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Abstract. Worldwide, conservation agencies employ rangers to protect
conservation areas from poachers. However, agencies lack the manpower
to have rangers effectively patrol these vast areas frequently. While past
work has modeled poachers’ behavior so as to aid rangers in planning
future patrols, those models’ predictions were not validated by extensive
field tests. In this paper, we present a hybrid spatio-temporal model that
predicts poaching threat levels and results from a five-month field test of
our model in Uganda’s Queen Elizabeth Protected Area (QEPA). To our
knowledge, this is the first time that a predictive model has been evalu-
ated through such an extensive field test in this domain. We present two
major contributions. First, our hybrid model consists of two components:
(i) an ensemble model which can work with the limited data common to
this domain and (ii) a spatio-temporal model to boost the ensemble’s pre-
dictions when sufficient data are available. When evaluated on real-world
historical data from QEPA, our hybrid model achieves significantly bet-
ter performance than previous approaches with either temporally-aware
dynamic Bayesian networks or an ensemble of spatially-aware models.
Second, in collaboration with the Wildlife Conservation Society and
Uganda Wildlife Authority, we present results from a five-month con-
trolled experiment where rangers patrolled over 450 sq km across QEPA.
We demonstrate that our model successfully predicted (1) where snaring
activity would occur and (2) where it would not occur; in areas where
we predicted a high rate of snaring activity, rangers found more snares
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and snared animals than in areas of lower predicted activity. These find-
ings demonstrate that (1) our model’s predictions are selective, (2) our
model’s superior laboratory performance extends to the real world, and
(3) these predictive models can aid rangers in focusing their efforts to
prevent wildlife poaching and save animals.

Keywords: Predictive models · Ensemble techniques
Graphical models · Field test evaluation · Wildlife protection
Wildlife poaching

1 Introduction

Wildlife poaching continues to be a global problem as key species are hunted
toward extinction. For example, the latest African census showed a 30% decline
in elephant populations between 2007 and 2014 [1]. Wildlife conservation areas
have been established to protect these species from poachers, and these areas
are protected by park rangers. These areas are vast, and rangers do not have
sufficient resources to patrol everywhere with high intensity and frequency.

At many sites now, rangers patrol and collect data related to snares they con-
fiscate, poachers they arrest, and other observations. Given rangers’ resource con-
straints, patrol managers could benefit from tools that analyze these data and
provide future poaching predictions. However, this domain presents unique chal-
lenges. First, this domain’s real-world data are few, extremely noisy, and incom-
plete. To illustrate, one of rangers’ primary patrol goals is to find wire snares, which
are deployed by poachers to catch animals. However, these snares are usually well-
hidden (e.g., in dense grass), and thus rangers may not find these snares and (incor-
rectly) label an area as not having any snares. Second, poaching activity changes
over time, andpredictivemodelsmust account for this temporal component.Third,
because poaching happens in the real world, there are mutual spatial and neighbor-
hood effects that influence poaching activity. Finally, while field tests are crucial in
determining a model’s efficacy in the world, the difficulties involved in organizing
and executing field tests often precludes them.

Previous works in this domain have modeled poaching behavior with real-
world data. Based on data from a Queen Elizabeth Protected Area (QEPA)
dataset, [6] introduced a two-layered temporal graphical model, CAPTURE,
while [4] constructed an ensemble of decision trees, INTERCEPT, that accounted
for spatial relationships. However, these works did not (1) account for both
spatial and temporal components nor (2) validate their models via extensive
field testing.

In this paper, we provide the following contributions. (1) We introduce a
new hybrid model that enhances an ensemble’s broad predictive power with
a spatio-temporal model’s adaptive capabilities. Because spatio-temporal mod-
els require a lot of data, this model works in two stages. First, predictions are
made with an ensemble of decision trees. Second, in areas where there are suf-
ficient data, the ensemble’s prediction is boosted via a spatio-temporal model.
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(2) In collaboration with the Wildlife Conservation Society and the Uganda
Wildlife Authority, we designed and deployed a large, controlled experiment to
QEPA. Across 27 areas we designated across QEPA, rangers patrolled approxi-
mately 452 km over the course of five months; to our knowledge, this is the largest
controlled experiment and field test of Machine Learning-based predictive mod-
els in this domain. In this experiment, we tested our model’s selectiveness: is our
model able to differentiate between areas of high and low poaching activity?

