and to increase the understandability.

	
 4.

 To learn the modular design method as a fundamental concept of engineering and to be able to use it in various situations.

	
 5.

 To learn to verify by reasoning and to test by experiments the products (programs) of own making.

4 Conclusion
To prepare our children for the future, we need to change our approach to teaching fundamentally: Rather than teaching the current products of science, technology and humanities, we should teach the process of making discoveries. We should teach collecting experience and data, formulating and verifying hypotheses, how to convince ourselves and others about the truth discovered, how to think in a constructive way that leads to the creation of new products and new technology, and we should teach the processes of testing and improving the products of our work. The example of Pythagoras’ Theorem illustrates not only how a product of science has been applied in processes, but also shows the difference of skills needed for the discovery of new knowledge and the application thereof.
When applying this strategy for teaching computer science, one obtains the following principles:
	
 1.

 Do not teach computer science as an isolated subject, but teach computer science as a part of science and technology offering a deep contextual view. Take care on contributing to knowledge transfer to other disciplines. Build and use bridges to the development of languages and mathematics.

	
 2.

 Do not teach the latest products of IT and the latest scientific discoveries. Follow the genesis of fundamental concepts and improve them step by step. Create the need for these concepts and their improvements and discover the new ideas by doing experiments, proposing and verifying solutions and evaluating their feasibility and quality. Try to discover, for all age groups, to which extent which concepts are feasible and how to apply learning by doing to master them. Computer science topics such as data representation, programming, and algorithm design have many levels of deepness, therefore lending themselves perfectly for a spiral curriculum.

	
 3.

 Teach to view IT as an enabling technology. Teach to control computers by programming and to automate well understood activities in order to make society more efficient. Teach to work in a constructive way, to test the functionality of own products, and the modular design approach. Simply teach the way of thinking and working of technical disciplines (engineering).

 Notes
	1.It was technically much easier to build processors executing operations using binary numbers than using decimal numbers. Also, it was much easier to build stable physical systems for storing information with two states only (interpreted as 0 and 1) than developing a computer memory based on many states.

 References
	Bell, T., Witten, I.H., Fellows, M.: Computer Science Unplugged. Creative Commons Attribution 2.0 (2015)

 Google Scholar

	Böckenhauer, H.-J., Hromkovič, J.: Formale Sprachen: Endliche Automaten, Grammatiken, Lexikalische und syntaktische Analyse. Springer, Wiesbaden (2013). https://doi.org/10.1007/978-3-658-00725-6

Book

 Google Scholar

	Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58(2), 345–363 (1936)
Article
 MathSciNet
 MATH

 Google Scholar

	Euclid: Elements, books I-XIII

 Google Scholar

	Freiermuth, K., Hromkovič, J., Steffen, B., Keller, L.: Einführung in die Kryptologie: Lehrbuch für Unterricht und Selbststudium. Springer, Wiesbaden (2014). https://doi.org/10.1007/978-3-8348-2269-7

Book
 MATH

 Google Scholar

	Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, pp. 173–198 (1931)

 Google Scholar

	Hilbert, D.: Mathematische Probleme. Nachrichten von der königl. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, pp. 253–297 (1900)

 Google Scholar

	Hromkovič, J.: Einfach Informatik. Datendarstellung. Klett (2018, to appear)

 Google Scholar

	Hromkovič, J., Kohn, T.: Einfach Informatik. Programmieren. Klett (2018, to appear)

 Google Scholar

	Hromkovič, J., Keller, L., Komm, D., Serafini, G., Steffen, B.: Entdeckendes lernen am beispiel fehlerkorrigierender codes. Login 168, 50–55 (2011)

 Google Scholar

	Hromkovič, J.: Homo Informaticus: why computer science fundamentals are an unavoidable part of human culture and how to teach them. Bull. EATCS 115, 112–122 (2015)

 Google Scholar

	Hromkovič, J., Kohn, T., Komm, D., Serafini, G.: Combining the power of python with the simplicity of logo for a sustainable computer science education. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 155–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4_13

Chapter

 Google Scholar

	Hromkovič, J., Kohn, T., Komm, D., Serafini, G.: Examples of algorithmic thinking in programming education. Olympiads Inform. 10, 111–124 (2016)

 Google Scholar

	Hromkovič, J., Kohn, T., Komm, D., Serafini, G.: Algorithmic thinking from the start. In: Bulletin of the EATCS 121, The Education Column (2017)

 Google Scholar

	Hromkovič, J., Serafini, G., Staub, J.: XLogoOnline: a single-page, browser-based programming environment for schools aiming at reducing cognitive load on pupils. In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 219–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7_18

 Google Scholar

	Hromkovič, J., Steffen, B.: Why teaching informatics in schools is as important as teaching mathematics and natural sciences. In: Kalaš, I., Mittermeir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 21–30. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24722-4_3

Chapter

 Google Scholar

	Serafini, G.: Programmierungerricht für Kinder und deren Lehrpersonen: Unterrichtsmaterialien, didaktische Herausforderungen und konkrete Erfahrungen, GI-Edition. Lecture Notes in Informatics, vol. 249, pp. 267–272 (2015)

 Google Scholar

	Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42(2), 230–265 (1936)
MathSciNet
 MATH

 Google Scholar

Download references

 Author information
Authors and Affiliations
	Department of Computer Science, ETH Zurich, Zurich, Switzerland
Juraj Hromkovič & Regula Lacher

Authors	Juraj HromkovičView author publications
You can also search for this author in
 PubMed Google Scholar

	Regula LacherView author publications
You can also search for this author in
 PubMed Google Scholar

Corresponding author
Correspondence to
 Juraj Hromkovič .

 Editor information
Editors and Affiliations
	Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
Valentina Dagienė

	University of Helsinki, Helsinki, Finland
Arto Hellas

 Rights and permissions
Reprints and permissions

 Copyright information
© 2017 Springer International Publishing AG

 About this paper
[image: Check for updates. Verify currency and authenticity via CrossMark]

Cite this paper
Hromkovič, J., Lacher, R. (2017). The Computer Science Way of Thinking in Human History and Consequences for the Design of Computer Science Curricula.

 In: Dagienė, V., Hellas, A. (eds) Informatics in Schools: Focus on Learning Programming. ISSEP 2017. Lecture Notes in Computer Science(), vol 10696. Springer, Cham. https://doi.org/10.1007/978-3-319-71483-7_1
Download citation
	.RIS
	.ENW
	.BIB

	DOI: https://doi.org/10.1007/978-3-319-71483-7_1

	Published: 19 November 2017

	
 Publisher Name: Springer, Cham

	
 Print ISBN: 978-3-319-71482-0

	
 Online ISBN: 978-3-319-71483-7

	eBook Packages: Computer ScienceComputer Science (R0)

Share this paper
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.

Copy to clipboard

 Provided by the Springer Nature SharedIt content-sharing initiative

 Publish with us
Policies and ethics

 Search

 Search by keyword or author

 Search

 Navigation

 	

 Find a journal

	

 Publish with us

	

 Track your research

	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z

			

			
			
				Publish with us

					Publish your research
	Open access publishing

			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers

			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress

			

			
		

	

		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					

		
	
	
		
			
				
					
					52.90.182.75
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature

	

