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Abstract. Attribution studies in climate science aim for scientifically
ascertaining the influence of climatic variations on natural or anthro-
pogenic factors. Many of those studies adopt the concept of Granger
causality to infer statistical cause-effect relationships, while utilizing tra-
ditional autoregressive models. In this article, we investigate the potential
of state-of-the-art time series classification techniques to enhance causal
inference in climate science. We conduct a comparative experimental
study of different types of algorithms on a large test suite that com-
prises a unique collection of datasets from the area of climate-vegetation
dynamics. The results indicate that specialized time series classification
methods are able to improve existing inference procedures. Substantial
differences are observed among the methods that were tested.
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1 Introduction

Research questions in climate change research are mostly related to either climate
projection or to climate change attribution. Climate projection or forecasting aims
atpredicting the future state of the climatic system, typically over thenextdecades.
The goal of climatic attribution on the other hand is to identify and quantify cause-
effect relationships between climate variables andnatural or anthropogenic factors.
A well-studied example, both for projection and attribution, is the effect of human
greenhouse gas emissions on global temperature.

The standard approach in the field of climate science is based on simulation
studies with mechanistic climate models, which have been developed, expanded
and extensively studied over the last decades. Data-driven models, in contrast
to mechanistic models, assume no underlying physical representation of reality
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but directly model the phenomenon of interest by learning a more or less flexible
function of some set of input data. Climate science is one of the most data-rich
research domains. With global observations on ever finer spatial and temporal
resolutions from both satellite and in-situ measurements, the amount of (publicly
available) climatic data sets has vastly grown over the last decades. It goes
without any doubt that there is a big potential for making progress in climate
science with advanced machine learning models.

The most common data-driven approach for identifying causal relationships
in climate science consists of Granger causality modelling [17]. Analyses of this
kind have been applied to investigate the influence of one climatic variable on
another, e.g., the Granger causal effect of CO2 on global temperature [1,20], of
vegetation and snow coverage on temperature [19], of sea surface temperatures
on the North Atlantic Oscillation [26], or of the El Niño Southern Oscillation on
the Indian monsoon [25]. In Granger causality studies, one assumes that a time
series A Granger-causes a time series B, if the past of A is helpful in predicting
the future of B. The underlying predictive model that is commonly considered
in such a context is a linear vector autoregressive model [8,32]. Similar to other
statistical inference procedures, conclusions are only valid as long as all potential
confounders are incorporated in the analysis. The concept of Granger-causality
will be reviewed in Sect. 2.

In recent work, we have shown that causal inference in climate science can be
substantially improved by replacing traditional statistical models with non-linear
autoregressive methods that incorporate hand-crafted higher-level features of raw
time series [27]. However, approaches of that kind require a lot of domain knowl-
edge about the working of our planet. Moreover, higher-level features that are
included in the models often originate from rather arbitrary decisions. In this arti-
cle, we postulate that causal inference in climate science can be further improved
by using automated feature construction methods for time series. In recent years,
methods of that kind have shown to yield substantial performance gains in the
area of time series classification. However, we believe that some of those methods
also have a lot of potential to improve causal inference in climate science, and the
goal of this paper is to provide experimental evidence for that. We experimentally
compare a large number of time series classification methods – an overview and
more discussion of these methods will be given in Sect. 3.

Most attribution studies in climate science infer causal relationships between
time series of continuous measurements, leading to regression settings. However,
classification settings arise when targeting extreme events, such as heatwaves,
droughts or floods. We will conduct an experimental study in the area of investi-
gating climate-vegetation dynamics, where such a classification setting naturally
arises. This is an interesting application domain for testing time series classifica-
tion methods, due to the availability of large and complex datasets with worldwide
coverage. It is also a practically-relevant setting, because extremes in vegetation
can reveal the vulnerability of ecosystems w.r.t. climate change [23]. A more pre-
cise description of this application domain and the experimental setup will be pro-
vided in Sect. 4. In Sect. 5, we will present the main results, which will allow us to
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formulate conclusions concerning which methods are more appropriate in the area
of climate sciences.

