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Abstract. Most user-based websites such as social networks (Twitter,
Facebook) and e-commerce websites (Amazon) have been targets of
group fraud (multiple users working together for malicious purposes).
How can we better rank malicious entities in such cases of group-fraud?
Most of the existing work in group anomaly detection detects lock-step
behavior by detecting dense blocks in matrices, and recently, in tensors.
However, there is no principled way of scoring the users based on their
participation in these dense blocks. In addition, existing methods do not
take into account temporal features while detecting dense blocks, which
are crucial to uncover bot-like behaviors. In this paper (a) we propose a
systematic way of handling temporal information; (b) we give a list of
axioms that any individual suspiciousness metric should satisfy; (c) we
propose zooRank, an algorithm that finds and ranks suspicious entities
(users, targeted products, days, etc.) effectively in real-world datasets.
Experimental results on multiple real-world datasets show that zooRank
detected and ranked the suspicious entities with high accuracy, while out-
performing the baseline approach.

1 Introduction

User-based systems, such as web-services like Amazon, Twitter or corporate IT
networks, have become popular targets of fraud or attacks. A popular research
problem is to detect the spammers/fraudsters/attackers that are trying to attack
a given system [3,11,13,21]. Similarly, in the social networks setting, there are
multiple websites where anyone can buy fake Facebook page-likes or Twitter fol-
lowers. In all these cases, such fraudulent activities take the form of “lockstep” or
highly synchronized behavior: such as, multiple users liking the same set of pages
on Facebook, or multiple users following the same users almost at the same time
on Twitter [3]. Such behavior results in dense blocks in matrices/tensors. The
reason behind these blocks is intuitive, as most of the fraudsters have constrained
resources (accounts, IP addresses, time, etc.) and they reuse their resources to
add as many fraudulent activities as possible to maximize their profits.
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Various methods have been proposed to identify users exhibiting such behav-
ior, which involve finding dense blocks in tensors [11,21] or clustering in sub-
graphs [3,23]. However, for security experts monitoring the systems, it is imper-
ative to know which users are more suspicious than other users, since it directs
their attention to such users for further analysis or actions. In this paper we pro-
pose a method that ranks entities effectively (see Fig. 1) for a security analyst
to view. Consider Fig. 2; all three users, A, B and C are participating in dense
blocks (as they are part of the 2 rectangles), however their contribution towards
the suspiciousness of each block is different. A core question we answer in our
paper is as follows:

Informal Problem 1 (Individual Suspiciousness Metric). Given multi-
modal temporal data in the form of (userId, productId, . . . , timestamp), how can
we find and score suspicious entities (e.g. users, activities, products, days,etc.)?

In addition, almost all the social networking websites and services have times-
tamps associated with every user activity. However, few approaches in the litera-
ture consider temporal features [3]. These timestamps can be useful for detecting
fraudsters. However, it is not clear in dense block detection literature, in what
ways we can incorporate the temporal information available to us. In this paper
we answer the following question:

Informal Problem 2 (Temporal data handling). Given data in the form
of (cat 1, cat 2, . . . , timestamp), how can we generate features from timestamps
useful for detecting fraudsters? Here cat 1,cat 2 are any categorical features (gen-
erally userId, productId, activityId, ratings, etc.).

We propose zooRank, a novel approach for successfully scoring entities
based on their participation in suspicious dense blocks. We introduce a set of
axioms that any ideal individual scoring metric should satisfy. We show the-
oretically, that our proposed scoring function satisfies the proposed axioms.
Additionally, zooRank also provides a framework to make good use of tem-
poral information that generally exists in all the real-world datasets. As shown
in Fig. 1, zooRank successfully finds suspicious users in multiple real-world
datasets (Software Marketplace data and Reddit data) with high accuracy. Addi-
tionally, the suspicious users found by our method showed clearly anomalous pat-
terns. In Fig. 1 (Bottom Left), we see that multiple users are working in groups to
target certain products. Similarly, in Fig. 1 (Bottom Right), the suspicious users
detected by our method show extremely regular and bot-like behavior result-
ing in spikes in the inter-arrival time distribution (difference in seconds between
consecutive posts).

