
FCNN: Fourier Convolutional Neural Networks

Harry Pratt(B), Bryan Williams, Frans Coenen, and Yalin Zheng

University of Liverpool, Liverpool L69 3BX, UK
{sghpratt,bryan,coenen,yzheng}@liverpool.ac.uk

Abstract. The Fourier domain is used in computer vision and machine
learning as image analysis tasks in the Fourier domain are analogous
to spatial domain methods but are achieved using different operations.
Convolutional Neural Networks (CNNs) use machine learning to achieve
state-of-the-art results with respect to many computer vision tasks. One
of the main limiting aspects of CNNs is the computational cost of updat-
ing a large number of convolution parameters. Further, in the spatial
domain, larger images take exponentially longer than smaller image to
train on CNNs due to the operations involved in convolution methods.
Consequently, CNNs are often not a viable solution for large image com-
puter vision tasks. In this paper a Fourier Convolution Neural Network
(FCNN) is proposed whereby training is conducted entirely within the
Fourier domain. The advantage offered is that there is a significant speed
up in training time without loss of effectiveness. Using the proposed app-
roach larger images can therefore be processed within viable computa-
tion time. The FCNN is fully described and evaluated. The evaluation
was conducted using the benchmark Cifar10 and MNIST datasets, and
a bespoke fundus retina image dataset. The results demonstrate that
convolution in the Fourier domain gives a significant speed up without
adversely affecting accuracy. For simplicity the proposed FCNN concept
is presented in the context of a basic CNN architecture, however, the
FCNN concept has the potential to improve the speed of any neural
network system involving convolution.

1 Introduction

Convolutional Neural Networks (CNNs) [1] are a popular, state-of-the-art, deep
learning approach to computer vision with a wide range of application in domains
where data can be represented in terms of three dimensional matrices. For exam-
ple, in the case of image and video analysis. Historically, CNNs were first applied
to image data in the context of handwriting recognition [2]. Since then the via-
bility of CNNs, and deep learning in general, has been facilitated, alongside
theoretical improvements, by significant recent advancements in the availability
of processing power. For example, Graphics Processing Units (GPUs) allow us
to deal with the heavy computation required by convolution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-71249-9 47) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part I, LNAI 10534, pp. 786–798, 2017.
https://doi.org/10.1007/978-3-319-71249-9_47

https://doi.org/10.1007/978-3-319-71249-9_47
https://doi.org/10.1007/978-3-319-71249-9_47

FCNN: Fourier Convolutional Neural Networks 787

However, there are increasingly larger datasets to which we wish to apply
deep learning to [3] and, in the case of deep learning, a growing desire to increase
the depth of the networks used in order to achieve better results [4,5]. This not
only increases memory utilisation requirements, but also computational com-
plexity. In the case of CNNs, the most computationally expensive element is the
calculation of the spatial convolutions. The convolution is typically conducted
using a traditional sliding window approach across the data matrix together with
the application of a kernel function of some kind [6]. However, this convolution
is computationally expensive, which in turn means that CNNs are often not
viable for large image computer vision tasks. To address this issue, this paper
proposes the idea of a using the Fourier domain. More specifically this paper
proposes the Fourier Convolution Neural Network (FCNN) whereby training is
conducted entirely in the Fourier domain. The advantage offered is that there is
a significant speed up in training time without loss of effectiveness. Using FCNN
images are processed and represented using the Fourier domain to which a con-
volution mechanism is applied in a manner similar to that used in the context of
more traditional CNN techniques. The proposed approach offers the advantage
that it reduces the complexity, especially in the context of larger images, and
consequently provides for significant increase in network efficiency.

The underlying intuition given by the Convolution Theorem which states
that for two functions κ and u, we have

F(κ ∗ u) = F(κ) � F(u) (1)

where F denotes the Fourier transform, ∗ denotes convolution and � denotes the
Hadamard Pointwise Product. This allows for convolution to be calculated more
efficiently using Fast Fourier Transforms (FFTs). Since convolution corresponds
to the Hadamard product in the Fourier domain and given the efficiency of
the Fourier transform, this method involves significantly fewer computational
operations than when using the sliding kernel spatial method, and is therefore
much faster [7]. Working in the Fourier domain is less intuitive as we cannot
visualise the filters learned by our Fourier convolution; this is a common problem
with CNN techniques and is beyond the scope of this paper. While the Fourier
domain is frequently used in the context of image processing and analysis [8–10],
there has been little work directed at adopting the Fourier domain with respect
to CNNs. Although FFTs, such as the Cooley-Tukey algorithm [11], have been
applied in the context of neural networks for image [12] and time series [13]
analysis. These applications date from the embryonic stage of CNNs and, at
that time, the improvement was minimal.