In experimental results, (1) we demonstrate our model’s superior perfor-
mance over the state-of-the-art [4] and thus the importance of spatio-temporal
modeling. (2) During our field test, rangers found over three times more snaring
activity in areas where we predicted higher poaching activity. When account-
ing for differences in ranger coverage, rangers found twelve times the number of
findings per kilometer walked in those areas. These results demonstrate that (i)
our model is selective in its predictions and (ii) our model’s superior predictive
performance in the laboratory extends to the real world.

2 Background and Related Work

Spatio-temporal models have been used for prediction tasks in image and video
processing. Markov Random Fields (MRF) were used by [11,12] to capture
spatio-temporal dependencies in remotely sensed data and moving object detec-
tion, respectively.

Critchlow et al. [2] analyzed spatio-temporal patterns in illegal activity in
Uganda’s Queen Elizabeth Protected Area (QEPA) using Bayesian hierarchical
models. With real-world data, they demonstrated the importance of considering
the spatial and temporal changes that occur in illegal activities. However, in
this work and other similar works with spatio-temporal models [8,9], no stan-
dard metrics were provided to evaluate the models’ predictive performance (e.g.,
precision, recall). As such, it is impossible to compare our predictive models’ per-
formance to theirs. While [3] was a field test of [2]’s work, [8,9] do not conduct
field tests to validate their predictions in the real-world.

In the Machine Learning literature, [6] introduced a two-layered temporal
Bayesian Network predictive model (CAPTURE) that was also evaluated on
real-world data from QEPA. CAPTURE, however, assumes one global set of
parameters for all of QEPA which ignores local differences in poachers’ behavior.
Additionally, the first layer, which predicts poaching attacks, relies on the current
year’s patrolling effort which makes it impossible to predict future attacks (since
patrols haven’t happened yet). While CAPTURE includes temporal elements
in its model, it does not include spatial components and thus cannot capture
neighborhood specific phenomena. In contrast to CAPTURE, [4] presented a
behavior model, INTERCEPT, based on an ensemble of decision trees and was
demonstrated to outperform CAPTURE. While their model accounted for spa-
tial correlations, it did not include a temporal component. In contrast to these
predictive models, our model addresses both spatial and temporal components.

It is vital to validate predictive models in the real world, and both [3,4] have
conducted field tests in QEPA. [4] conducted a one month field test in QEPA
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and demonstrated promising results for predictive analytics in this domain.
Unlike the field test we conducted, however, that was a preliminary field test
and was not a controlled experiment. On the other hand, [3] conducted a con-
trolled experiment where their goal, by selecting three areas for rangers to patrol,
was to maximize the number of observations sighted per kilometer walked by
the rangers. Their test successfully demonstrated a significant increase in illegal
activity detection at two of the areas, but they did not provide comparable eval-
uation metrics for their predictive model. Also, our field test was much larger in
scale, involving 27 patrol posts compared to their 9 posts.

3 Wildlife Crime Dataset: Features and Challenges

This study’s wildlife crime dataset is from Uganda’s Queen Elizabeth Protected
Area (QEPA), an area containing a wildlife conservation park and two wildlife
reserves, which spans about 2,520 km2. There are 37 patrol posts situated across
QEPA from which Uganda Wildlife Authority (UWA) rangers conduct patrols
to apprehend poachers, remove any snares or traps, monitor wildlife, and record
signs of illegal activity. Along with the amount of patrolling effort in each area,
the dataset contains 14 years (2003–2016) of the type, location, and date of
wildlife crime activities.

Rangers lack the manpower to patrol everywhere all the time, and thus illegal
activity may be undetected in unpatrolled areas. Patrolling is an imperfect pro-
cess, and there is considerable uncertainty in the dataset’s negative data points
(i.e., areas being labeled as having no illegal activity); rangers may patrol an
area and label it as having no snares when, in fact, a snare was well-hidden
and undetected. These factors contribute to the dataset’s already large class
imbalance; there are many more negative data points than there are positive
points (crime detected). It is thus necessary to consider models that estimate
hidden variables (e.g., whether an area has been attacked) and also to evaluate
predictive models with metrics that account for this uncertainty, such as those
in the Positive and Unlabeled Learning (PU Learning) literature [5]. We divide
QEPA into 1 km2 grid cells (a total of 2,522 cells), and we refer to these cells
as targets. Each target is associated with several static geospatial features such
as terrain (e.g., slope), distance values (e.g., distance to border), and animal
density. Each target is also associated with dynamic features such as how often
an area has been patrolled (i.e., coverage) and observed illegal activities (e.g.,
snares) (Fig. 1).

