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Abstract. We present a novel approach to learn distributed representa-
tion of sentences from unlabeled data by modeling both content and con-
text of a sentence. The content model learns sentence representation by
predicting its words. On the other hand, the context model comprises a
neighbor prediction component and a regularizer to model distributional
and proximity hypotheses, respectively. We propose an online algorithm
to train the model components jointly. We evaluate the models in a setup,
where contextual information is available. The experimental results on
tasks involving classification, clustering, and ranking of sentences show
that our model outperforms the best existing models by a wide margin
across multiple datasets.
Code related to this chapter is available at:
https://github.com/tksaha/con-s2v/tree/jointlearning
Data related to this chapter are available at: https://www.dropbox.com/
sh/ruhsi3c0unn0nko/AAAgVnZpojvXx9loQ21WP MYa?dl=0

Keywords: Sen2Vec · Extra-sentential context
Embedding of sentences

1 Introduction

For many text processing tasks that involve classification, clustering, or ranking
of sentences, vector representation of sentences is a prerequisite. Bag-of-words
(BOW) based vector representation has been used traditionally in these tasks,
but in recent years, it has been shown that distributed representation, in the
form of condensed real-valued vectors, learned from unlabeled data outperforms
BOW based representations [1]. It is now well established that distributed rep-
resentation captures semantic properties of linguistic units and yields better
generalization [2,3].

However, most of the existing methods to devise distributed representation
for sentences consider only the content of a sentence or its grammatical structure
[1,4] disregarding its context. But, sentences rarely stand on their own in a
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text, rather the meaning of one sentence depends on the meaning of others
within its context. For example, sentences in a text segment address a common
topic [5]. At a finer level, sentences are connected by certain coherence relations
(e.g., elaboration, contrast) and acts together to express a coherent message
holistically [6].

Our work is built on the following hypothesis: since the meaning of a sen-
tence can be best interpreted within its context, its representation should also be
inferred from its context. Several recent works attempt to learn sentence rep-
resentations which support the above hypothesis by utilizing words or word
sequences of neighboring sentences [7,8]. However, by learning representations
to predict content of neighboring sentences, existing methods may learn semantic
and syntactic properties that are more specific to the neighbors rather than the
sentence under consideration. Furthermore, these methods either make a simple
BOW assumption or disregard context when extracting a sentence vector.

In contrast to the existing works, we consider neighboring sentences as atomic
linguistic units, and propose novel methods to learn the representations of a
given sentence by jointly modeling content and context of a sentence. Our work
considers two types of context: discourse and similarity. The discourse context
of a given sentence v comprises with its previous and the following sentence in
the text. On the other hand, the similarity context is based on a user defined
similarity function; thus it allows any sentences in the text to be in the context
of v depending on how similar that sentence is with v based on the chosen
function.

Our proposed computational model for learning the vector representation of
a sentence comprises three components. The first component models the con-
tent by asking the sentence vector to predict its constituent words. The second
component models the distributional hypotheses [9] of a context. The distribu-
tional hypothesis conveys that the sentences occurring in similar contexts should
have similar representations. Our computation model captures this preference
by using a context prediction component. Finally, the third component models
the proximity hypotheses of a context, which also suggests that sentences that
are proximal should have similar representations. Our method achieves this pref-
erence by using a Laplacian regularizer. To this end, we consider the sentence
representation learning problem as an optimization problem whose objective
function is built with expressions from the above three components and we solve
this optimization problem by using an efficient online algorithm.

1.1 Summary of Results

We evaluate our sentence representation for learning models on multiple infor-
mation retrieval tasks: topic classification and clustering, and single-document
summarization. Our evaluation on these tasks across multiple datasets shows
impressive results for our model, which outperforms the best existing models
by up to 7.7 F1-score in classification, 15.1 V -score in clustering, 3.2 ROUGE-1
score in summarization. We found that the discourse context performs better on
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topic classification and clustering tasks, while similarity context performs bet-
ter on summarization. We make our code1 and pre-processed dataset2 publicly
available.

