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Abstract. A proper semantic representation for encoding side informa-
tion is key to the success of zero-shot learning. In this paper, we explore
two alternative semantic representations especially for zero-shot human
action recognition: textual descriptions of human actions and deep fea-
tures extracted from still images relevant to human actions. Such side
information are accessible on Web with little cost, which paves a new way
in gaining side information for large-scale zero-shot human action recog-
nition. We investigate different encoding methods to generate semantic
representations for human actions from such side information. Based
on our zero-shot visual recognition method, we conducted experiments
on UCF101 and HMDB51 to evaluate two proposed semantic represen-
tations. The results suggest that our proposed text- and image-based
semantic representations outperform traditional attributes and word vec-
tors considerably for zero-shot human action recognition. In particular,
the image-based semantic representations yield the favourable perfor-
mance even though the representation is extracted from a small number
of images per class.
Code related to this chapter is available at:
http://staff.cs.manchester.ac.uk/∼kechen/BiDiLEL/
Data related to this chapter are available at:
http://staff.cs.manchester.ac.uk/∼kechen/ASRHAR/
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1 Introduction

Zero-Shot Learning (ZSL) aims to recognize instances from new classes which
are not seen in the training data. It is a promising alternative to the traditional
supervised learning which requires labour-intensive annotation work on all the
classes involved. As shown in Fig. 1, in ZSL, the knowledge learned from training
data is transferred to recognise unseen classes through the side information which
can usually be acquired with less effort. Although most existing works in ZSL
focus on the development of novel recognition models, the side information for
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knowledge transfer plays an equally important role in the success of ZSL. The
most popular side information used in ZSL literature are attributes and word
vectors. Although they have been widely used in ZSL [9,12,14,26,27], both of
them have obvious drawbacks as well, especially for zero-shot human action
recognition in video data.
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Fig. 1. A schematic diagram of zero-shot learning framework. The work in this paper is
highlighted in the dashed box. Human action classes are denoted by coloured markers
(blue and black for training and unseen classes respectively) with different shapes. The
training data are used to learn the mapping P and training class embedding (blue filled
markers in the latent space), then the unseen class embedding (black filled markers
in the latent space) is achieved by preserving the semantic distances (red lines). See
Sect. 4.2 for more details of our ZSL method. (Color figure online)

The definition and annotation of attributes for human actions (e.g., the
attributes defined for UCF101 [10] include “bodyparts-visible: face, fullbody,
onehand”, “body-motion: flipping, walking, diving, bending”, etc.) are subjec-
tive and labour-intensive. When a large number of human actions are involved,
more attributes are needed to distinguish one human action from the other. As a
result, attributes based semantic representations are inappropriate for large scale
zero-shot human action recognition. On the other hand, as stated in [2], using a
word vector of the class label to represent a human action is far from adequate
to illustrate the rich appearance variations. In addition, the word vectors are
learned from textual corpus, thus suffering from the catastrophic semantic gap
problem (i.e., the difference of information conveyed by visual media and texts).

To address the limitations of existing semantic representations for ZSL, we
attempt to explore alternative side information towards enhanced zero-shot
human action recognition. The essentials of side information for ZSL are twofold.
Firstly, it should be achievable for a large number of human actions without
much effort. More importantly, the side information should be able to capture
the visually discriminative semantics thus benefiting the ZSL by easily bridging
the semantic gap. To this end, we employ action relevant images as the side
information resources to extract the semantics of human actions. With the aid
of search engines, it is effortless to collect a set of action relevant images by
using the action name as the key words. Although still images lack of tempo-
ral information in human actions, they provide abundant visually discriminative
information which can be exploited to extract high-level semantic representations
for human actions. On the other hand, we aim to enhance the word vectors by
collecting and encoding textual descriptions of human actions. We believe that
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the contextual information in the action relevant texts (e.g., description articles
of human actions from the web) will remove the ambiguity of the semantics in
the original action word vectors which are based solely on the action labels.