4 Models and Algorithms

4.1 Prediction by Graphical Models

Markov Random Field (MRF). To predict poaching activity, each target,
at time step t ∈ {t1, ..., tm}, is represented by coordinates i and j within the
boundary of QEPA. In Fig. 2(a), we demonstrate a three-dimensional network
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(a) Snare (b) QEPA grid

Fig. 1. Photo credit: UWA ranger

(a) Spatio-temporal model (b) Geo-Clusters

Fig. 2. Geo-clusters and graphical model

for spatio-temporal modeling of poaching events over all targets. Connections
between nodes represent the mutual spatial influence of neighboring targets and
also the temporal dependence between recurring poaching incidents at a target.
ati,j represents poaching incidents at time step t and target i, j. Mutual spatial
influences are modeled through first-order neighbors (i.e., ati,j connects to ati±1,j ,
ati,j±1 and at−1

i,j ) and second-order neighbors (i.e., ati,j connects to ati±1,j±1); for
simplicity, the latter is not shown on the model’s lattice. Each random variable
takes a value in its state space, in this paper, L = {0, 1}.

To avoid index overload, henceforth, nodes are indexed by serial numbers,
S = {1, 2, ..., N} when we refer to the three-dimensional network. We intro-
duce two random fields, indexed by S, with their configurations: A = {a =
(a1, ..., aN )|ai ∈ L, i ∈ S}, which indicates an actual poaching attack occurred
at targets over the period of study, and O = {o = (o1, ..., oN )|oi ∈ L, i ∈ S}
indicates a detected poaching attack at targets over the period of study. Due
to the imperfect detection of poaching activities, the former represents the hid-
den variables, and the latter is the known observed data collected by rangers,
shown by the gray-filled nodes in Fig. 2(a). Targets are related to one another
via a neighborhood system, Nn, which is the set of nodes neighboring n and
n �∈ Nn. This neighborhood system considers all spatial and temporal neigh-
bors. We define neighborhood attackability as the fraction of neighbors that the
model predicts to be attacked: uNn

=
∑

n∈Nn
an/|Nn|.

The probability, P (ai|uNn
,α), of a poaching incident at each target n at

time step t is represented in Eq. 1, where α is a vector of parameters weighting
the most important variables that influence poaching; Z represents the vector
of time-invariant ecological covariates associated with each target (e.g., animal
density, slope, forest cover, net primary productivity, distance from patrol post,
town and rivers [2,7]). The model’s temporal dimension is reflected through not
only the backward dependence of each an, which influences the computation of
uNn

, but also in the past patrol coverage at target n, denoted by ct−1
n , which

models the delayed deterrence effect of patrolling efforts.

p(an = 1|uNn
,α) =

e−α [Z ,uNn ,ct−1
n ,1]ᵀ

1 + e−α [Z ,uNn ,ct−1
n ,1]ᵀ

(1)

Given an, on follows a conditional probability distribution proposed in Eq. 2,
which represents the probability of rangers detecting a poaching attack at targetn.
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The first column of the matrix denotes the probability of not detecting or detecting
attacks if an attack has not happened, which is constrained to 1 or 0 respectively.
In other words, it is impossible to detect an attack when an attack has not hap-
pened. The second column of the matrix represents the probability of not detect-
ing or detecting attacks in the form of a logistic function if an attack has happened.
Since it is less rational for poachers to place snares close to patrol posts and more
convenient for rangers to detect poaching signs near the patrol posts, we assumed
dpn (distance from patrol post) and ctn (patrol coverage devoted to target n at time
t) are the major variables influencing rangers’ detection capabilities. Detectability
at each target is represented in Eq. 2, where β is a vector of parameters that weight
these variables.

p(on|an) =

[
p(on = 0|an = 0) p(on = 0|an = 1,β)

p(on = 1|an = 0) p(on = 1|an = 1,β)

]
=

⎡
⎢⎢⎣

1,
1

1 + e−β [dpn,ctn,1]ᵀ

0,
e−β [dpn,ctn,1]ᵀ

1 + e−β [dpn,ctn,1]ᵀ

⎤
⎥⎥⎦ (2)

We assume that (o,a) is pairwise independent, meaning p(o,a) =∏
n∈S p(on, an).