2 Related Work

Extensive research has been conducted on learning distributed representation
of linguistic units both in supervised (task-specific) and in unsupervised (task-
agnostic) settings. In this paper, we focus on learning sentence representations
from unlabeled data.

Two log-linear models are proposed in [10] for learning representations of
words: continuous bag-of-words (CBOW) and continuous skip-gram. CBOW
learns word representations by predicting a word given its (intra-sentential) con-
text. The skip-gram model on the other hand learns representation of a word
by predicting the words in a context. [11] proposed C-PHRASE, an extension of
CBOW, where the context is extracted from a syntactic parse of the sentence.
Simple averaging or addition of word vectors to construct sentence vectors often
works well [12], and serves as baselines in our experiments.

CBOW and skip-gram models are extended in [1] to sentences and documents
by proposing distributed memory (DM) and distributed bag-of-words (DBOW)
models. In these models, similar to words, a sentence is mapped to an unique
id and its representation is learned using contexts of words in the sentence. DM
predicts a word given a context and the sentence id, where DBOW predicts
all words in a context independently given the sentence id. Since these models
are agnostic to sentence structure, they are quite fast to train. However, they
disregard extra-sentential context of a sentence.

Sequential denoising autoencoder (SDAE) and FastSent are proposed in [8]
for modeling sentences. SDAE employs an encoder-decoder framework, similar to
neural machine translation (NMT) [13], to denoise an original sentence (target)
from its corrupted version (source). FastSent is an additive model to learn sen-
tence representation from word vectors. Given a sentence as BOW, it predicts
the words of its adjacent sentences. The auto-encode version of FastSent also
predicts the words of the current sentence. SDAE composes sentence vectors
sequentially, but it disregards context of the sentence. FastSent, on the other
hand, is a BOW model that considers neighboring sentences.

Another context-sensitive model is Skip-Thought [7], which uses the NMT
framework to predict adjacent sentences (target) given a sentence (source). Since
the encoder and the decoder use recurrent layers to compose vectors sequentially,
SDAE and Skip-Thought are very slow to train. Furthermore, by learning repre-
sentations to predict content of neighboring sentences, these methods (FastSent
and Skip-Thought) may learn linguistic properties that are more specific to the
neighbors rather than the sentence under consideration.
1 https://github.com/tksaha/con-s2v/tree/jointlearning.
2 https://www.dropbox.com/sh/ruhsi3c0unn0nko/AAAgVnZpojvXx9loQ21WP MYa

?dl=0.
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By contrast, we encode a sentence by treating it as an atomic unit like word,
and similar to DBOW, we predict the words to model its content. Similarly,
context is considered in our model by treating neighboring sentences as atomic
units. This abstraction makes our model quite fast to train.

3 The Model

We hypothesize that the representation of a sentence depends not only on its
content words, but also on other sentences in its context. It will be convenient
to present our learning model using graph.

Let G = (V,E) be a graph, where V = {v1,v2, · · · ,v|V |} represents the set
of sentences in our corpus, and edge (vi,vj) ∈ E reflects some relation between
sentences vi and vj . A sentence vi ∈ V is a sequence of words (v1

i , v2
i , · · · , vM

i ),
each coming from a dictionary D. We define N (vi) as the set of neighboring
sentences of vi, which constitutes extra-sentential context for sentence vi. We
formalize relation between sentences and context later in Sect. 3.3.