To summarise, the contributions of this paper include:

– We propose and implement the idea of using textual descriptions to enhance
the word vector representations of human actions in ZSL.

– We propose and implement the idea of using action related still images to
represent semantics for video based human actions in ZSL.

– Experiments are conducted to evaluate the effectiveness of the proposed
semantic representations in zero-shot human action recognition, and signifi-
cant performance improvement has been achieved.

2 Related Work

The semantic representation is key for the success of ZSL. Recently, attempts
have been made to explore more effective semantic representations for
objects/actions towards improved ZSL performance. In this section, we will
review the prevailing semantic representations used in ZSL (Table 1), includ-
ing a variety of extensions of attributes and word vectors, as well as many other
less popular approaches proposed in literature.

Table 1. A survey on semantic representations in ZSL

Authors and year Semantic representation

Lampert et al. [12] Attributes, annotated manually

Sharmanska et al. [21] Attributes, enhanced by learning from visual data

Liu et al. [14] Attributes, enhanced by learning from visual data

Qin et al. [18] Attributes, enhanced by learning from visual data

Fu et al. [8] Attributes, enhanced by learning from visual data

Inoue and Shinoda [9] Word vector, enhanced by a weighted combination
of related word (from WordNet) vectors

Alexiou et al. [2] Word vector, enhanced by the synonyms of labels
(from Internet dictionaries)

Mukherjee and Hospedales [16] Word Gaussian distribution

Sandouk and Chen [20] Word vector, enhanced by contexts (from tags)

Elhoseiny et al. [6] Tf-idf, based on Wikipedia articles

Akata et al. [1] BOW, based on Wikipedia articles

Rohrbach et al. [19] WordNet path length, based on WordNet
ontology Hit-counts, based on web search results

Chuang Gan et al. [5] WordNet path length, based on WordNet ontology

Attributes based semantic representations were firstly proposed for ZSL in
[12], thereafter, attributes have been employed for ZSL in many works [3,26–28].
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A set of binary attributes need to be manually defined to represent the semantic
properties of objects. As a result, each object class can be represented by a binary
attribute vector in which the value of one and zero indicates the presence and
absence of each attribute respectively. Since the attributes are shared by seen
and unseen classes, the knowledge transfer is enabled. However, as mentioned
above, the definition of attributes require experts with domain knowledge to
discriminate different classes, and the attribute annotation for a large number
of classes could be subjective and labour-intensive.

Alternatively, attributes can be mined automatically from visual features
by discriminative mid-level feature learning [7,8,14,18,21], but their semantic
meanings are unknown, thus inappropriate for direct use in ZSL. To enhance
the attributes’ discriminative power and semantic meaningfulness, the manu-
ally defined attributes and the ones automatically learned from training data
are usually combined. However, the data-driven attributes are usually dataset
specific and probably fail on a different dataset.

The other kind of prevailing side information used in ZSL is derived from
text resources. One of the most popular semantic representations is word vector
(e.g., the ones generated by the word2vec tool [15]) due to its convenience and
effectiveness. A class label can be easily represented with the vector representa-
tion of the corresponding word or phrase. However, word vectors are deficient
to discriminate different classes from the visual perspective due to the semantic
gap, i.e., the gap between visual and semantic information. As a result, word
vectors are usually outperformed by attributes in ZSL.

To alleviate the semantic gap problem, some attempts have been made to
enhance the word vectors [2,9,16,20]. Inoue and Shinoda [9] aim to adapt the
original word vectors to make two visually similar concepts close to each other in
the adapted word vector space by representing a concept with a weighted sum of
its original word vector and its hypernym (based on WordNet) word vectors. And
the weights are learned from visual resources. Alexiou et al. [2] enrich the word
vector representation by mining and considering synonyms of the action class
labels from multiple Internet dictionaries. Mukherjee and Hospedales [16] use
Gaussian distribution instead of a single word vector to model the class labels
so that the intra-class variability can be expressed properly in the semantic
representations. To address the issue of polysemy, Sandouk and Chen [20] learn
a specific vector representation for a word together with its context. That is
to say, the same word could have different vector representations when it is in
different contexts. Inspired by these works, our work further investigates the
possible side information and enabling techniques to enhance the word vectors
for ZSL.