Our main contributions are as follows:

– Theory
• Axioms: We propose a set of axioms that an individual scoring metric

for measuring contribution of a user towards a suspicious block should
follow.
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Fig. 1. Effectiveness of zooRank on real world datasets. (Top Left) Perfect precision-
recall on software marketplace dataset. (Top Right) zooRank obtains good precision
recall on Reddit dataset. (Bottom Left) Top 100 suspicious users found by zooRank
show high synchronicity (formed groups) in rating and reviewing top suspicious prod-
ucts. (Bottom Right) The suspicious users (bottom; red) detected by zooRank for
Reddit dataset show irregular spikes in inter-arrival time distribution, as compared to
all the users (top; blue). (Color figure online)

• Metric: We propose an individual suspiciousness scoring metric.
• Proofs: We further prove that our proposed individual metric follows all

the proposed axioms.
– Temporal Features: We provide a way of creating temporal features from

the timestamp information present in the data.
– Multimodality and Effectiveness: The proposed approach zooRank can

take into account various features, including temporal features. The approach
detects suspicious entities in all modes of the data. We tested zooRank on
various real-world datasets and were able to find suspicious entities with high
accuracy, revealing interesting fraud patterns.

Reproducability: Our code and link to the datasets used is available at https://
goo.gl/rrvDTx.

https://goo.gl/rrvDTx
https://goo.gl/rrvDTx
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Fig. 2. How to rank users based on their suspiciousness, matching human intuition
(A > B > C)?

2 Background and Related Work

A lot of work exists in the literature which aims at finding dense blocks, but
none of the methods present a way of scoring the individual entities in dense
blocks.

Detecting dense blocks: Densest-subgraph identification (i.e., the problem
of finding a subgraph with maximum average degree) has been broadly stud-
ied in theory [5,8]. These theoretical results have been extended and applied
to anomaly and fraud detection [11,20] since dense subgraphs (dense blocks) in
real-world graph data tend to indicate fraudulent lock-step behavior, such as
follower-buying services in Twitter. Spectral methods, which make use of eigen
and singular value decomposition, also have been used for detecting dense sub-
graphs corresponding to ‘cut-and-paste’ bibliography in patent graphs [18], lock-
step followers [13] and small-scale stealthy attacks [19] in social networks. Other
approaches for dense-subgraph detection include co-clustering [3] and belief prop-
agation [17]. Recently, dense-block detection in multi-aspect data also has been
researched [12,21] for spotting groups synchronized in multiple aspects, such as
IPs, review scores and review keywords. For our experiments, we use the best
performing dense subgraph detection method M-Zoom [21]. The existing meth-
ods, however aim at only finding blocks, and do not provide a rank-list of users
to inspect according to their suspiciousness.

Scoring Anomalies: Evaluating the anomalousness or suspiciousness of indi-
viduals is complementary to detecting dense blocks, which correspond to
group activities. A widely-used approach is to detect outliers. Outlier detec-
tion methods are divided into parametric methods assuming underlying data
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distribution [10] and non-parametric methods using local features, such as dis-
tances to neighbors [14] and local density [4,15]. For graph data, on the other
hand, various approaches, based on minimum description length [6,9], neighbor-
hood information [22], egonet features [2] have been proposed for scoring nodes.
Many methods do exist in the literature, which use temporal information such
as inter-arrival time [7,16]. These features have been used to successfully detect
bot-like behavior [7].

Our proposed method zooRank scores each entity (individual-scoring) in
any of the dimensions (multimodal) of the tensor based on the entity’s partici-
pation in the suspicious dense blocks (dense-blocks). It provides ways of trans-
forming temporal data into useful features and thus handles both numerical and
categorical features. A comparison between zooRank and other algorithms is
summarized in Table 1. Our proposed method zooRank is the only one that
matches all specifications.

Table 1. Comparison of other methods and their features

3 Preliminaries and Problem Definition

3.1 Problem Definition

Definition 1 (K-way timed tensor). A K-way timed tensor is a higher-order
matrix containing entries of the form (category 1, category 2, . . ., category K,
timestamp).