Let φ : V → R
d be the mapping function from sentences to their distributed

representations, i.e., real-valued vectors of d dimensions. Equivalently, φ can be
thought of as a look-up matrix of size |V |×d, where |V | is the total number of sen-
tences. Our aim is to learn φ(vi) by incorporating information from two different
sources: (i) the content of the sentence, vi = (v1

i , v2
i , · · · , vM

i ); and (ii) the con-
text of the sentence in the graph, i.e., N (vi). Let 〈vi〉l

t = (vt−l
i , . . . , vt

i , . . . , v
t+l
i )

denote a window of 2l + 1 words around the word vt
i in sentence vi, and

Ci = |N (vi)| denote the context size for sentence vi. We define our model
as a combination of three different loss functions:

J(φ) =
∑

vi∈V

∑

v∈〈vi〉lt
j∼U(1,Ci)

[Lc(vi, v) + Lg(vi,vj) +

Lr(vi, N (vi))
]

(1)

where loss Lc(vi, v) is used to model the content of a sentence vi, and other two
loss functions are for modeling the context of the sentence. We define Lc(vi, v) as
the cost for predicting the content word v using the sentence vector φ(vi) as input
features. Similarly, Lg(vi,vj) is defined as the cost for predicting a neighboring
node vj ∈ N (vi), again using the sentence vector φ(vi) as input. The third loss
Lr(vi, N (vi)) is a graph smoothing regularizer defined over the context of vi,
which encourages two proximal sentences to have similar representations.

To learn the representation of a sentence vi using Eq. 1, for each content word
v in a window 〈vi〉l

t, we sample a neighboring node vj from N (vi), uniformly
at random, with replacement. We use the sentence vector φ(vi) (under estima-
tion) to predict v and vj , respectively. A regularization is performed to smooth
the estimated vector with respect to the neighboring vectors. Figure 1 shows
instances of our model for learning the representation of sentence v2 within a
context of two other sentences: v1 and v3.
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Fig. 1. Two instances (see (b) and (c)) of our model for learning representation of
sentence v2 within a context of two other sentences: v1 and v3 (see (a)). Directed
and undirected edges indicate prediction loss and regularization loss, respectively, and
dashed edges indicate that the node being predicted is randomly sampled. (Collected
from: 20news-bydate-train/misc.forsale/74732. The central topic is “forsale”.)

We can use the standard softmax function for the prediction tasks. Formally,
the negative log probability of an item o (can be a content word or a neighboring
node) given the sentence vector φ(vi) is

− log p(o|vi) = −wT
o φ(vi) + log

∑

o′∈O
exp

(
wT

o′φ(vi)
)

(2)

where O is the set of all possible items (i.e., vocabulary of words or set of all
nodes), and w’s are the weight parameters. Optimization is typically performed
using gradient-based online methods, such as stochastic gradient descend (SGD),
where gradients are obtained via backpropagation.

Unfortunately, training could be impractically slow on large corpora due
to summation over all items in O (Eq. 2), which needs to be performed for
every training instance (vi, o). Several methods have been proposed to address
this issue including hierarchical softmax [14], noise contrastive estimation [15],
and negative sampling [16]. We use negative sampling, which samples negative
examples to approximate the summation term. Specifically, for each training
instance (vi, o), we add S negative examples {(vi, o

s)}S
s=1 by sampling os from a

known noise distribution ψ (e.g., unigram, uniform). The negative log probability
in Eq. 2 is then formulated as such to discriminate a positive instance o from a
negative one os:

− log σ
(
wT

o φ(vi)
) − log

S∑

s=1

Eos∼ψ σ
(−wT

osφ(vi)
)

(3)

where σ is the sigmoid function defined as σ(x) = 1/(1+e−x), and w’s and φ(vi)
are similarly defined as before. Negative sampling thus reduces the number of
computations needed from |O| to S + 1, where S is a small number (5 – 10)
compared to the vocabulary size |O| (26K – 139K).

In the following, we elaborate on our methods for modeling content and
context of a sentence.
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3.1 Modeling Content

Our approach for modeling content of a sentence is similar to the distributed
bag-of-words (DBOW) model of [1]. Given an input sentence vi, we first map it
to a unique vector φ(vi) by looking up the corresponding vector in the sentence
embedding matrix φ. We then use φ(vi) to predict each word v sampled from
a window of words in vi. Formally, the loss for modeling content using negative
sampling is

Lc(vi, v) = − logσ
(
wT

v φ(vi)
)

− log
S∑

s=1

Evs∼ψc
σ

(−wT
vsφ(vi)

)
(4)

where σ is the sigmoid function as defined before, wv and wvs are the weight
vectors associated with words v and vs, respectively, and ψc is the noise distribu-
tion from which vs is sampled. In our experiments, we use unigram distribution
of words raised to the 3/4 power as our noise distribution, in accordance to [16].