The concept of using the Fourier domain for CNN operations has been pre-
viously proposed [7,14,15]. In both [7,14] the speed-up of convolution in the
Fourier domain was demonstrated. Down-sampling within the Fourier domain
was used in [15] where the ability to retain more spatial information and obtain
faster convergence was demonstrated. However, the process proposed in [7,14,15]
involved interchanges between the Fourier and spatial domains at both the train-
ing and testing stages which added significant complexity. The FFT required is

788 H. Pratt et al.

the computationally intensive part of the process. FFTs, and inverse FFTs,
needed to be applied for each convolution; thus giving rise to an undesired com-
putational overhead. In the case of the proposed FCNN the data is converted to
the Fourier domain before the process starts, and remains in the Fourier domain;
no inverse FFTs are required at any point.

Instead of defining spatial kernel functions, which must then be transformed
to the Fourier domain, as in the case of [7], using the proposed FCNN, a bespoke
Fourier convolution mechanism is also proposed whereby convolution kernels are
initialised in the Fourier domain. This method saves computation time during
both the training and utilisation. Pooling in the Fourier domain is implemented
in a similar fashion to that presented in [15] with truncation in the Fourier
domain. This is not only more efficient than max-pooling, but can achieve better
results [15]. The other layers implemented within the FCNN are dense layers
and dropout. These Fourier layers are analogous to the equivalent spatial layers.
Dropout randomly drops nodes within our network at a probability of p to stop
over-fitting. This applies in the Fourier domain as it does in the spatial domain.
Likewise, dense layers for learning abstract links within convolved image data
operates with respect to Fourier data in the same manner as for spatial data.

The layout of the rest of the paper is as follows. In Sect. 2, we present our
method of implementation of the specific layers that constitute our FCNNs,
in Sect. 3 we present our experimental results. In Sects. 4 and 5 we present a
discussion together with conclusions concerning abilities of the FCNN.

2 The Fourier Convolution Neural Network (FCNN)
Approach

The FCNN was implemented using the deep learning frameworks Keras [16]
and Theano [17]. Theano is the machine learning backend of Keras. This back-
end was used to code the Fourier layers. The Theano FFT function Theano
was used to convert our training and test data. The Theano FFT function is
a tensor representation of the multi-dimensional Cooley-Tukey algorithm. This
function is the n-dimensional discrete Fourier transform over any number of axes
in an m-dimensional array by using FFT. The multi-dimensional discrete Fourier
transform used is defined as:

Akl =
m−1∑

�1=0

n−1∑

�2=0

a�1�2e
−2πi

(
�1
m +

�2
n

)
(2)

where the image is of size m × n. The comparative methods of spatial convolu-
tion and max-pooling used throughout this paper relate to Keras and Theano’s
implementations. To demonstrate the ability of the FCNNs implementation of
all the core CNN layers in the Fourier domain we use the network architectures
shown in supplementary.

The well used network architecture from AlexNet [1] was adopted because it
provides a simple baseline network structure to compare the results of our equiv-
alent Fourier and spatial CNNs on the MNIST [18] and Cifar10 datasets [19].

FCNN: Fourier Convolutional Neural Networks 789

The MNIST dataset contains 60,000 grey scale images, 50,000 for training and
10,000 for testing, of hand written numeric digits in the form of 28 × 28 pixel
images, giving a 10 class classification problem. The Cifar10 [19] dataset contains
60,000, 32×32 pixel, colour images containing 10 classes. These datasets are reg-
ularly used for standard CNN baseline comparison [4,20]. Experiments were also
conducted using a large fundus image Kaggle data set [3]. This dataset comprised
80,000 RGB fundus images, of around 3M pixels per image, taken from the US
diabetic screening process. The images are labelled using five classes describing
level of diabetic retinopathy. These images are currently down-sampled during
training using established CNN techniques because of the size of the images; this
seems undesirable.