Many types of data including “like” data from Facebook (UserId, PageId, Times-
tamp), “follow” data from Twitter (UserId, FolloweeId, Timestamp), activity log
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from an organization (UserId, OperationId, Timestamp) or network data (Source
IP, Source Port, Destination IP, Destination Port, Timestamp) all can be formu-
lated as a K-way timed tensor. We now give a precise definition of the problem
statements.

Problem 1 (Temporal Features Handling). Given a K-way timed tensor
A, how can we effectively transform the temporal features associated with A to
generate a categorical tensor X?

Problem 2 (Individual-Suspiciousness). Given a L-way categorical tensor
X of size N1×N2×· · ·×NL with non-negative entries, compute a score function
fX (i), which defines the suspiciousness of entity i in the m(i)th mode of X with
respect to the overall tensor X .

3.2 Block Level Suspiciousness Metrics

In this paper, we consider three block-level suspiciousness metrics although our
proposed method is not restricted to them. The metrics are Arithmetic (gari),
Geometric (ggeom) and Density (gsusp). Arithmetic computes the arithmetic
average mass of a sub-block Y of a tensor X . Similarly, Geometric metric is the
geometric average mass of the block. The Density metric is the KL-divergence
(Kullback Leibler) between the distribution of the mass in the sub-block with
respect to the distribution of the mass in the tensor. These metrics are explained
in the following sections.

3.3 Axioms

In this sub-section, we establish axioms that a good score function f = fX (i)
should satisfy. The suspiciousness of an entity should be based on its participa-
tion in dense blocks B. Hence, our first two axioms govern the scores with respect
to a single block Y ∈ B: our third axiom then governs how the single-block scores
are combined to form fX (i).

Let ρY be the density (i.e. mass divided by volume) of Y, and ρY(i) be the
density of the slice of Y defined by entity i. Similarly, let CY(i) denote the mass
of that same slice. The entire list of symbols is shown in Table 2.

Axiom 1 (Mass). If an entity a has more mass than entity b in a block and
given the fixed size of block in both the modes m(a) and m(b), then entity a is
more suspicious. Formally

IF CY(a) > CY(b), AND N m(a)
Y = N m(b)

Y ,THEN δY(a) > δY(b)

This is represented in Fig. 2. See how entities are ranked by suspiciousness in
the top right block (User A > User B > Activity D).
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Table 2. Symbols and definitions

Symbol Definition

X Input categorical L-way tensor

Y Dense block within tensor X
N i

Y Size of ith mode of block Y
m(i) Mode of entity i

ρY Density of block Y
CX Sum of the entries in X
CY Sum of the entries in Y
CY(i) Mass of entity i in Y
VY Volume of the block Y
g() Block suspiciousness scoring function

f() Individual-suspiciousness scoring function

δY(i) Block level suspiciousness of entity i in block Y
B List of suspicious dense blocks

M Number of suspicious blocks to be considered

Axiom 2 (Concentration). Given two entities a, b in different modes
m(a),m(b), where number of entities in one mode (N (m(a))

Y ) is less than the
number of entities in the second mode (N (m(b))

Y ), then for fixed density, entity a
is more suspicious than entity b.

Formally,

IF N
m(a)
Y < N

m(b)
Y AND ρY = ρY(a) = ρY(b),

THEN δY(a) > δY(b)

This is represented in Fig. 2. See how entities are ranked by suspiciousness in
the lower left block (User C > Activity E).

Axiom 3 (Monotonocity). If for every block, entity a has higher suspicious-
ness than entity b, then entity a has higher overall suspiciousness.

Formally,

IF δY(a) > δY(b) ∀Y ∈ B,THEN fX (a) > fX (b)

3.4 Shortcomings of Other Metrics

While these axioms are simple and intuitive, many other candidate metrics are
not able to satisfy them. We consider some of them, and show why they fail.

Block Score: One simple metric to consider is the block suspiciousness score
itself. The metric is to assign each individual the maximum block suspiciousness
score out of all the blocks it is part of. The metric doesn’t change if the two
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entities have different contributions to the block, and hence fails Axiom1 (Mass)
and Axiom 2 (Concentration).