By asking the same sentence vector (under estimation) to predict its words,
the content model captures the overall semantics of the sentence. The model has
O(d × (|V | + |D|)) parameters.

3.2 Modeling Context

Our content model above attempts to capture the overall meaning of a sentence
by looking at its words. However, sentences in a text are not independent, rather
the meaning of a sentence depends on its neighboring sentences. For instance,
consider the second and the third sentences in Fig. 1(a). When the sentences
are considered in isolation, one cannot understand what they are talking about
(i.e., monitor for sale). This suggests, since meaning of a sentence can be best
interpreted within its context, the representation of the sentence should also
be inferred from its context. We distinguish between two types of contextual
relations between sentences: (i) distributional similarity, and (ii) proximity. Each
of these corresponds to a loss in our model (Eq. 1), as we describe them below.

Modeling Distributional Similarity: Our sentence-level distributional hypothesis
[9] is that if two sentences share many neighbors in the graph, their representa-
tions should be similar. We formulate this in our model by asking the sentence
vector to predict its neighboring nodes. More formally, the loss for predicting a
neighboring node vj ∈ N (vi) using the sentence vector φ(vi) is

Lg(vi,vj) = − log σ
(
wT

j φ(vi)
)

− log
S∑

s=1

Ejs∼ψg
σ

(−wT
jsφ(vi)

)
(5)

where wj and ws
j are the weight vectors associated with nodes vj and vs

j , respec-
tively, and ψg is the noise distribution over nodes from which vs

j is sampled.
Similar to our content model, ψg is defined as unigram distribution of nodes
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raised to the 3/4 power. The unigram distribution is computed based on the
occurrences of the nodes in the neighborhood sets, {N (vi)}|V |

i=1. This model has
O(d × (|V | + |V |)) parameters.

Modeling Proximity: According to our proximity hypothesis, sentences that are
proximal in their contexts, should have similar representations. We use a Lapla-
cian regularizer to model this. Formally, the regularization loss for modeling
proximity for a sentence vi in its context N (vi) is

Lr(vi, N (vi)) =
λ

Ci

∑

vk∈N (vi)

||φ(vi) − φ(vk)||2 (6)

where Ci = |N (vi)| as defined before, and λ is a hyper-parameter to control
regularization strength.

Rather than including the Laplacian as a regularizer in the objective function,
another option is to first learn sentence embeddings using other components of
the model (e.g., first two loss functions in Eq. 1), and then retrofit them using the
Laplacian as a post-processing step. [17] adopted this approach to incorporate
lexical semantics (e.g., synonymy, hypernymy) into word representations. We
compare our approach with retrofitting in Sect. 5.

3.3 Context Types

In this section we characterize context of a sentence. We distinguish between
two types of context: discourse context and similarity context.

Discourse Context: The discourse context of a sentence is formed by the pre-
vious and the following sentences in the text. As explained before, the order of
the sentences carries important information. For example, adjacent sentences in
a text are logically connected by certain coherence relations (e.g., elaboration,
contrast) to express the meaning [6]. On a coarser level, sentences in a text seg-
ment (e.g., paragraph) address a common (sub)topic [5]. The discourse context
thus captures both coherence and topic structures of a text.

Similarity Context: While the discourse context covers important discourse phe-
nomena like coherence and cohesion [18], some applications might require a
context type that is based on more direct measures of similarity, and consid-
ers relations between all possible sentences in a document and possibly across
multiple documents. For example, graph-based methods for topic segmentation
[19] and summarization [20] rely on complete graphs of sentences, where edge
weights represent cosine similarity between sentences. In an empirical evaluation
of data structures for representing discourse coherence, [21] advocate for a graph
representation of discourse allowing non-adjacent connections.