EM Algorithm to Infer on MRF. We use the Expectation-Maximization
(EM) algorithm to estimate the MRF model’s parameters θ = {α,β}. For com-
pleteness, we provide details about how we apply the EM algorithm to our
model. Given a joint distribution p(o,a|θ) over observed variables o and hid-
den variables a, governed by parameters θ, EM aims to maximize the likelihood
function p(o|θ) with respect to θ. To start the algorithm, an initial setting for
the parameters θold is chosen. At E-step, p(a|o,θold) is evaluated, particularly,
for each node in MRF model:

p(an|on,θold) =
p(on|an,βold).p(an|uold

Nn
,αold)

p(on)
(3)

M-step calculates θnew, according to the expectation of the complete log likeli-
hood, log p(o,a|θ), given in Eq. 4.

θnew = arg max
θ

∑

an∈L
p(a|o,θold). log p(o,a|θ) (4)

To facilitate calculation of the log of the joint probability distribution,
log p(o,a|θ), we introduce an approximation that makes use of uold

Nn
, represented

in Eq. 5.

log p(o,a|θ) =
∑

n∈S

∑

an∈L
log p(on|an,β) + log p(an|uold

Nn
,α) (5)

Then, if convergence of the log likelihood is not satisfied, θold ← θnew, and
repeat.
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Dataset Preparation for MRF. To split the data into training and test
sets, we divided the real-world dataset into year-long time steps. We trained the
model’s parameters θ = {α,β} on historical data sampled through time steps
(t1, ..., tm) for all targets within the boundary. These parameters were used to
predict poaching activity at time step tm+1, which represents the test set for
evaluation purposes. The trade-off between adding years’ data (performance)
vs. computational costs led us to use three years (m = 3). The model was thus
trained over targets that were patrolled throughout the training time period
(t1, t2, t3). We examined three training sets: 2011–2013, 2012–2014, and 2013–
2015 for which the test sets are from 2014, 2015, and 2016, respectively.

Capturing temporal trends requires a sufficient amount of data to be collected
regularly across time steps for each target. Due to the large amount of missing
inspections and uncertainty in the collected data, this model focuses on learning
poaching activity only over regions that have been continually monitored in the
past, according to Definition 1. We denote this subset of targets as Sc.

Definition 1. Continually vs. occasionally monitoring: A target i, j is
continually monitored if all elements of the coverage sequence are positive; ctki,j >
0,∀k = 1, ...,m where m is the number of time steps. Otherwise, it is occasionally
monitored.

Experiments with MRF were conducted in various ways on each data set.
We refer to (a) a global model with spatial effects as GLB-S, which consists
of a single set of parameters θ for the whole QEPA, and (b) a global model
without spatial effects (i.e., the parameter that corresponds to uNn

is set to
0) as GLB. The spatio-temporal model is designed to account for temporal
and spatial trends in poaching activities. However, since learning those trends
and capturing spatial effects are impacted by the variance in local poachers’
behaviors, we also examined (c) a geo-clustered model which consists of multiple
sets of local parameters throughout QEPA with spatial effects, referred to as
GCL-S, and also (d) a geo-clustered model without spatial effects (i.e., the
parameter that corresponds to uNn

is set to 0) referred to as GCL.
Figure 2(b) shows the geo-clusters generated by Gaussian Mixture Models

(GMM), which classifies the targets based on the geo-spatial features, Z, along
with the targets’ coordinates, (xi,j , yi,j), into 22 clusters. The number of geo-
clusters, 22, are intended to be close to the number of patrol posts in QEPA
such that each cluster contains one or two nearby patrol posts. With that being
considered, not only are local poachers’ behaviors described by a distinct set of
parameters, but also the data collection conditions, over the targets within each
cluster, are maintained to be nearly uniform.

4.2 Prediction by Ensemble Models

A Bagging ensemble model or Bootstrap aggregation technique, called Bag-
ging, is a type of ensemble learning which bags some weak learners, such as
decision trees, on a dataset by generating many bootstrap duplicates of the
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dataset and learning decision trees on them. Each of the bootstrap duplicates
are obtained by randomly choosing M observations out of M with replacement,
where M denotes the training dataset size. Finally, the predicted response of the
ensemble is computed by taking an average over predictions from its individual
decision trees. To learn a Bagging ensemble, we used the fitensemble function
of MATLAB 2017a. Dataset preparation for the Bagging ensemble model is
designed to find the targets that are liable to be attacked [4]. A target is assumed
to be attackable if it has ever been attacked; if any observations occurred in the
entire training period for a given target, that target is labeled as attackable. For
this model, the best training period contained 5 years of data.