SVD-score: Any matrix A can be decomposed using SVD decomposition as
follows: A = UΣVT. Each of the singular values in Σ represents the singular
value related to a dense block that exists in the dataset. The metric here is the
score of the maximum component for each user. This metric would again fail
Axiom 1 (Mass) and Axiom 2 (Concentration).

Average δ-Block Score: Another proposed metric could be the average of all
the contributions by the given entity to all the suspicious blocks. The contri-
bution to a block is computed as the difference in the suspiciousness between
the block and the block after removing the specified entity. This statistic fails
to satisfy Axiom 3 (Monotonocity) as if entity 1 has higher suspiciousness in 2
blocks than entity 2, but entity 2 exists only in one of the blocks, then the mean
statistic is ambiguous.

As we show above, the metrics based on aggregation of block statistics do
not work. In the following section, we propose zooRank, a scalable and effec-
tive method for finding and scoring suspicious individual entities in multimodal
temporal data.

4 Proposed Approach: ZOORANK

4.1 Temporal Feature Handling

As mentioned, any data from a social networking website or a web service can be
represented as a K-way timed tensor. We propose a way to handle such tensors by
converting the numerical timestamp mode into interpretable categorical features.
We propose to generate 0th-order, 1st-order, and temporal folding features.

– 0th-order features: The 0th order features bucketize the timestamp into
number of days, hours, minutes, etc. passed since the first observation was
made. The temporal resolution can be chosen by practitioners based on the
typical level of temporal variation present in their dataset.

– 1st-order features: Inter-arrival time is defined as the time interval between
2 consecutive timestamps of the same user. [7] found that bots tend to dis-
play regular inter-arrival time behavior such as performing an activity every
exactly 5 min, due to automated scripts. To capture this pattern, we propose
1st-order features, which is the log-bucketized inter-arrival time between 2
consecutive operations of a user (generalizable to any entity).

– Temporal folding features: We propose another way to detect fraud-
sters showing periodic behavior, which are common in bot-like behavior. For
instance, a group of anomalous users might try to perform multiple login
activities only from Wednesday 10 PM to 11 PM, or only on a specific day
of the week. We work with 3 such features: (1) day of the week, (2) hour of
the day and (3) hour of the week. We call these features temporal folding
features.
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4.2 Proposed Metric

Our metric is based on the δ-contribution of each entity towards the block sus-
piciousness score. We first define the δ-contribution for a given entity i in mode
m(i) of a specific block Y ∈ B, where B is a list of blocks. We denote this by
δY(i).

Definition 2 (Entity’s Block-level Suspiciousness (δY(i))). We define
δY(i) as the difference between the suspiciousness score of block Y and block
Y after removing entity i from the block i.e., δY(i) = g(Y) − g(Y \ i).

We need to aggregate the δ-metric over the entire list of blocks B, in such a
way that the given axioms are satisfied. We propose two metrics both of which
satisfy the given axioms. The first metric is the sum of the δ-contributions, and
the second is the maximum of the δ-contributions. We define the maximum
metric as follows:

fX (i) = max
Y∈B

(δY(i))

We empirically found that the maximum metric performs the best on the real-
world datasets, and hence for the rest of the paper, all references to the proposed
metric is for the maximum version of the metric.

4.3 Algorithm

After handling the temporal features, we produce a categorical tensor X .
Algorithm 1 defines the outline of zooRank. The first step is to compute suspi-
cious blocks for the given tensor X . To compute suspicious blocks, any existing
method for block detection can be used.

We first find the M top suspicious dense blocks as determined by g (Line 1),
where g is one of the metrics defined in Sect. 3.2. These top M suspicious blocks
are stored in the list B. For every entity i that has occurred at least once in
any of the blocks in B, we compute the individual suspiciousness score function
f . This score function captures the contribution of a particular entity towards
making the block suspicious. To do this, we compute the marginal contribution
of each entity towards that block. This is equivalent to removing the entity i from
the block, and re-computing the suspiciousness score (Lines 6–7). The difference
between the new suspiciousness score and the original suspiciousness score is the
marginal contribution of entity i. We compute the marginal contribution of each
entity i over all the blocks (Lines 4–8). We define the individual suspiciousness
score of the entity i as the maximum of the marginal contributions of entity i
(Line 9). Another potential metric is to replace the maximization in Line 9 by
the sum function. We conduct experiments with that metric as well.