Our similarity context allows any other sentence in the corpus to be in the
context of a sentence depending on how similar they are. To measure the similar-
ity, we first represent the sentences with vectors learned by Sen2Vec [1], then we
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measure the cosine between the vectors. We restrict the context size of a sentence
for computational efficiency, while still ensuring that it is informative enough.
We achieve this by imposing two kinds of constraints. First, we set thresholds for
intra- and across-document connections: sentences in a document are connected
only if their similarity value is above 0.5, and sentences across documents are
connected only if their similarity is above 0.8. Second, we allow up to 20 most
similar neighbors.

3.4 Training

Algorithm 1 illustrates the SGD-based algorithm to train our model. We first
initialize the model parameters; the sentence vectors φ are initialized with small
random numbers sampled from uniform distribution U(−0.5/d, 0.5/d), and the
weight parameters w’s are initialized with zero. We then compute the noise
distributions ψc and ψg for Lc(vi, v) and Lg(vi,vj) losses, respectively.

We iterate over the sentences in our corpus in each epoch of SGD, as we learn
their representations. Specifically, to estimate the representation of a sentence,
for each word token in the sentence, we take three gradient steps to account
for the three loss functions in Eq. 1. By making the same number of gradient
updates, the algorithm weights equally the contributions of content and context.

Algorithm 1. Training Con-S2V with SGD
Input : set of sentences V , graph G = (V, E)
Output: learned sentence vectors φ
1. Initialize model parameters: φ and w’s;
2. Compute noise distributions: ψc and ψg

3. repeat
for each sentence vi ∈ V do

for each content word v ∈ vi do
a) Generate a positive pair (vi, v) and S negative pairs {(vi, v

s)}S
s=1

using ψc;
b) Take a gradient step for Lc(vi, v);
c) Sample a neighboring node vj from N (vi);
d) Generate a positive pair (vi,vj) and S negative pairs {(vi,v

s
j )}S

s=1

using ψg;
e) Take a gradient step for Lg(vi,vj);
f) Take a gradient step for Lr(vi, N (vi));

end

end

until convergence;

4 Evaluation Tasks

Different methods have been proposed to evaluate sentence representation models
[8]. However, unlike most existing methods, our model learns representation of a
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sentence by exploiting contextual information in addition to the content.3 To be
able to evaluate our models, we thus require corpora of annotated sentences with
ordering and document boundaries preserved, i.e., documents with sentence-level
annotations. To the best of our knowledge, no previous work has used or released
such corpora for learning sentence representation. In this work, we automatically
create large corpora of documents with sentence-level topic annotations, which
are then used to evaluate our models on topic classification and clustering tasks.
Additionally, we evaluate our models on a ranking task of generating extractive
single-document summaries. In the interest of coherence, we present the summa-
rization task, followed by topic classification and clustering.

4.1 Extractive Summarization

Extractive summarization is often considered as a ranking problem, where the
goal is to select the most important sentences to form an abridged version of the
source document(s) [22]. Unsupervised methods are the predominant paradigm
for determining sentence importance. We use the popular graph-based algorithm
LexRank [20]. The input to LexRank is a graph, where nodes represent sentences
and edges represent cosine similarity between vector representations (learned by
models) of the two corresponding sentences. We run the PageRank [23] on the
graph to compute importance of each sentence in the graph.4 The top-ranked
sentences are extracted as the summary sentences.

Data: We use the benchmark datasets from DUC-2001 and DUC-2002, and
evaluate our representation models on the official task of generating a 100-words
summary for each document in the datasets.5 The sentence representations are
learned independently a priori from the same source documents. Table 1 shows
some basic statistics about the datasets. For each document, 2–3 short (≈100
words) human authored reference summaries are available, which we use as gold
summaries for automatic evaluation.

Table 1. Basic statistics about the DUC
datasets
Dataset #Doc. #Avg. sen. #Avg. sum.