2 Granger Causality for Attribution in Climate Science

Granger causality [17] can be seen as a predictive notion of causality between
time series. In the bivariate case, when two time series are considered, one com-
pares the forecasts of two models; a baseline model that includes only informa-
tion from the target time series (which resembles the effect) and a so-called full
model that includes also the history of the second time series (which resembles
the cause). Given two time series x = [x1, x2, ..., xN ] and y = [y1, y2, ..., yN ], with
N being the length of the time series, one says that the time series x Granger-
causes the time series y if the forecast of y at a specific time stamp t improves
when information of the history of x is included in the model.

In this paper we will limit our analysis to situations where the target time
series y consists of {0, 1}-measurements that denote the presence or absence
of an extreme event at time stamp t. As such, one ends up with solving two
classification problems, one for the baseline and one for the full model. We will
work with the Area Under the Curve (AUC) as performance measure, because
the class distribution will be heavily imbalanced, as a natural result of modelling
extreme events. Let ŷ denote the new time series that originates as the one-step
ahead forecast of y using either the baseline or the full model, then Granger
causality can be formally formulated as follows:

Definition 1. A time series x Granger-causes y if AUC(y, ŷ) increases when
xt−1, xt−2, ..., xt−P are considered for predicting yt, in contrast to considering
yt−1, yt−2, ..., yt−P only, where P is the lag-time moving window.

Granger causality studies might yield incorrect conclusions when additional
(confounding) effects exerted by other climatic or environmental variables are
not taken into account [13]. The problem can be mitigated by considering time
series of additional variables. For example, let us assume one has observed a third
variable w, which might act as a confounder in deciding whether x Granger-
causes y. The above definition then naturally extends as follows.

Definition 2. We say that time series x Granger-causes y conditioned on
time series w if AUC(y, ŷ) increases when xt−1, xt−2, ..., xt−P are included
in the prediction of yt, in contrast to considering yt−1, yt−2, ..., yt−P and
wt−1, wt−2, ..., wt−P only, where P is the lag-time moving window.

An extension to more than three time series is straightforward. In our exper-
iments, y will represent the vegetation extremes at a given location, whereas
x and w can be the time series of any climatic variable at that location (e.g.,
temperature, precipitation or radiation).

Generally, the null hypothesis (H0) of Granger causality is that the base-
line model has equal prediction error as the full model. Alternatively, if the
full model predicts the target variable y significantly better than the baseline
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model, H0 is rejected. In most applications, inference is drawn in vector autore-
gressive models by testing for significance of individual model parameters. Other
studies have used likelihood-ratio tests, in which the full and baseline models are
nested models [26]. Those procedures have a number of important shortcomings:
(1) existing statistical tests only apply to stationary time series, which is an unre-
alistic assumption for attribution studies in climate science, (2) most tests are
based on linear models, whereas cause-effect relationships can be non-linear, and
(3) the models used for such tests are trained and evaluated on in-sample data,
which will typically result in overfitting when the dimensionality or the model
complexity increases.

In recent work, we have introduced an alternative way of assessing Granger-
causality, by focussing on quantitative instead of qualitative differences in per-
formance between baseline and full models [27]. In this way, traditional linear
models can be replaced by more accurate machine learning models. If both the
baseline and the full model give evidence of better predictions, one can draw
stronger conclusions w.r.t. cause-effect relationships. To this end, no statisti-
cal tests are computed, but the differences between the two types of models is
visualized and interpreted in a quantitative way.

3 From Granger Causality to Time Series Classification

In the general framework that we presented in [27] we constructed hand-crafted
features based on knowledge that has been described in the climate literature
[12]. These features include lagged variables, cumulative variables as well as
extreme indices. Therefore, we ended up with in total ∼360 features extracted
from one time series. Our previous study has shown that incorporating those
features in any classical regression or classification algorithm might lead to a
substantial increase in performance (for both the baseline and the full model).

In this article, we investigate whether this feature construction process can
be automated using time series classification methods. Due to the increased
public availability of datasets from various domains, many novel time series
classification algorithms have been proposed in recent years. All those methods
either try to find higher-level features that represent discriminative patterns or
similarity measures that define an appropriate notion of relatedness between two
time series [2,11,21]. The following categories can be distinguished:

(a) Algorithms that use the whole series or the raw data for classification. To
this family of algorithms belongs the one nearest neighbour (1-NN) classifier
with different distance measures such as the dynamic time warping (DTW)
[29], which is usually the standard benchmark measure, and variations of it,
the complexity invariant distance (CID) [3], the derivative DTW [14], the
derivative transform distance (DTD) [15] and the Move-split-merge (MSM)
[33] distance.