2.1 Fourier Convolution Layer

In traditional CNNs discrete convolutions between the images uj and kernel
functions κi are carried out using the sliding window approach. That is, a window
the size of the kernel matrix is moved across the image. The convolution is
computed as the sum of the Hadamard product � of the image patch with the
kernel:

zi,j
k1,k2

=
�mκ/2�∑

�1=�−mκ/2�

�nκ/2�∑

�2=�−nκ/2�
κi

�1,�2 � uj
k1−�1,k2−�2

(3)

which results in an (mu − mκ) × (nu − nκ) image z since the image is usually
re-sized to avoid including boundary artefacts in calculations. At each point
(k1, k2), there are mknk operations required and so (mu−mκ+1)(nu−nκ+1)mknk

operations are needed for a single convolution.
We intend to replace, in the first instance, the sliding window approach with

the Fourier transform using the discrete analogue of the convolution theorem:

F(κ ∗ u) = F(κ) � F(u) (4)

where F denotes the two dimensional discrete Fourier transform:

ũi1,i2 =
mu∑

j1=1

nu∑

j2=1

e−2ıπ(i1j1nu+i2j2mu
munu

)uj1,j2 (5)

The computation of the discrete Fourier transform for an n × n image u
involves n2 multiplications and n(n − 1) additions, but this can be reduced con-
siderably using an FFT algorithm, such as Cooley-Tukey [11] which can compute
the Direct Fourier Transform (DFT) with n/2 log2 n multiplications and n log2 n
additions. This gives an overall improvement from the O(n2) operations required
to calculate the DFT directly to O(n log n) for the FFT.

Thus, for a convolutional layer which has Nκ kernels κi in a network training
Nu images uj , the output is the set zi,j = κi ∗ uj where ∗ denotes convolution.
The algorithm is then:

790 H. Pratt et al.

1. κ̃i = F (
κi

)
, i = 1, . . . , Nκ

2. ũi = F (
ui

)
, i = 1, . . . , Nu

3. z̃i,j = κ̃i � ũj , i = 1, . . . , Nκ, j = 1, . . . ,mu

4. zi,j = F−1
(
z̃i,j

)
, i = 1, . . . , Nκ, j = 1, . . . , Nu

This decrease in the number of operations gives an increasing relative speed-
up for larger images. This is of particular relevance given that larger computer
vision (image) datasets are increasingly becoming available [3].

With respect to the proposed FCNN the Nk complex Fourier kernels are
initialised using glorot initialisation [21]. The parameter n is equivalent to the
number of kernel filters in the spatial network. Glorot initialisation was adopted
because it is more efficient than doing FFT transformations of spatial kernels
as this would require lots of FFTs during training to update the numerous con-
volution kernels. The weights for our Fourier convolution layer are defined as
our initialised Fourier kernels. Hence, the Fourier kernels are trainable parame-
ters optimised during learning, using back propagation, to find the best Fourier
filters for the classification task with no FFT transformations relating to the
convolution kernels required. Another benefit of Fourier convolutions is not only
the speed of the convolutions, but that we can perform pooling during the con-
volution phase in order to save more computation cost.

A novel element of our convolution kernels is that, because they remain in
the Fourier domain throughout, they have the ability to learn the equivalent
of arbitrarily large spatial kernels limited only by initial image size. The image
size is significantly larger than the size selected by spatial kernels. That is, our
Fourier kernels which match the image size can learn a good representation of
a 3 × 3 spatial kernel or a 5 × 5 spatial kernel depending on what aids learning
the most. This is a general enhancement of kernel learning in neural networks as
most networks typically learn kernels of a fixed size, reducing the ability of the
network to learn the spatial kernel of the optimal size. In the Fourier domain,
we can train to find not only the optimal spatial kernel of a given size but the
optimal spatial kernel size and the optimal spatial kernel itself.

2.2 Fourier Pooling Layer

In the Fourier domain, the image data is distributed in a differ manner to the
spatial. This allows us to reduce the data size by the same amount that it would
be reduced by in the spatial domain but retain more information. High frequency
data is found towards the centre of a Fourier matrix and low frequency towards
the boundaries. Therefore, we truncate the boundaries of the matrices as the high
frequency Fourier data contains more of the spatial information that we wish
to retain. Our Fourier pooling layer shown in Fig. 1, operates as follows. Given
a complex 3 dimensional tensors of X × Y × Z dimensions, and AN arbitrary
pool size variable relating to the amount of data we wish to retain. For x ∈ X,:

xy min = (0.5 − pool size
2

) × Y, xy max = (0.5 +
pool size

2
) × Y (6)

FCNN: Fourier Convolutional Neural Networks 791

Fourier Pooling

Fig. 1. Our layer initially contains an X × Y × Z voxel. The truncation runs through
the x-axis of the Fourier data (thus truncating the Y and Z axis).

xz min = (0.5 − pool size
2

) × Z, xz max = (0.5 +
pool size

2
) × Z (7)

This method provides a straightforward Fourier pooling layer for our FCNN.
It has a minimal number of computation operations for the GPU to carry out
during training.