4.3 Hybrid of MRF and Bagging Ensemble

Since the amount and regularity of data collected by rangers varies across regions
of QEPA, predictive models perform differently in different regions. As such, we
propose using different models to predict over them; first, we used a Bagging
ensemble model, and then improved the predictions in some regions using the
spatio-temporal model. For global models, we used MRF for all continually mon-
itored targets. However, for geo-clustered models, for targets in the continually
monitored subset, Sq

c , (where temporally-aware models can be used practically),
the MRF model’s performance varied widely across geo-clusters according to
our experiments. q indicates clusters and 1 ≤ q ≤ 22. Thus, for each q, if the
average Catch Per Unit Effort (CPUE), outlined by Definition 2, is relatively
large, we use the MRF model for Sq

c . In Conservation Biology, CPUE is an indi-
rect measure of poaching activity abundance. A larger average CPUE for each
cluster corresponds to more frequent poaching activity and thus more data for
that cluster. Consequently, using more complex spatio-temporal models in those
clusters becomes more reasonable.

Definition 2. Average CPUE is
∑

n∈Sq
c
on/

∑
n∈Sq

c
ctn in cluster q.

To compute CPUE, effort corresponds to the amount of coverage (i.e., 1 unit =
1 km walked) in a given target, and catch corresponds to the number of observa-
tions. Hence, for 1 ≤ q ≤ 22, we will boost selectively according to the average
CPUE value; some clusters may not be boosted by MRF, and we would only use
Bagging ensemble model for making predictions on them. Experiments on his-
torical data show that selecting 15% of the geo-clusters with the highest average
CPUE results in the best performance for the entire hybrid model (discussed in
the Evaluation Section).

5 Evaluations and Discussions

5.1 Evaluation Metrics

The imperfect detection of poaching activities in wildlife conservation areas leads
to uncertainty in the negative class labels of data samples [4]. It is thus vital
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to evaluate prediction results based on metrics which account for this inherent
uncertainty. In addition to standard metrics in Machine Learning (e.g., precision,
recall, F1) which are used to evaluate models on datasets with no uncertainty in
the underlying ground truth, we also use the L&L metric introduced in [5], which
is a metric specifically designed for models learned on Positive and Unlabeled
datasets. L&L is defined as L&L = r2

Pr[f(Te)=1] , where r denotes the recall and
Pr[f(Te) = 1] denotes the probability of a classifier f making a positive class
label prediction.

5.2 Experiments with Real-World Data

Evaluation of models’ attack predictions are demonstrated in Tables 1 and 2.
Precision and recall are denoted by Prec. and Rec. in the tables. To compare
models’ performances, we used several baseline methods, (i) Positive Baseline,
PB; a model that predicts poaching attacks to occur in all targets, (ii) Random
Baseline, RB; a model which flips a coin to decide its prediction, (iii) Training
Label Baseline, TL; a model which predicts a target as attacked if it has been
ever attacked in the training data. We also present the results for Support Vector
Machines, SVM, and AdaBoost methods, AD, which are well-known Machine
Learning techniques, along with results for the best performing predictive model
on the QEPA dataset, INTERCEPT, INT, [4]. Results for the Bagging ensemble
technique, BG, and RUSBoost, RUS, a hybrid sampling/boosting algorithm for
learning from datasets with class imbalance [10], are also presented. In all tables,
BGG* stands for the best performing model among all variations of the hybrid
model, which will be discussed in detail later. Table 1 demonstrates that BGG*
outperformed all other existing models in terms of L&L and also F1.

Table 1. Comparing all models’ performances with the best performing BGG model.