(b) Algorithms that arebasedon sub-intervals of the original time series.Theyusu-
ally use summary measures of these intervals as features. Typical algorithms in
this category are the time series forest (TSF) [10], the time series bag of features
(TSBF) [5] and the learned pattern similarity (LPS) [4].
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(c) Algorithms that are attempting to find informative patterns, called shapelets,
in thedata.An informative shapelet is apattern thathelps indistinguishing the
classes by its presence or absence. Representative algorithms of this class are
the Fast shapelets (FS) [28], the Shapelet transform (ST) [18] and the Learned
shapelets (LS) [16].

(d) Algorithms that are based on the frequency of the patterns in a time series.
These algorithms build a vocabulary of patterns and form a histogram for
each observation by using this vocabulary. Algorithms such as the Bag of
patterns (BOP) [22], the Symbolic aggregate approximation-vector space
model (SAXVSM) [31] and the Bag of SFA symbols (BOSS) [30] are based
on the idea of a pattern vocabulary.

(e) Finally, there are approaches that combine more than one from the above
techniques, forming ensemble models. A recently proposed algorithm named
Collection of transformation ensembles (COTE) combines a large number of
classifiers constructed in the time, frequency, and shapelet transformation
domains.

In our comparative study, we run algorithms from the first four different
groups. The main criteria for including a particular algorithm in our analysis are
(1) availability of source code, (2) running time for the datasets that we consider,
and (3) interpretability of the extracted features. Since we have collected multiple
time series for a large part of the world (3,536 locations in total), the algorithms
should run in a reasonable amount of time. Several algorithms had problems to
finish within 3 days.

4 Experimental Setup

In order to evaluate the above-mentioned time series classification methods for
causal inference, we adopt an experimental setup that is similar to [27]. The
non-linear Granger causality framework is adopted to explore the influence of
past-time climate variability on vegetation dynamics. To this end, data sets of
observational nature were collected to construct climatic time series that are
then used to predict vegetation extremes. Data sets have been selected on the
basis of meeting the following requirements: (a) an expected relevance of the
variable for vegetation dynamics, (b) the availability of multi-decadal records,
and (c) the availability of an adequate spatial and daily temporal resolution. In
our previous work, we collected in this way in total 21 datasets. For the present
study, we retained three of them, while covering the three basic climatic vari-
ables: water availability, temperature, and radiation. The main reason for making
this restriction was that in that way the running time of the different time series
classification algorithms could be substantially reduced. Specifically, we collected
one precipitation dataset, which is coming from a combination of in-situ, satellite
data, and reanalysis outputs, called Multi-Source Weighted-Ensemble Precipita-
tion (MSWEP) [7]. We include one temperature dataset, which is a reanalysis
data set, and one radiation dataset from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim [9].
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In addition to those three climatic datasets, we also collected a vegeta-
tion dataset. We use the satellite-based Normalized Difference Vegetation Index
(NDVI) [34], which is a commonly used monthly long-term global indicator of
vegetation [6]. Roughly speaking, NDVI is a graphical greenness indicator which
measures how green is a specific point on the Earth at a specific time stamp.
The study period starting from 1981–2010 is set by the length of the NDVI
record. The dataset is converted to a 1◦ spatial resolution to match with the
climatic datasets.