Other than attributes and word vectors, other side information has also been
investigated for knowledge transfer in ZSL, only if they are able to model the
relationships among different classes and relatively easy to obtain. For exam-
ple, WordNet path length is used to measure the semantic correlations between
two concepts in [5,19]. The Internet together with search engines provides a
natural opportunity to get side information to measure between-class semantic
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relationships based on hit-count on search results [19]. Textual descriptions of
a class rather than the single class name are employed to represent a class in
[1,6]. Concept related textual descriptions (e.g., Wikipedia page) can be read-
ily obtained from the Internet and then processed with techniques in natural
language processing (NLP). Considering our focus on zero-shot human action
recognition based on video data, images from the Internet can be alternative
side information to texts which have been a typical choice for zero-shot image
classification.

3 Method

In this section, we propose our methods of generating semantic representations
for zero-shot human action recognition from text and image resources respec-
tively. Firstly, we use search engines to collect action relevant texts and images
as the side information. Some typical examples are shown in Fig. 2. Once the
side information are collected, we use different encoding approaches to generate
the semantic representations for human actions.

Fig. 2. Examples of collected description texts and images of three human actions from
UCF101 (i.e., “Apply Lipstick”, “Playing Piano” and “Skiing”).

3.1 Text-Based Semantic Representation

Texts Collection. Motivated by the fact a class label is insufficient to depict
the complex concepts in the human action, we try to collect textual descriptions
from the web to represent each human action. Textual descriptions of human
actions can be derived from WikiHow, a website teaching people “how to do
anything”. Inevitably, the description texts for some actions (e.g., “pick”, “sit”)
are not available from WikiHow, for which we turn to alternative sources includ-
ing Wikipedia and Online dictionary.
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Pre-processing. Once the textual descriptions for all the human actions are
collected, we end up with a document for each human action class. We use
natural language processing techniques to pre-process the unstructured textual
data before encoding them into semantic representations. In the first step, we
tokenize the documents to get all the words appearing in the documents. After
removing the stop words (i.e., the words carrying little semantic meanings such
as “is”, “you”, “of”), we have a dictionary containing d words.

Term-Document Matrix (TD). Given the documents and the dictionary
containing all the terms/words in the documents, a term-document matrix M
is constructed to represent the term frequency in all documents. Mij denotes
the frequency of term i in document j, where i = 1, 2, . . . , d and j = 1, 2, . . . , C,
C is the number of documents, i.e., the number of human actions in a specific
dataset. Thus the column vectors in M can be used to represent the seman-
tic representations of human actions. We denote this approach as TD in the
following sections.

Average Word Vector (AWV). We aim to enhance the word vectors by
incorporating the collected textual information. Taking advantage of the compo-
sitional property of word vectors, we can represent a document with the average
of all the included word vectors.

AWV (j) =
1
nj

nj∑

i=1

vi (1)

where nj is the number of terms in the j-th document, vi ∈ R
D denotes the

word vector of the i-th term in the document, and D is the dimensionality of
word vectors.

Fisher Word Vector (FWV). In contrast to AWV using the mean of all word
vectors to represent a document, FWV aims to model the distribution of word
vectors in a document. Fisher Vector represents a document (i.e., a set of words)
by the gradient of log likelihood with respect to the parameters of a pre-learned
probabilistic model (i.e., Gaussian Mixture Model) [17,25]. A Gaussian Mixture
Model (GMM) is used to fit the distribution of the word vectors involved in all
documents, where the parameters Θ = {μk, Σk, πk}, k = 1, . . . ,K. Let V j =
{v1, . . . , vnj

} be a set of word vectors from the j-th human action description
document. Then the Fisher Vector of j-th document can be denoted by:

FWV (j) = [GV j

μ,1, . . . ,GV j

μ,K ,GV j

σ,1, . . . ,GV j

σ,K ], (2)

where

GV j

μ,k =
1√
πk

∑

vi∈V j

γk,i(
vi − μk

σk
), (3)
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GV j

σ,k =
1√
2πk

∑

vi∈V j

γk,i(
(vi − μk)2

σ2
k

− 1), (4)

γk,i =
exp[− 1

2 (vi − μk)T Σ−1
k (vi − μk)]

ΣK
t=1exp[− 1

2 (vi − μt)T Σ−1
k (vi − μt)]

. (5)

The dimension of the Fisher Vector is 2DK, where D and K are the dimension-
ality of word vectors and the number of components in the GMM respectively.

3.2 Image-Based Semantic Representation

Human actions are difficult to describe with texts due to the complexity and
intra-class variations. Although they lack temporal information, still images can
provide abundant information for the understanding of human actions. Com-
pared to the video examples, still images are much easier to collect, annotate
and store. Thus we hold the view that still images are a proper kind of side
information which can benefit modelling human action relationships with little
effort.

Image Collection. Given a human action, we use the label as the key word and
search relevant images with search engines. For most human actions we can get
a collection of images each of which gives a view of the action. However, for some
action names which could have multiple meanings, the additional explaining key
words are needed to get reasonable searching results. For example, we use “salsa
spin + dancing” and “playing + hula hoop” for the actions “salsa spin” and “hula
hoop” respectively. For each human action, we get different numbers of relevant
images after removing the ones of poor quality (e.g., irrelevant ones and the ones
smaller than 10 Kb) from the returned results. The image collection and filtering
can be processed automatically without many human interventions1.

Feature Extraction. We aim to extract useful information from a set of images
to represent a human action. Recently, deep convolution neural networks have
been used to extract image features carrying high-level conceptual information.
By feeding the images into a pre-trained CNN model, the deep image features
can be obtained easily. Then each human action is represented with a set of
image feature vectors F j = {f1, . . . , fnj

}. In the next two sections, we use two
approaches to encode the set of image features into the action-level semantic
representation.

Average Feature Vector (AFV). Similar to Eq. (1), we can use the average
of multiple image features as the human action semantic representation.

AFV (j) =
1
nj

nj∑

i=1

fi (6)

1 The image scraper tool is available: http://staff.cs.manchester.ac.uk/kechen/
ASRHAR/.

http://staff.cs.manchester.ac.uk/kechen/ASRHAR/
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Fisher Feature Vector (FFV). Similar to the processing applied on word
vectors in Sect. 3.1, we use Fisher Vector to encode a set of image feature vectors
relevant to a specific human action.

FFV (j) = [GF j

μ,1, . . . ,GF j

μ,K ,GF j

σ,1, . . . ,GF j

σ,K ], (7)

where GF j

μ,i and GF j

σ,i can be calculated in the same way as Eqs. (3–5).

4 Experimental Settings

4.1 Dataset

We use two human action datasets to evaluate the proposed approaches for zero-
shot recognition, i.e., UCF101 [22] and HMDB51 [11]. UCF101 is a human
action recognition dataset collected from YouTube. There are 13,320 real action
video clips falling into 101 action categories. In our experiments, we use 5 ran-
domly generated 51/50 (seen/unseen) class-wise data splits. HMDB51 contains
6,766 video clips from 51 human action classes. Similarly, we use 5 randomly gen-
erated 26/25 splits in all experiments.

4.2 Zero-Shot Recognition Method

We employ our recently developed ZSL method, bidirectional latent embedding
learning (BiDiLEL) [26], as a test bed in our experiments2. To make the paper
self-contained, we will briefly describe the main idea of BiDiLEL in this section.