Year 2014 2015 2016

Mdl PB RB TL SVM BGG* PB RB TL SVM BGG* PB RB TL SVM BGG*

Prec. 0.06 0.05 0.26 0.24 0.65 0.10 0.08 0.39 0.4 0.69 0.10 0.09 0.45 0.45 0.74

Rec. 1.00 0.46 0.86 0.3 0.54 1.00 0.43 0.78 0.15 0.62 1.00 0.44 0.75 0.23 0.66

F1 0.10 0.09 0.4 0.27 0.59 0.18 0.14 0.52 0.22 0.65 0.18 0.14 0.56 0.30 0.69

L&L 1.00 0.43 4.09 1.33 6.44 1.00 0.37 3.05 0.62 4.32 1.00 0.38 3.4 1.03 4.88

Mdl RUS AD BG INT BGG* RUS AD BG INT BGG* RUS AD BG INT BGG*

Prec. 0.12 0.33 0.62 0.37 0.65 0.2 0.52 0.71 0.63 0.69 0.19 0.53 0.76 0.40 0.74

Rec. 0.51 0.47 0.54 0.45 0.54 0.51 0.5 0.53 0.41 0.62 0.65 0.54 0.62 0.66 0.66

F1 0.19 0.39 0.58 0.41 0.59 0.29 0.51 0.61 0.49 0.65 0.29 0.53 0.68 0.51 0.69

L&L 1.12 2.86 6.18 5.83 6.44 1.03 2.61 3.83 3.46 4.32 1.25 2.84 4.75 2.23 4.88

Table 2 provides a detailed comparison of all variations of our hybrid models,
BGG (i.e., when different MRF models are used). When GCL-S is used, we get
the best performing model in terms of L&L score, which is denoted as BGG*.
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Table 2. Performances of hybrid models with variations of MRF (BGG models)

Year 2014 2015 2016

Model GLB GLB-S GCL GCL-S GLB GLB-S GCL GCL-S GLB GLB-S GCL GCL-S

Prec. 0.12 0.12 0.63 0.65 0.19 0.19 0.69 0.69 0.18 0.19 0.72 0.74

Recall 0.58 0.65 0.54 0.54 0.52 0.58 0.65 0.62 0.50 0.46 0.66 0.66

F1 0.20 0.20 0.58 0.59 0.28 0.29 0.65 0.65 0.27 0.27 0.69 0.69

L&L 1.28 1.44 6.31 6.44 0.99 1.14 4.32 4.32 0.91 0.91 4.79 4.88

The poor results of learning a global set of parameters emphasize the fact that
poachers’ behavior and patterns are not identical throughout QEPA and should
be modeled accordingly.

Our experiments demonstrated that the performance of the MRF model
within Sq

c varies across different geo-clusters and is related to the CPUE value
for each cluster, q. Figure 3(a) displays an improvement in L&L score for the
BGG* model compared to BG vs. varying the percentile of geo-clusters used
for boosting. Experiments with the 2014 test set show that choosing the 85th per-
centile of geo-clusters for boosting with MRF, according to CPUE, (i.e., selecting
15% of the geo-clusters, with highest CPUE), results in the best prediction per-
formance. The 85th percentile is shown by vertical lines in Figures where the
BGG* model outperformed the BG model. We used a similar percentile value
for experiments with the MRF model on test sets of 2015 and 2016. Figure 3(b)
and (c) confirm the efficiency of choosing an 85th percentile value.

(a) Test set 2014 (b) Test set 2015 (c) Test set 2016

Fig. 3. L&L improvement vs. CPUE percentile value; BGG* compared to BG

6 QEPA Field Test

While our model demonstrated superior predictive performance on historical
data, it is important to test these models in the field.

(a) Patrolled areas
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Fig. 4. Patrol area statistics

The initial field test we conducted in [4],
in collaboration with the Wildlife Conserva-
tion Society (WCS) and the Uganda Wildlife
Authority (UWA), was the first of its kind in
the Machine Learning (ML) community and
showed promising improvements over previ-
ous patrolling regimes. Due to the difficulty
of organizing such a field test, its implications
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were limited: only two 9-km2 areas (18 km2) of QEPA were patrolled by rangers
over a month. Because of its success, however, WCS and UWA graciously agreed
to a larger scale, controlled experiment: also in 9 km2 areas, but rangers patrolled
27 of these areas (243 km2, spread across QEPA) over five months; this is the
largest to-date field test of ML-based predictive models in this domain. We show
the areas in Fig. 4(a). Note that rangers patrolled these areas in addition to other
areas of QEPA as part of their normal duties.