This formulation of the scores fX (i) satisfies intuitively reasonable properties,
namely our axioms defined in Sect. 3.3:

Theorem 1. The scores fX (i) computed by Algorithm1, using any of the met-
rics gari, ggeo, or gsusp, satisfies Axioms 1 to 3.
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Data: Tensor X , block scoring function g, number of blocks to consider M ,
mode j to consider

Result: Individual scores for each entity i over the entire tensor : fX (i)
1 B = ComputeDenseBlocks(X , M, g)
2 for each entity i ∈ Nj do
3 δi = []
4 for Y ∈ B do
5 if i ∈ Y then
6 Create new block Y ′ by removing the entries of entity i
7 Append (g(Y) − g(Y ′)) to δi
8 end
9 fX (i) = max(δi)

10 end
11 Sort and output fX (i)

Algorithm 1. zooRank: Detecting Suspiciousness Individuals

Proof. We first start by defining some of the standard block suspiciousness meth-
ods as follows:

gari(Y,X ) = CY/(
∑

j

N j
Y/L)

ggeo(Y,X ) = CY/(V 1/L
Y )

gsusp(Y,X ) = VY · D(ρY ||ρX )

where D(ρY ||ρX ) = ρX − ρY + ρY log ρY
ρX

.

ZOORANK satisfies Axiom 1 (Mass)
If we fix the block’s dimensions N1

Y , . . . , NL
Y , all three metrics above strictly

increase the mass of the block (i.e. CY); this can be inferred directly from the
form of gari and ggeo, and for gsusp.

As CY(a) > CY(b), thus Y \a has lower mass than Y \b, and since g is strictly
increasing in mass (for fixed block dimensions), we get g(Y \ a) < g(Y \ b).
Therefore:

δY(a) = g(Y) − g(Y \ a) > g(Y) − g(Y \ b)
= δY(b)

ZOORANK satisfies Axiom 2 (Concentration)
Using the same reasoning as above, it suffices to show g(Y \ a) < g(Y \ b).
Note that N

m(a)
Y < N

m(b)
Y ⇒ VY\a < VY\b (since removing from a smaller

mode decreases the volume more). Consider each metric gari, ggeo, and gsusp

separately:

– case 1: gari.
Here Y \ a and Y \ b have the same sum of block dimensions, and CY\a =
ρY · VY\a < ρY · VY\b = CY\b so that gari(Y \ a) < gari(Y \ b).
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– case 2: ggeo.

Note that ggeo(Y) = CY/(V 1/L
Y ) = ρY · VY/(V 1/L

Y ) = ρY · V
L−1
L

Y . Thus:

ggeo(Y \ a) = ρY · (VY\a)
L−1
L < ρY · (VY\b)

L−1
L = ggeo(Y \ b).

– case 3: gsusp.
gsusp(Y \ a) = VY\a · D(ρY ||ρX ) < VY\b · D(ρY ||ρX ) = gsusp(Y \ b).

ZOORANK satisfies Axiom 3 (Monotonocity)

fX (a) = max
Y∈B

δY(a) > max
Y∈B

δY(b) = fX (b).

5 Experiments

In this section, we conducted experiments to answer the following questions:

– Q1: How effectively does zooRank find suspicious entities across all modes?
– Q2: How generalizable is zooRank over different datasets?
– Q3: Does zooRank scale linearly with size of the data?

5.1 Datasets

We used various real-world datasets including a software marketplace dataset,
a dataset from a popular social news aggregation website (Reddit), a dataset
about Indian elections from Twitter, and a research lab’s intrusion detection
dataset.