For most locations on Earth, NDVI time series exhibit a clear seasonal cycle
and trend – see top panel of Fig. 1 for a representative example. However, in cli-
mate science, the interesting part of such a time series is the residual component,
usually referred to as seasonal anomalies. In a statistical sense, climatic data can
only be useful to predict this residual component, as both the seasonal cycle and
the trend can be modelled with pure autoregressive features. Similarly as in [27],
we isolate the residual component using time series decomposition methods, and
we work further with this residual component – see bottom panel of Fig. 1 for an
illustration. In a next step, extremes are obtained from the residuals, while tak-
ing the spatial distribution of those extremes into account. The most straightfor-
ward way is setting a fixed threshold per location, such as the 10% percentile of
the residuals. However, this leads to spatial distributions that are physically not
plausible, because one cannot expect that the same number of vegetation extremes
is observed in all locations on Earth. At some locations, vegetation extremes are
more probable to happen. For this reason, we group the location pixels into areas
with the same vegetation type, by using the global vegetation classification scheme
of the International Geosphere-Biosphere Program (IGBP) [24], which is generi-
cally used throughout a range of communities. We selected the map of the year
2001 (closer to the middle of our period of interest). In order to end up with
coherent regions that have similar climatic and vegetation characteristics, we fur-
ther divided the vegetation groups into areas in which only neighboring pixels
can belong to the same group. That way, we create 27 different pixel groups in
America, see Fig. 2. We limit the study to America because some of the time series
classification methods that we analyse have a long running time. Once we know
which of those methods perform well, the study can of course be further extended
to other regions, under the assumption that the same methods are favored for
those regions.

The vegetation extremes are then defined by applying a 10th percentile
threshold on the seasonal anomalies of each region. This is a common thresh-
old in defining extremes in vegetation [35]. Applying a lower threshold would
result in extreme events that are extremely rare, making it impossible to train
predictive models. In this way, we produce the target variable of our time series
classification task. The presence of an extreme is denoted with a ‘1’ and the
absence with a ‘0’. Unsurprisingly, the distribution of the vegetation extremes in
time indicates that many more extremes occur in recent years, which means
that a clear trend appears again in the time series of extreme events, even
though the initial time series was detrended. This makes the time series highly
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Fig. 1. The three components of an NDVI time series visualized for one particular
location. The top panel shows the linear trend (black continuous line) and the seasonal
cycle (dashed black line) that are obtained from the raw time series (red). The bottom
panel visualizes the residuals, which are obtained by subtracting the seasonal cycle
and the linear trend from the raw data. Only the residuals are further used to define
extreme events. (Color figure online)

Fig. 2. Groups of pixels that are regions with similar climatic and vegetation charac-
teristics. Based on the time series of each region we calculate the vegetation extremes
for the pixels of that region.

non-stationary. Moreover, also a seasonal cycle typically re-appears, as one
observes more extremes in certain months. Correctly identifying those two com-
ponents (trend and seasonality) is essential when inferring causal relationships
between vegetation extremes and climate.

As discussed in Sect. 2, a baseline model only includes information from the
target time series (i.e. previous time stamps). We both consider the residuals as
well as their binarized extreme counterparts as features for the baseline model.
However, due to the existence of seasonal cycles and trends when considering
binary time series of extreme vegetation, we also include 12 dummy variables
which indicate the month of the observation and a variable for the year of this
observation. These last two components are necessary because the baseline model
should tackle as good as possible the seasonality and the trend that exists in the
time series of NDVI extremes. In this paper, we perform a general test for causal
relationships between climatic time series and vegetation. As such, the full model
extends the baseline model with the above-mentioned climatic variables.
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5 Results and Discussion

We present two types of experimental results. First, we analyze the predictive
performance of various time series classification methods as representatives for
the full model in a Granger-causality context. Subsequently, we select the best-
performing algorithm for a Granger causality test, in which a baseline and a full
model are compared.

5.1 Comparison of Time Series Classification Methods

For the first step we performed a straightforward comparison of the performance
of the following algorithms: CID [3], LPS [4], TSF [10], SAXVSM [31], BOP [22],
BOSS [30], FS [28] and hand-crafted features in combination with a classifica-
tion algorithm [27]. In this setting, our dataset consists of monthly observations
(there are in total 360 observations per pixel), and the input time series for
each observation includes the 365 past daily values of precipitation time series
before the month of interest (excluding the daily values of the current month).
Only the precipitation time series is used, as some of the methods are unable
to handle multivariate time series as input. We train the models per region by
concatenating the observations of the pixels. The evaluation is performed per
pixel by using random 3-fold cross-validation and AUC as performance measure.