This experiment’s goal was to determine the selectiveness of our model’s
snare attack predictions: does our model correctly predict both where there are
and are not snare attacks? We define attack prediction rate as the proportion of
targets (a 1 km by 1 km cell) in a patrol area (3 by 3 cells) that are predicted
to be attacked. We considered two experiment groups that corresponded to our
model’s attack prediction rates from November 2016 to March 2017: High (group
1) and Low (group 2). Areas that had an attack prediction rate of 50% or greater
were considered to be in a high area (group 1); areas with less than a 50% rate
were in group 2. For example, if the model predicted five out of nine targets
to be attacked in an area, that area was in group 1. Due to the importance of
QEPA for elephant conservation, we do not show which areas belong to which
experiment group in Fig. 4(a) so that we do not provide data to ivory poachers.

To start, we exhaustively generated all patrol areas such that (1) each patrol
area was 3 × 3 km2, (2) no point in the patrol area was more than 5 km away from
the nearest ranger patrol post, and (3) no patrol area was patrolled too frequently
or infrequently in past years (to ensure that the training data associated with all
areas was of similar quality); in all, 544 areas were generated across QEPA. Then,
using the model’s attack predictions, each area was assigned to an experiment
group. Because we were not able to test all 544 areas, we selected a subset such
that no two areas overlapped with each other and no more than two areas were
selected for each patrol post (due to manpower constraints). In total, 5 areas in
group 1 and 22 areas in group 2 were chosen. Note that this composition arose
due to the preponderance of group 2 areas (see Table 3). We provide a breakdown
of the areas’ exact attack prediction rates in Fig. 4(b); areas with rates below
56% (5/9) were in group 2, and for example, there were 8 areas in group 2 with a
rate of 22% (2/9). Finally, when we provided patrols to the rangers, experiment
group memberships were hidden to prevent effects where knowledge of predicted
poaching activity would influence their patrolling patterns and detection rates.

Table 3. Patrol area group memberships

Experiment group Exhaustive patrol area groups Final patrol area groups

High (1) 50 (9%) 5 (19%)

Low (2) 494 (91%) 22 (81%)
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6.1 Field Test Results and Discussion

The field test data we received was in the same format as the historical data.
However, because rangers needed to physically walk to these patrol areas, we
received additional data that we have omitted from this analysis; observations
made outside of a designated patrol area were not counted. Because we only
predicted where snaring activity would occur, we have also omitted other obser-
vation types made during the experiment (e.g., illegal cattle grazing). We present
results from this five-month field test in Table 4. To provide additional context
for these results, we also computed QEPA’s park-wide historical CPUE (from
November 2015 to March 2016): 0.04.

Table 4. Field test results: observations

Experiment group Observation count (%) Mean count (std) Effort (%) CPUE

High (1) 15 (79%) 3 (5.20) 129.54 (29%) 0.12

Low (2) 4 (21%) 0.18 (0.50) 322.33 (71%) 0.01

Areas with a high attack prediction rate (group 1) had significantly more
snare sightings than areas with low attack prediction rates (15 vs. 4). This is
despite there being far fewer group 1 areas than group 2 areas (5 vs. 22); on
average, group 1 areas had 3 snare observations whereas group 2 areas had
0.18 observations. It is worth noting the large standard deviation for the mean
observation counts; the standard deviation of 5.2, for the mean of 3, signifies
that not all areas had snare observations. Indeed, two out of five areas in group
1 had snare observations. However, this also applies to group 2’s areas: only 3
out of 22 areas had snare observations.

We present Catch per Unit Effort (CPUE) results in Table 4. When account-
ing for differences in areas’ effort, group 1 areas had a CPUE that was over ten
times that of group 2 areas. Moreover, when compared to QEPA’s park-wide
historical CPUE of 0.04, it is clear that our model successfully differentiated
between areas of high and low snaring activity. The results of this large-scale
field test, the first of its kind for ML models in this domain, demonstrated that
our model’s superior predictive performance in the laboratory extends to the
real world.

7 Conclusion

In this paper, we presented a hybrid spatio-temporal model to predict wildlife
poaching threat levels. Additionally, we validated our model via an extensive
five-month field test in Queen Elizabeth Protected Area (QEPA) where rangers
patrolled over 450 km2 across QEPA—the largest field-test to-date of Machine
Learning-based models in this domain. On real-world historical data from QEPA,
our hybrid model achieves significantly better performance than prior work. On
the data collected from our field test, we demonstrated that our model success-
fully differentiated between areas of high and low snaring activity. These findings
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demonstrated that our model’s predictions are selective and also that its supe-
rior laboratory performance extends to the real world. Based on these promising
results, future work will focus on deploying these models as part of a software
package to UWA to aid in planning future anti-poaching patrols.
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