– Software Marketplace Dataset (SWM): We used the SWM dataset that
was used previously by [1]. The dataset contains the reviews for all the prod-
ucts (software) under the entertainment category of the marketplace. The
dataset contains 1,132,373 reviews from 966,839 unique users for 15,094 prod-
ucts. Each review has a rating from 1 to 5, and the timestamp on which the
review was posted. The dataset, thus is in the format (UserId, ProductId, Rat-
ing, Timestamp). Previous studies [1,23] manually annotated ground truth
labels for suspicious users, which we considered as our ground truth.

– Reddit Dataset: Reddit is a social news aggregator website, which allows
users to post, comment on, upvote and downvote stories. The dataset was col-
lected and analyzed by [7]. The dataset contains 1,020,834 user comments for
1,036 users. The Reddit dataset is in the form (UserId, #Upvotes, #Down-
votes, Length, Timestamp). The dataset has information about ground truth
suspicious user accounts.

– DARPA Intrusion Detection: The DARPA intrusion detection dataset
contains a sample of network data for the US Air Force laboratory. The
dataset contains records in the format (Source IP, Destination IP, Times-
tamp). Further, it also contains labels for anomalous connections. For ground
truth, we considered any source IP address that participates in at least 10
such anomalous connections, and any destination IP address that participates
in at least 400 such connections. We altered this definition for ground truth
thresholds and still achieved similar results as mentioned in the paper.



zooRank: Ranking Suspicious Entities in Time-Evolving Tensors 79

– Indian Elections 2014 Dataset: We collected tweets from 2014 Indian
Elections. We crawled all the tweets from the 10% Sample API (Decahose).
All the tweets contain the top 5 hashtags on Indian Elections per week. We
further considered only those users who have at least 2 tweets in our dataset.
This led us to a dataset of tweets from March, 2014 to May, 2014 consisting
of 10,786 users.

– Simulated Dataset: We also tested our approach on a simulated dataset.
For simulation, we used a realistic way of generating user-timestamps [7],
then for each of the timestamp, we added activities based on a Poisson dis-
tribution. We simulated 3 blocks, comprising of 300, 400 and 200 genuine
users respectively, where each block has different parameters for the activity
Poisson distribution. For the suspicious blocks, we simulated three blocks for
50, 25 and 25 users respectively. The first block does the most popular activ-
ity over the entire duration of the simulation and with random inter-arrival
times. The second and third block do the second most and third most popular
activities, respectively, at a steady inter-arrival time of 1 min on a single day.

Experimental Settings: All our experiments were conducted on a machine
on Intel(R) Xeon(R) CPU W3530 @ 2.80 GHz and 24 GB RAM. For all our
experiments, we chose M = 30 and used M-Zoom [21] for dense block detection.
We created multiple tensors based on different resolutions of time features (such
as day of week, hour of the day, Inter-arrival time (in seconds, bucketized), etc.).
However, we reported only the best accuracy obtained. The choice of what tensor
to use, what block-level metric to use, and what value of M is appropriate, is
for the practitioner to decide and depends on the type of data, on which the
method is being applied.

5.2 Q1. Effectiveness of ZOORANK

To test the effectiveness of zooRank, we compare our ranking of the suspicious
entities with the ground truth suspicious users in our datasets. We further test
the accuracy of our method on the SWM dataset. For software marketplace,
we experimented with different versions of temporal features. Note that our
algorithm achieves 100% accuracy in identifying suspicious users in the SWM
dataset. From Fig. 3a, we observed that adding the inter-arrival time feature
increased the accuracy of the method. Our algorithm can rank entities in multiple
modes; hence, we also tried to rank the products on basis of their suspiciousness.
Though we do not have ground truth for which products were suspicious, we
analyzed the top 5 suspicious products in Table 3b. We used the number of
reviews by ground truth fraudsters as an indicator for suspiciousness. It can
be observed that all the suspicious products are popular (high number of total
reviews) and have also been targeted significantly from fraudsters (high number
of fraud users). We also noticed that most of the reviews by fraudsters were
highly synchronized and a large majority came on a single day (Fig. 3c).
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Fig. 3. ZOORANK is effective. (a) It gives nearly 100% accuracy while identifying
suspicious users in the SWM dataset. (b) zooRank marks products reviewed by known
fraudsters as suspicious. (c) Product #2 received nearly all of it’s reviews by fraud users
on one single day.