DUC 2001 486 40 2.17

DUC 2002 471 28 2.04

Metric: We use the widely used
automatic evaluation metric ROUGE
[24] to evaluate the system-generated
summaries. ROUGE computes n-gram
recall between a system-generated
summary and a set of human-authored
reference summaries. Among the vari-
ants, ROUGE-1 (i.e., n = 1) has been shown to correlate well with human
judgments for short summaries [24]. Therefore, we only report ROUGE-1 in this
paper.

3 For this reason, we did not evaluate our models on tasks previously used to evaluate
sentence representation models.

4 The dumping factor in the PageRank was set to 0.85.
5 http://www-nlpir.nist.gov/projects/duc/guidelines.

http://www-nlpir.nist.gov/projects/duc/guidelines
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4.2 Topic Classification and Clustering

We evaluate our models by measuring how effective the learned vectors are when
they are used as features for classifying or clustering the sentences into topics.
Text categorization has now become a standard in evaluating cross-lingual word
embeddings [25]. We use a MaxEnt classifier and a K-means++ [26] clustering
algorithm for classification and clustering tasks, respectively.

Table 2. Statistics about Reuters and Newsgroups.
Dataset #Doc. Total

#sen.

Annot.

#sen.

Train

#sen.

Test

#sen.

#Class

Reuters 9,001 42,192 13,305 7,738 3,618 8

Newsgroups 7,781 95,809 22,374 10,594 9,075 8

Data: We use the stan-
dard text categorization cor-
pora: Reuters-21578 and 20-
Newsgroups. Reuters-21578
(henceforth Reuters) is a col-
lection of 21, 578 news doc-
uments covering 672 top-
ics.6 20-Newsgroups (hence-
forth Newsgroups) is a collection of about 20, 000 news articles organized into
20 different topics.7 We used the standard train-test splits (ModApte split for
Reuters) split, and selected documents only from the 8 most frequent topics
in both datasets. The selected topics for Reuters dataset are: acq, crude, earn,
grain, interest, money-fx, ship, and trade. The topics selected for Newsgroups
dataset are: sci.space, sci.med, talk.politics.guns, talk.politics.mideast, rec.autos,
rec.sport.baseball, comp.graphics, and soc.religion.christian.

Generating Sentence-level Topic Annotations: As mentioned above, both News-
groups and Reuters datasets come with document-level topic annotations. How-
ever, we need sentence-level annotations for our evaluation. One option is to
assume that all the sentences of a document share the same topic label as the
document. However, this naive assumption induces a lot of noise. Although sen-
tences in a document collectively address a common topic, not all sentences are
directly linked to that topic, rather they play supporting roles. To minimize
this noise, we employ our extractive summarizer introduced in Sect. 4.1 to select
the top 20% sentences of each document as representatives of the document,
and assign them the same topic label as the topic of the document. We used
Sen2Vec [1] representation to compute cosine similarity between two sentences
in LexRank. Table 2 shows statistics of the resulting datasets. Note that the
sentence vectors are learned independently from an entire dataset (#Total Sen.
column in Table 2).

Metrics: We report raw accuracy, macro-averaged F1-score, and Cohen’s κκκ
for comparing classification performance. For clustering, we report V-measure
[27] and adjusted mutual information or AMI [28]. We use all the annotated
sentences (train+test in Table 2) for comparing clustering performance.

6 http://kdd.ics.uci.edu/databases/reuters21578/.
7 http://qwone.com/∼jason/20Newsgroups/.

http://kdd.ics.uci.edu/databases/reuters21578/
http://qwone.com/~jason/20Newsgroups/
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5 Experiments

In this section, we present our experiments — the models we compare, their
settings, and the results.

5.1 Models Compared

We compare our representation learning model against several baselines and
existing models. We also experiment with a number of variations of our proposed
model considering which components of the model are active, types of context,
and how we incorporate the context. For clarity, in our tables we show results
divided into five evaluation groups:

(I) Existing Distributed Models: This group includes Sen2Vec [1], W2V-avg,
C-Phrase [11], FastSent [8], and Skip-Thought [7].