The equivalent method in the spatial context is max-pooling, which takes the
maximum value in a k × k window where k is a chosen parameter. For example
if k = 2, max-pooling reduces the data size by a quarter by taking the maximum
value in the 2 × 2 matrices across the whole data. Similarly, in our Fourier
pooling we would take pool size = 0.25 which, using Eqs. 6 and 7, gives us:

xy min = 0.375 × Y, xy max = 0.625 × Y (8)

xz min = 0.375 × Z, xz max = 0.625 × Z (9)

which also reduces our data by a quarter.

3 Evaluation

The evaluation was conducted using an Nvidia K40c GPU that contains 2880
CUDA cores and comes with the Nvidia CUDA Deep Neural Network library
(cuDNN) for GPU learning. For the evaluation both the computation time and
the accuracy of the layers in the spatial and Fourier domains was compared. The
FCNN and its spatial counterpart were trained using the 3 datasets introduced
above: MNIST, Cifar10 and Kaggle fundus images. Each dataset was used to
evaluate different aspects of the proposed FCNN. The MNIST dataset allows
us to compare high-level accuracy while demonstrating the speed up of doing
convolutions in the Fourier domain. The Cifar10 dataset was used to show that

792 H. Pratt et al.

the FCNN can learn a more complicated classification task to the same degree as
a spatial CNN with the same number of filters. The results are presented below in
terms of speed, accuracy and propagation loss. Finally, the large fundus Kaggle
dataset was used to show that the FCNN is better suited to dealing with larger
images, than spatial CNNs, because of the nature of the Fourier convolutions.

Table 1. Computation time for the convolution of a single images of varying size, using
both Fourier and spatial convolution layers.

Size FourierConv SpatialConv Ratio increase

210 5 × 10−2 N/A N/A

29 1 × 10−2 N/A N/A

28 2.67 × 10−3 1.48 × 10−1 55.43

27 7.74 × 10−4 8.4 × 10−2 10.85

26 2.85 × 10−4 1.74 × 10−3 6.10

25 1.78 × 10−4 2.51 × 10−4 1.41

24 1.36 × 10−4 1.56 × 10−4 1.14

3.1 Fourier Convolution

The small kernels used in neural networks mean that when training on larger
images the amount of memory required to store all the convolution kernels on
the GPU for parallel training is no longer viable. Using the Nvidia K40c GPU
and a spatial convolution with 3 × 3 kernels the feed forward process of our
network architecture cannot run a batch of images once image size approaches
29. The proposed Fourier convolution mechanism requires less computational
memory when running in parallel. The memory capacity is not reached using
the Fourier convolution mechanism until images of a size four times greater to
the maximum size using the spatial domain are arrived at. This is due to the
operational memory required for spatial convolution compared to the Fourier
convolution.

The FCNN is able to train much larger images of the same batch size because
the kernels are initialised in the Fourier domain, we initialise a complex matrix
with the size matching the image size. Our convolutions are matrix multipli-
cations and we are not required to pass across the image in a sliding window
fashion, where extra storage is needed. The only storage we require is for the
Fourier kernels, which are the same size as the images.

Table 1 presents a comparison of computation times, using Fourier and spatial
convolution, for a sequence of single images of increasing size. From the table
it can been seen that the computation time for a small images (24 × 24 pixels)
is similar for spatial and Fourier data in both cases. However, as the image
size increases, the spatial convolution starts to become exponentially more time-
consuming whereas the Fourier convolution scales at a much slower rate and
allows convolution with respect to a much larger image size.

FCNN: Fourier Convolutional Neural Networks 793

3.2 Fourier Pooling

Table 2 gives a comparison of the computation time, required to process a
sequences of images of increasing size using, using the proposed Fourier pooling
method in comparison with Max-pooling and Down-sampling. Fourier pooling is
similar in terms of computational time to the max-pooling method which is the
most basic down-sampling technique. This speed increase is for the same rea-
son as the increase in convolution speed. Max-pooling requires access to smaller
matrices within the data and takes the maximum value. On the other hand, in
the Fourier domain, we can simply truncate in manner such that spatial infor-
mation throughout the whole image is retained.

Table 2. Computation time for pooling an image of the given size using: (i) Down-
sampling, (ii) Max pooling and (iii) Fourier pooling.