The method employs a two-stage latent embedding algorithm to learn a latent
space in which the semantic gap is bridged and zero-shot recognition can be
done (see Fig. 1). In bottom-up stage, we learn a projection matrix P by super-
vised locality preserving projection (SLPP) [4], such that the examples close to
each other in the original visual space will still be close in the latent space. By
exploiting the local structures and labelling information in the training data, the
learned latent space preserves the data distribution and is more discriminative.
The properties are expected to generalise well for test examples from unseen
classes.

In the top-down embedding, the latent embedding of each seen class can be
calculated by averaging the projections of all the training examples from the class
and then serve as landmarks guiding the learning of latent embedding of unseen
classes. We use the landmarks based Sammon mapping (LSM) [26] which aims
to preserve the inter-class semantic distances (measured in the semantic space).
As a result, the semantic distances between seen and unseen classes as well as
between any pair of unseen classes will be preserved in the latent space.

Once the latent embedding of both seen and unseen classes are obtained, we
can do the zero-shot learning in the latent space using the nearest neighbour
2 Like attributes and word vectors, our proposed semantic representations may be

directly deployed in all the existing zero-shot human action recognition methods.
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method. Specifically, given a test example, we use projection matrix P to map
it into the latent space, where its distances to all the class embedding can be
calculated, and it will be assigned to the closest class label. For more details, we
refer the readers to [26].

4.3 Video Representation

C3D was proposed in [24] for human action recognition. It utilizes 3D Con-
vNets to learn spatio-temporal features for video streams. According to [26],
the C3D video representation outperforms its counterparts in zero-shot human
action recognition. We use the model pre-trained on Sports-1M dataset and
follow the setting in [24,26] to extract spatio-temporal deep features (i.e., the
4096-dimensional “fc6” activations of the deep neural network) from 16-frame
segments. Finally, the visual representation of a video stream is calculated by
averaging the features of all the segments from the video.

4.4 Evaluation

In most existing ZSL works, the evaluations are based on the assumption that
test examples are only from unseen classes, which is often referred as to con-
ventional zero-short learning (cZSL). In practice, however, the test examples
can be from either training classes or unseen classes. To evaluate ZSL methods
in a more practical scenario, the problem of generalised ZSL has been formu-
lated and investigated in [3,27]. In gZSL, given a test example, the label search
space consists of both seen and unseen classes. In our experiments, we follow the
protocols in [27] and report both conventional and generalised ZSL (cZSL and
gZSL) results using per-class accuracy. In the generalised ZSL scenarios, except
the examples from test classes, we also reserve 20% examples from each training
class for testing and the rest 80% examples from each training class for training.

Concretely, we report the recognition accuracy of test examples from unseen
classes by setting the search space in the unseen label set U for the cZSL; the
accuracy is denoted by AU→U . For gZSL, we set the search space in the whole
label set T = S ∪ U and report three types of per-class accuracies, i.e., the
recognition accuracy of test examples from unseen classes AU→T , the recognition
accuracy of test examples from seen classes AS→T and the harmonic mean,

H = 2 ∗ AU→T ∗ AS→T /(AU→T + AS→T ). (8)

The ZSL method employed in our experiments works in the inductive setting
(i.e., the test example is processed individually), but can be extended to the
transductive setting (i.e., all the test examples are assumed to be available as a
collection when doing the recognition) easily by using the structured prediction
method [26,28]. The method of structure prediction uses Kmeans to group all
the test examples into clusters (the number of clusters is set to be the number
of unseen classes) and find a one-to-one map from the clusters to unseen classes.
In our experiments, we will report the results of cZSL in both inductive and
transductive settings.
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5 Experimental Results

In this section, we present the designed experiments and the results to evaluate
the effectiveness of proposed semantic representations3.

5.1 Text-Based Representation

We conduct experiments of zero-shot human action recognition by utilising the
proposed text-based semantic representations in Sect. 3.1, i.e., TD, AWV and
FWV. We use the 300-dimensional word vectors pre-trained with word2vec on
Google News dataset (about 100 billion words)4. For FWV, we set the value
of K in Eq. (2) to be {1, 2, 3, 4, 5}. The experiments aim to investigate how
different text-based semantic representations perform in zero-shot human action
recognition. In our experiments, we follow the protocols in [26] using class-wise
cross validation to find the optimal values of hyper-parameters. According to the
performance on the validation data, cosine distances are employed to calculate
the semantic distances for FWV, and Euclidean distances are employed for AWV.