We used Mikolov’s implementation8 of Sen2Vec, which gave better results
than gensim’s version when validated on the sentiment treebank [29]. Following
the recommendation by [1], we concatenate the vectors learned by DM and
DBOW models. The concatenated vectors also performed better on our tasks.

For W2V-avg, we obtain a sentence vector by averaging the word vectors
learned by training a skip-gram Word2Vec [16] on our training set. Since code
for C-Phrase is not publicly available, we use pre-trained word vectors (of 300
dimensions) available from author’s webpage.9 We first add the word vectors to
obtain a sentence vector, then we normalize the vector with l2 normalization.
Normalized vectors performed better on our tasks than the ones obtained by
simple addition.

We use the auto-encode version of FastSent (FastSent+AE) since it con-
siders both content and context of a sentence. For Skip-Thought, we use the
pre-trained combine-skip model that concatenates the vectors encoded by uni-
and bi-skip models.10 The resultant vectors are of 4800 dimensions. The model
was originally trained on the BookCorpus11 with a vocabulary size of 20K words,
however, it uses publicly available CBOW Word2Vec vectors to expand the
vocabulary size to 930, 911 words.

(II) Non-distributed Model: We use Tf-Idf as our non-distributed baseline,
where a sentence is represented by tf*idf weighting of its words.

(III) Retrofitted Models: We compare our approach of modeling context with
the retrofitting method of [17]. We first learn sentence vectors using the content
model only (i.e., by turning off contextual components in Eq. 1). Then we retrofit
these vectors with the graph Laplacian Lr(vi, N (vi)) to encourage the revised

8 https://code.google.com/archive/p/word2vec/.
9 http://clic.cimec.unitn.it/composes/cphrase-vectors.html.

10 https://github.com/ryankiros/skip-thoughts.
11 http://yknzhu.wixsite.com/mbweb.

https://code.google.com/archive/p/word2vec/
http://clic.cimec.unitn.it/composes/cphrase-vectors.html
https://github.com/ryankiros/skip-thoughts
http://yknzhu.wixsite.com/mbweb
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vectors to be similar to the vectors of neighboring sentences and also similar to
their prior representations. We consider two types of graph contexts: discourse
(Ret-dis) and similarity (Ret-sim).

(IV) Regularized Models: We compare with a variant of our model, where the loss
to capture distributional similarity Lg(vi,vj) is turned off. This model consid-
ers the same information as the retrofitting model (i.e., content and proximity),
but trains the vectors in a single step. Its comparison with our complete model
will tell us how much distributional similarity contributes to the overall perfor-
mance. We define regularizers on two types of contexts: discourse (Reg-dis) and
similarity (Reg-sim).

(V) Our Models: We experiment with two variants of our combined model, Con-
S2V: one with discourse context (Con-S2V-dis), and the other with similarity
context (Con-S2V-sim).

Table 3. Optimal values of the hyper-parameters for different models on different
tasks.

Dataset Task Sen2Vec FastSent W2V-avg Reg-sim Reg-dis Con-S2V-sim Con-S2V-dis

(win. size) (win. size, reg. str.) (win. size, reg. str.)

Reuters Clas. 8 10 10 (8, 1.0) (8, 1.0) (8, 0.8) (8, 1.0)

Clus. 12 8 12 (12, 0.3) (12, 1.0) (12,0.8) (12, 0.8)

Newsgroups Clas. 10 8 10 (10, 1.0) (10, 1.0) (10, 1.0) (10, 1.0)

Clus. 12 12 12 (12, 1.0) (12, 1.0) (12, 0.8) (10, 1.0)

DUC 2001 Sum. 10 12 12 (10, 0.8) (10, 0.5) (10, 0.3) (10, 0.3)

DUC 2002 Sum. 8 8 10 (8, 0.8) (8, 0.3) (8, 0.3) (8, 0.3)

5.2 Model Settings

The representation dimensions were set to 300 in DM and DBOW models. The
concatenation of the two vectors yields 600 dimensions for Sen2Vec. For a fair
comparison, the dimensions in all other models that we train (except pre-trained
C-Phrase and Skip-Thought) were fixed to 600. All the prediction-based models
were trained with SGD. Retrofitting was done using iterative method [17] with
20 iterations. The number of noise samples (S) in negative sampling was set to 5.
We also used subsampling of frequent words [16], which together with negative
sampling give significant speed-ups in training.