Size Down-sampling Max-pooling Fourier pooling

212 2.77e-2 9.01 9.42e-2

211 7.93e-3 2.07 2.44e-2

210 2.19e-3 4.96e-1 5.30e-3

29 2.33e-4 1.26e-1 5.27e-4

28 2.70e-5 3.14e-2 1.01e-5

27 1.73e-5 6.80e-3 3.20e-6

26 3.67e-6 1.65e-3 5.29e-6

25 2.71e-6 3.82e-4 6.03e-6

24 2.46e-6 8.55e-5 5.35e-6

Figure 2 shows a comparison of pooling using down sampling, max pooling
and Fourier pooling. In the figure the images in each image subsequent to the
top row were reduced to half the size of the previous row and then up-scaled to
the original image size for down-sampling and max-pooling. For Fourier pooling,
the Fourier signal was embedded into a zero matrix of the same size as the
original image and the Fourier transform is presented. Figure 3 shows how the
Fourier pooling retains more spatial information as the best result in terms of
visual acuity retained during pooling using mean squared error is the Fourier
pooled image. All output images are the same size, but the Fourier retains more
information. From the figures it can be seen that the Fourier pooling retains
more spatial information than on the case of max-pooling when down-sampling
the data by the same factor. This is because of the nature of the Fourier domain,
the spatial information of the data is not contained in one specific point.

794 H. Pratt et al.

Pooling Methods

Fig. 2. Comparison of pooling using: (i) down-sampling (col. 1), (ii) max-pooling (col.
2) and (iii) Fourier pooling (col. 3).

3.3 Network Training

The baseline network is trained on both the MNIST and Cifar10 datasets to
compare networks. Training was done using the categorical cross-entropy loss
function and optimised using the rmsprop algorithm. The results are presented
in Figs. 4 and 5 using network one. The fundus training was carried out on
network two and epoch speeds were recorded see Table 3. The accuracy achieved
on the MNIST and Cifar10 test sets using the FCNN is only marginally below
the spatial CNN but the results are achieved with a significant speed up. The
MNIST training was twice as fast on the FCNN in comparison the spatial CNN
and the Cifar10 dataset was trained in 6 times the speed. This is due to the
Cifar dataset containing slightly larger images than MNIST and demonstrates
how our FCNN scales better to large images.

FCNN: Fourier Convolutional Neural Networks 795

Fourier Pooling of fundus image

Fig. 3. (Top-left) Original fundus image, (Bottom-left) normal max-pooling and then
resizing to original size; (Top-right) Fourier pooling, back to spatial domain and resize
to original size; (Bottom-right) Fourier pooling, embed in a zero matrix and convert
back to spatial

Training on the MNIST dataset

Fig. 4. (Top) FCNN (Bottom) Spatial CNN. Dark blue, black and red are validation
values, lighter colours are training values. (Color figure online)

796 H. Pratt et al.

Training on the Cifar10 dataset

Fig. 5. Training on the Cifar10 dataset: (top) FCNN (bottom) Spatial CNN. Dark
blue, black and red are validation values, lighter colours are training values. (Color
figure online)

Table 3. Computation time in seconds for an epoch of re-sized fundus images. One
epoch is 60,000 training images.

Image size FCNN epoch Spatial epoch

29 65.56 2435.93

28 30.42 1839.12

27 14.47 358.90

26 8.38 124.63

25 3.92 36.91

24 0.76 3.72

4 Discussion

The proposed FCNN technique allows training to be conducted entirely in the
Fourier domain, in other words only one FFT is required throughout the whole
process. The increase in computation time required for the FFT is recovered
because of the resulting speed up of the convolution. Compared to spatial app-
roach the evaluation results obtained evidence an exponential increase in effi-
ciency for larger images. Given a more complex network, or a dataset of larger
images, the benefit would be even more pronounced.

The results presented demonstrated that using the Fourier representation
training time, using the same layer structure, was considerably less than when a
spatial representation was used. The analogous Fourier domain convolutions and

FCNN: Fourier Convolutional Neural Networks 797

more spatially accurate pooling method allowed for a retention in accuracy on
both datasets introduced. It was conjectured that the higher accuracy achieved
using the proposed FCNN on the Cifar10 dataset was due to the larger Fourier
domain kernels within the Fourier convolution layer. Due to the Fourier kernel
size, more parameters within the network were obtained than in the case of
spatial window kernels. This allowed for more degrees of freedom when learning
features of the images.