We report the results of conventional ZSL in both inductive and transductive
settings in Table 2. With only the textual description sources, the simple encod-
ing method TD can achieve the accuracy of 19.54% and 15.26% respectively
on UCF101 and HMDB51, which indicates the textual descriptions collected by
search engines are useful for modelling the inter-class relationships. By incorpo-
rating the pre-trained word vectors, AWV improves the accuracy to 24.38% and
21.80% respectively on UCF101 and HMDB51. On the other hand, by compar-
ing FWV with different K values, we know that K = 1 gives the best results
with an accuracy of 23.76% on UCF101 and 19.57% on HMDB51; however, it is
still outperformed by AWV on both datasets regardless of inductive or transduc-
tive settings. To conclude, AWV performs the best among different text-based
semantic representations.

5.2 Image-Based Representation

In our experiments, we collect variant numbers of relevant images for different
human actions. The average number of relevant images per class is around 200
and 100 for UCF101 and HMDB51 respectively. To extract the image features, we
use the GoogLeNet [23] model pre-trained on ImageNet dataset5. The activations
of top fully connected layer of GoogLeNet of 1024 dimensions are used as the deep
image features. We evaluate the image-based semantic representations encoded
with different approaches described in Sect. 3.2, i.e., AFV and FFV. Again, we
set the values of K in Eq. (7) to be {1, 2, 3, 4, 5}. We employ the same experiment
protocols as those used in the previous experiments (Sect. 5.1). According to the

3 The scripts and data used in our experiments can be available on our project page:
http://staff.cs.manchester.ac.uk/kechen/ASRHAR/.

4 https://code.google.com/p/word2vec/.
5 http://www.vlfeat.org/matconvnet/.

http://staff.cs.manchester.ac.uk/kechen/ASRHAR/
https://code.google.com/p/word2vec/
http://www.vlfeat.org/matconvnet/
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Table 2. Results of different text-based semantic representations (mean± standard
error of recognition accuracy %) on UCF101 and HMDB51 datasets. (Sem. Rep.–
Semantic Representation, Att–Attributes, WV–Word vector)

Sem. Rep. UCF101 (51/50) HMDB51 (26/25)

Inductive Transductive Inductive Transductive

Random 2.00 2.00 4.00 4.00

Att 21.54 ± 0.72 32.00± 2.30 – –

WV 19.42 ± 0.69 22.05 ± 1.74 21.53 ± 1.75 24.14 ± 3.43

TD 19.54 ± 0.75 24.29 ± 0.65 15.26 ± 0.57 15.33 ± 1.72

AWV 24.38± 1.00 30.60 ± 2.67 21.80± 0.87 26.13± 1.29

FWV (K = 1) 23.76 ± 0.72 28.54 ± 0.70 19.57 ± 1.21 20.41 ± 1.74

FWV (K = 2) 23.61 ± 1.08 28.64 ± 1.45 18.80 ± 1.22 20.01 ± 1.74

FWV (K = 3) 22.21 ± 0.96 24.33 ± 2.34 17.35 ± 1.93 21.37 ± 3.16

FWV (K = 4) 22.11 ± 0.62 28.76 ± 1.03 17.07 ± 1.41 18.80 ± 2.95

FWV (K = 5) 21.50 ± 0.67 27.56 ± 2.43 16.95 ± 1.19 17.20 ± 1.92

performance on the validation data, cosine distances are employed to model the
semantic distances for FFV, and Euclidean distances are employed for AFV.