Figure 3 shows the results. The vocabulary-based algorithms outperform the
other representations, which implies that the frequency of the patterns makes the
two classes of our dataset more distinguishable. Algorithms which distinguish the
observations according to a presence or an absence of a shapelet perform poor,
probably because observations originating from consecutive time windows have
similar shapelets (the daily values of the next month is added for the next obser-
vation). In addition, the shapelet-based FS algorithm is also not very efficient in
terms of memory space for large datasets. For this reason, we could not obtain
results for the 4 largest regions of our dataset – see Table 1. For the algorithms
that compare the whole raw time series by using a distance measure (i.e., CID)
one can observe that the performance is also very low, probably also due to the
strong similarity between consecutive observations. Similarly, algorithms that
attempt to form a characteristic vector for each class fail since the patterns
in both classes are very similar (i.e., SAXVSM). On the other hand, from the
algorithms that use sub-intervals of time series, LPS has a similar performance
as the vocabulary-based algorithms, because it takes local patterns and their
relationships into account and forms a histogram out of them, while TSF fails in
capturing useful information. We note that the LPS algorithm includes random-
ness so in each run it extracts different patterns from the data and also it is more
time and space inefficient by comparison with the vocabulary-based algorithms.
Finally, the hand-crafted features are not able to extract local patterns of the
raw daily time series and are mostly based on statistic measurements. Table 1
presents the arithmetical results for the 9 largest regions. As one can observe,
the results of BOP and BOSS are very similar. In most regions they give rise to
substantially better results than the other methods that were tested.
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Fig. 3. Performance comparison in terms of AUC of the time series classification algo-
rithms in the univariate time series classification setting on climate data.

Table 1. Mean and standard deviation of the AUC for areas which include more than
100 pixels. The vocabulary-based algorithms as well as the LPS algorithm perform
very similar. Results of the algorithms SAXVSM and TSF are omitted due to their low
performance.

Algorithm Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9

Hand-crafted 0.50±0.01 0.50±0.00 0.54±0.05 0.52±0.03 0.51±0.02 0.50±0.00 0.50±0.00 0.50±0.01 0.51±0.01
LPS 0.59±0.06 0.56±0.04 0.65±0.09 0.65±0.07 0.61±0.06 0.62±0.05 0.60±0.05 0.65±0.07 0.59±0.05
BOP 0.60±0.07 0.56±0.05 0.65±0.08 0.64±0.07 0.60±0.06 0.61±0.05 0.61±0.06 0.66±0.07 0.60±0.05
BOSS 0.60±0.06 0.56±0.04 0.64±0.08 0.65±0.07 0.61±0.05 0.61±0.05 0.61±0.05 0.67±0.07 0.59±0.05
CID 0.50±0.03 0.50±0.02 0.51±0.05 0.51±0.04 0.50±0.03 0.54±0.04 0.53±0.03 0.55±0.05 0.51±0.03

±0.00 0.50± ± ±FS – 0.50 0.00 – 0.50 0.00 – 0.50 0.00 – 0.50±0.00

5.2 Quantification of Granger Causality

In a second step, we combine the best representation coming from the time series
classification algorithms and we apply it to the non-linear Granger causality
framework in order to test causal effects of climate on vegetation extremes. Our
main goal is to replace the hand-crafted features constructed in [27]. As the BOSS
algorithm has the best performance compared to the other time series algorithms,
we use the vocabulary of patterns that BOSS automatically extracts from the
climatic time series as features. To evaluate Granger causality, the baseline model
includes information from the NDVI extremes, while the full model includes also
the automatically-extracted features from the climatic time series. In contrast
to the previous set of experiments, we now include three climatic time series
instead of only the precipitation time series.
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Fig. 4. On the left, the performance of the full model that uses the patterns extracted
by the BOSS algorithm as predictors. On the right, a quantification of Granger causal-
ity; positive values indicate regions with Granger-causal effects of climate on vegetation
extremes.

Figure 4 shows the performance of the full model in terms of AUC, as well as
the performance improvement of the full model compared to the baseline model.
It is clear that by using information from climatic time series the prediction of
vegetation extremes improves in most of the regions. Therefore, one can conclude
that – while not bearing into consideration all potential control variables in our
analysis – climate dynamics indeed Granger-cause vegetation extremes in most
of the continental land surface of North and Central America.

As results of that kind could not be obtained with hand-crafted feature repre-
sentations, we do conclude that more specialized time series classification meth-
ods such as BOSS have the potential of enhancing causal inference in climate
science. While this paper presents particular results for the case of climate-
vegetation dynamics, we believe that the approach might be useful in other
causal inference studies, too.
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