The reason for lower accuracy of the FCNN using the MNIST dataset is likely
due to the network being trained on very small images. This creates boundary
issues and information loss in the Fourier domain when converting from the
spatial. This is particularly relevant with respect to smaller images; it is much
less of an issue in larger images. Hence, when dealing with larger images we
would expect no reduction in accuracy in the Fourier domain while achieving
the speed-ups shown. To combat this, we could consider boundary conditions
with respect to all of our Fourier layers, which is what is done in the spatial
case.

5 Conclusion

This paper has proposed the idea of a Fourier Convolution Neural Network
(FCNNs) which offers run-time advantages, especially during training. The
reported performance results were comparable with standard CNNs but with
the added advantage of a significant speed increase. As a consequence the FCNN
approach can be used to classify image sets featuring large images; not possible
using the spatial CNNs. The FCNN layers are not specific to any architecture
and therefore can be extended to any network using convolution, pooling and
dense layers. This is the case for the vast majority of neural network architec-
tures. For future work the authors intend to investigate how the Fourier layers
can be optimised and implemented with respect to other network architectures
that have achieved state-of-the-art accuracies [4,5]. The authors speculate that,
given the efficiency advantage offered by FCNNs, they would be used to address
classification tasks directed at larger images, and in a much shorter time frames,
than would be possible using standard CNNs.

Acknowledgement. The authors would like to acknowledge everyone in the Centre
for Research in Image Analysis (CRiA) imaging team at the Institute of Ageing and
Chronic Disease at the University of Liverpool and the Fight for Sight charity who
have supported this work through funding.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates Inc. (2012)

798 H. Pratt et al.

2. LeCun, Y., Boser, B., Denker, J.S., Howard, R.E., Habbard, W., Jackel, L.D.,
Henderson, D.: Advances in neural information processing systems, vol. 2, pp.
396–404. Citeseer (1990)

3. Kaggle: Kaggle datasets. https://www.kaggle.com/datasets
4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

CoRR, abs/1512.03385 (2015)
5. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer
Vision and Pattern Recognition (CVPR) (2015)

6. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
integrated recognition, localization and detection using convolutional networks.
CoRR, abs/1312.6229 (2013)

7. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y.: Fast
convolutional nets when fbfft: a GPU performance evaluation (2015)

8. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image
Process. 7(3), 370–375 (1998)

9. Persch, N., Elhayek, A., Welk, M., Bruhn, A., Grewenig, S., Böse, K., Kraegeloh,
A., Weickert, J.: Enhancing 3-D cell structures in confocal and STED microscopy:
a joint model for interpolation, deblurring and anisotropic smoothing. Measur. Sci.
Technol. 24(12), 125703 (2013)

10. Williams, B.M., Chen, K., Harding, S.P.: A new constrained total variational
deblurring model and its fast algorithm. Numer. Algorithms 69(2), 415–441 (2015)

11. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Math. comput. 19(90), 297–301 (1965)

12. Campisi, P., Egiazarian, K.: Blind Image Deconvolution. CRC Press, Boca Raton
(2007)

13. Kumar, R., Gothwal, H., Kedawat, S.: Cardiac arrhythmias detection in an ECG
beat signal using fast fourier transform and artificial neural network. J. Biomed.
Sci. Eng. 4, 289–296 (2011)

14. LeCun, Y., Mathieu, M., Henaff, M.: Fast training of convolutional networks
through FFTs (2014)

15. Adams, R.P., Rippel, O., Snoek, J.: Spectral representations for convolutional neu-
ral networks (2015)

16. Chollet, F.: Keras. https://github.com/fchollet/keras (2015)
17. Theano Development Team. Theano: a python framework for fast computation of

mathematical expressions. arXiv e-prints abs/1605.02688, May 2016
18. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
19. Krizhevsky, A.: Learning multiple layers of features from tiny images. https://

www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf
20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates
Inc. (2014)

21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the International Conference on Artificial Intel-
ligence and Statistics (AISTATS 2010). Society for Artificial Intelligence and Statis-
tics (2010)

https://www.kaggle.com/datasets
https://github.com/fchollet/keras
https://arxiv.org/pdf/abs/1605.02688
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

	FCNN: Fourier Convolutional Neural Networks
	1 Introduction
	2 The Fourier Convolution Neural Network (FCNN) Approach
	2.1 Fourier Convolution Layer
	2.2 Fourier Pooling Layer

	3 Evaluation
	3.1 Fourier Convolution
	3.2 Fourier Pooling
	3.3 Network Training

	4 Discussion
	5 Conclusion
	References