The experimental results are shown in Table 3. Apparently, K = 1 again
gives the best performance of FFV, achieving 40.12% and 25.82% respectively
on UCF101 and HMDB51 in the inductive setting, 50.67% and 31.51% respec-
tively on UCF101 and HMDB51 in the transductive setting. Different from the
text-based semantic representations, image-based semantic representations FFV
encoded by Fisher Vector outperforms the AFV on both datasets.

Table 3. Results of different image-based semantic representations (mean± standard
error of recognition accuracy %) on UCF101 and HMDB51 datasets.

Sem. Rep. UCF101 (51/50) HMDB51 (26/25)

Inductive Transductive Inductive Transductive

Random 2.00 2.00 4.00 4.00

AFV 37.24 ± 0.89 50.48 ± 1.35 25.55 ± 1.66 30.77 ± 3.23

FFV (K = 1) 40.12± 1.30 50.67± 2.45 25.82± 1.19 31.51± 1.67

FFV (K = 2) 38.01 ± 1.58 49.60 ± 1.82 25.50 ± 0.95 28.98 ± 1.94

FFV (K = 3) 36.52 ± 1.38 45.48 ± 0.73 24.27 ± 1.10 26.95 ± 3.38

FFV (K = 4) 35.31 ± 1.17 44.76 ± 2.40 23.22 ± 1.25 25.26 ± 2.32

FFV (K = 5) 34.98 ± 0.68 45.08 ± 1.82 23.09 ± 1.12 23.93 ± 2.06
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5.3 Comparison with Other Semantic Representations

In this experiment, we compare the proposed semantic representations with other
popular ones. From Tables 2 and 3, we know that AWV and FFV (K = 1) perform
the best among the text- and image-based semantic representations respectively.
So we consider AWV and FFV (K = 1) as the representatives of the proposed
text- and image-based semantic representations. As described in Sect. 4.4, we
conduct the experiments in both conventional and generalised ZSL scenarios in
our experiments.

We present the experimental results in Table 4. Clearly, the proposed two
semantic representations (i.e., AWV and FFV (K = 1)) outperform word vec-
tors and attributes consistently in terms of the conventional ZSL evaluation
metric. On UCF101, the use of textual information enhances the word vectors
based solely on the action labels by lifting the accuracy from 19.42% to 24.38%,
even higher than that of labour-intensive attributes (21.54%). The image-based
semantic representation FFV encoded with Fisher Vector gives the best accu-
racy of 40.12%, significantly higher than its counterparts. This is attributed to
the narrower semantic gap between video representation space and image-based
semantic space. The still images contain abundant visually discriminative infor-
mation which can be further encoded into high-level semantic representations of
human actions. On HMDB51, the same conclusions can be drawn. It is notewor-
thy that AWV is only slightly better than WV for HMDB51 dataset. The reason
might be the existence of actions which are difficult to describe with texts in this
dataset, such as, “sit”, “talk”, “turn”, “stand”, “pick”, “catch”, and etc.

Table 4. A comparison of different semantic representations on UCF101 and HMDB51
datasets (mean± standard error)%.

Dataset Sem. Rep. cZSL gZSL

AU→U AU→T AS→T H

UCF101 Random 2.00 1.00 1.00 1.00

WV 19.42 ± 0.69 4.54 ± 0.64 84.79 ± 0.91 8.59 ± 1.17

Att 21.54 ± 0.72 2.48 ± 0.62 86.39 ± 1.37 4.78 ± 1.18

AWV 24.38 ± 1.00 5.32 ± 1.53 86.43± 1.06 9.85 ± 2.66

FFV 40.12± 1.30 16.55± 1.30 82.38 ± 1.17 27.49± 1.86

HMDB51 Random 4.00 2.00 2.00 2.00

WV 21.53 ± 1.75 2.64 ± 0.33 58.70 ± 1.40 5.05 ± 0.61

AWV 21.80 ± 0.87 2.99 ± 0.35 62.00± 2.57 5.69 ± 0.64

FFV 25.68± 1.07 5.91± 0.90 58.57 ± 1.50 10.65± 1.48

Regarding the generalised ZSL scenario, the proposed AWV and FFV per-
form better on the test examples from unseen classes (with 5.32% and 16.55%
respectively on UCF101, 2.99% and 5.91% respectively on HMDB51), outper-
forming the attributes and word vectors. We also notice that FFV does not
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perform the best on test examples from seen classes (i.e., AS→T ), although it is
significantly better than others in terms of harmonic mean (H). This is reason-
able and practically preferable with the trade-off between recognition accuracy
of examples from seen and unseen classes.