Table 3. zooRank is generalizable over multiple datasets, and multiple modes that
exist in the datasets.

Dataset F1-score (SUM) F1-score (MAX) Tensor

Reddit 0.62 0.67 User × Inter-Arrival Time (IAT)

SWM 0.98 1.0 User × Product × Rating × Day × IAT

DARPA
(SrcIP Mode)

0.97 0.988 SrcIP × DstIP × Day × IAT

DARPA
(DstIP Mode)

0.29 0.37 SrcIP × DstIP × Hour × IAT

5.3 Q2. Generalizability of ZOORANK

We tested our method on multiple real-world datasets. In Table 3, we present
our accuracy on each dataset. We observed that using maximum of the marginal
contributions is better than using sum for all of the cases. Further, we also
compared our method with a baseline approach. We define the following baseline:
Block Score: defined as the maximum of all block suspiciousness scores a block
is part of. From Fig. 4, it can be observed that our approach clearly is better
than the mentioned approach.

For Indian elections data, we did not have any ground truth. We extracted
the top 100 suspicious users and evaluated them manually. The results for top
100 suspicious users are shown in Fig. 5. The user ids are sorted by their suspi-
ciousness score, and plotted on the scatter plot along with top suspicious hash-
tags. Figure 5 clearly shows groups of suspicious users. It is evident that the
first two users are “hashtag hijackers”. These two users tweeted spam messages
with other hashtags but also focussed on generic hashtags related to the Indian
elections. Both of these users have an identical behavior, which imply they do
follow “lock-step” behavior. The second group of users were tweeting hashtags
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Fig. 4. ZOORANK is generalizable. zooRank outperforms the baseline across dif-
ferent modes (see (a) and (b)) and across multiple datasets (see (c) and (d))

related to themselves and also generic hashtags related to the elections (“self-
promoters”). We also spotted the user who tweets out all the trending topics at
regular intervals, possibly through automated scripts (“trending topic aggrega-
tor”). We believe that the remaining users are users who were discussing indian
elections a lot and were influencers in the political discussion. On further analy-
sis, 20 users out of the 100 users were already suspended by Twitter. Thus, our
algorithm was able to identify users that were considered spam by Twitter but
also users that were missed by Twitter algorithm (“self-promoters”) but were
clearly malicious.

5.4 Q3. Scalability of ZOORANK

In this section, we evaluate the scalability of the zooRank. We measure the
effects of the number of blocks and the number of records on the runtime of
zooRank. To study the effect of the number of records, we generated the dataset
with given number of entries in 3 dimensions, where cardinality of each dimension
is 106. For all our results, we used arithmetic metric and operated on the most
suspicious 30 blocks. The results are shown in Fig. 6a, showing that our method
scales linearly both in the data size and the number of blocks searched for. For
the effect of the number of blocks, we generated a dataset with 104 records with
a similar number of entries in each dimension.
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Fig. 5. zooRank identifies fraudulent suspicious behavior in Twitter: Top 100 suspi-
cious users, and top hashtags as identified by zooRank.

Fig. 6. Scalability of ZOORANK (a) zooRank scales linearly with the number of
records. (b) zooRank scales linearly with the number of blocks we want to find.

6 Conclusions

In this paper, we proposed a set of axioms that a given individual suspiciousness
scoring metric should follow. We presented such a metric that satisfies all the
proposed axioms. Specifically, our contributions are as follows:

– Individual-Suspiciousness Metric: We propose a suspiciousness metric
which scores each entity participating in dense blocks. The proposed criteria
fX (i) satisfies intuitive axioms.
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– Temporal Features: The proposed method provides ways to transform the
numerical timestamp mode to information rich categorical temporal features.

– Effectiveness: The proposed method zooRank was successfully tested on
various real-world datasets. It scored the suspicious entities with high accu-
racy, and also uncovered interesting fraud patterns.

– Scalability: The method is linearly scalable with the size of the data and
can be used for big-data problems (see Fig. 6).
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