5.4 How Many Images Are Enough?

In the previous experiments, we use all the collected images to encode the image-
based semantic representations. In this experiment, we investigate how the num-
ber of images affects the encoded semantic representations. We use AFV and
FFV (K = 1) as the encoding methods and generate the semantic representa-
tions for each human action with the number of relevant images to be 5, 10, 20,
30, 40, 50, 60, 70, 80, 90 and 100 respectively (For the case when the total num-
ber of collected images for one human action is less than the expected number,
we simply use all the collected images of that action in the experiment). The
experiments are conducted on two human action datasets in conventional ZSL
scenario under both inductive and transductive settings.

Fig. 3. Effects of number of images on the performance of AFV and FFV (K = 1).

The performances of two types of image-based semantic representations with
different numbers of images are shown in Fig. 3. For a direct comparison, we
display the baseline performance of attributes and word vectors in the figure
as well. Using more images usually benefits the performance of AFV and FFV
on both datasets. In specific, we can see a dramatic performance boost with the
number of images increased from 5 to 40 per class for UCF101. A further increase
of images does not improve the performance significantly, which is especially true
in the inductive setting. For HMDB51 dataset, the similar trend of performance
improvement can be observed from Fig. 3, and the performance improvement
stops until the number of images per class increases to around 80. In addition, the
proposed image-based semantic representations using only 5 images per class can
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achieve better performance on UCF101 than attributes and word vectors, and the
number rises to 20 for HMDB51 to beat word vectors. To summarise, we are able
to use a small number of relevant images to encode the semantic representations
of human actions, yet boosting the zero-shot human action recognition accuracy
to a large extent.

6 Conclusions and Future Work

We explore the alternative side information to the existing attributes and
word vectors towards improved zero-shot human action recognition. The tex-
tual descriptions of human actions from the Internet can be used as side infor-
mation for knowledge transfer in ZSL. In addition, the combination with pre-
trained word vectors can further improve the power of text-based semantic rep-
resentations, even better than the manually annotated attributes. On the other
hand, the image-based semantic representations achieve dramatic performance
improvement compared with the ones based on other side information (e.g.,
texts and human annotations), due to the narrower semantic gap. Our experi-
ments also show that a small number of images are enough to gain significant
performance improvement.

There are quite a few directions we can follow in our future work. Firstly,
we only use a very simple encoding method (TD) for text-based semantic repre-
sentations in this paper, which results in an extremely high dimensionality and
sparse vector representation per document. It has been chosen in this work as a
proof of concept, but could be optimised by using alternative techniques such as
latent Dirichlet allocation (LDA), latent semantic indexing (LSI), etc. Besides,
in our methods of text-based representation encoding, only the occurrences of
different words in a given document are considered, and the word orders which
play an important role in text understanding have been ignored. Thus the mean-
ing of sentences containing “not” and “but” would be destroyed. To overcome
this limitation, some potential techniques recently developed in NLP (e.g., docu-
ment2vec [13]) would be investigated. Currently, we extract image features with
deep CNN models pre-trained on large scale object classification dataset (i.e.,
ImageNet). Although the pre-trained models have already shown great general-
ization and transferability to other visual recognition tasks, better performance
can be expected by fine-tuning the models with our specific human action image
data. We have done some preliminary experiments on the combination of two
different types of semantic representations, but only get results no better than
the use of image-based semantic representation alone. We do not want to rush to
the conclusion that the image- and text-based semantic representations are not
complementary before further studying the combination methods in our future
work.
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