For each dataset described in Sect. 4, we randomly selected 20% documents
from the training set to form a held-out validation set on which we tune the
hyper-parameters. Window size (k) is a hyper-parameter that is common to all
models. The regularized models have an additional hyper-parameter, regulariza-
tion strength(λ). We tuned with k ∈ {8, 10, 12} and λ ∈ {0.3, 0.6, 0.8, 1}, and we
optimized F1 for classification, AMI for clustering, and ROUGE-1 for summa-
rization. Table 3 shows the hyper-parameters and their optimal values for each
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task. We evaluated our models on the test sets with these optimal values. We
ran each experiment five times and take the average of the evaluation measures
to avoid any randomness in results.

5.3 Classification and Clustering Results

Table 4 shows the results of the models on topic classification and clustering
tasks, respectively. The scores are shown in comparison to Sen2Vec.

Table 4. Performance of our models on topic classification and clustering tasks in
comparison to Sen2Vec.

Topic classification results Topic clustering results

Reuters Newsgroups Reuters Newsgroups

F1 Acc κ F1 Acc κ V AMI V AMI

Sen2Vec 83.25 83.91 79.37 79.38 79.47 76.16 42.74 40.00 35.30 34.74

W2V-avg(+) 2.06 (+) 1.91 (+) 2.51 (−) 0.42 (−) 0.44 (−) 0.50 (−) 11.96 (−) 10.18 (−) 17.90 (−) 18.50

C-Phrase (−) 2.33 (−) 2.01 (−) 2.78 (−) 2.49 (−) 2.38 (−) 2.86 (−) 11.94 (−) 10.80 (−) 1.70 (−) 1.44

FastSent (−) 0.37 (−) 0.29 (−) 0.41 (−) 12.23(−) 12.17(−) 14.21(−) 15.54 (−) 13.06 (−) 34.40 (−) 34.16

Skip-

Thought

(−) 19.13(−) 15.61(−) 21.8 (−) 13.79(−) 13.47(−)15.76 (−) 29.94 (−) 28.00 (−) 27.50 (−) 27.04

Tf-Idf (−) 3.51 (−) 2.68 (−) 3.85 (−) 9.95 (−) 9.72 (−) 11.55(−) 21.34 (−) 20.14 (−) 29.20 (−) 30.60

Ret-sim (+) 0.92 (+) 1.28 (+) 1.65 (+) 2.00 (+) 1.97 (+) 2.27 (+) 3.72 (+) 3.34 (+) 5.22 (+) 5.70

Ret-dis (+) 1.66 (+) 1.79 (+) 2.30 (+) 5.00 (+) 4.91 (+) 5.71 (+) 4.56 (+) 4.12 (+) 6.28 (+) 6.76

Reg-sim (+) 2.53 (+) 2.53 (+) 3.28 (+) 3.31 (+) 3.29 (+) 3.81 (+) 4.76 (+) 4.40 (+) 12.78 (+) 12.18

Reg-dis (+) 2.52 (+) 2.43 (+) 3.17 (+) 5.41 (+) 5.34 (+) 6.20 (+) 7.40 (+) 6.82 (+) 12.54 (+) 12.44

Con-S2V-

sim

(+) 3.83 (+) 3.55 (+) 4.62 (+) 4.52 (+) 4.50 (+) 5.21 (+) 14.98(+) 14.38(+) 13.68 (+) 13.56

Con-S2V-

dis

(+) 4.29 (+) 4.04 (+) 5.22(+) 7.68 (+) 7.56 (+) 8.80 (+) 9.30 (+) 8.36 (+) 15.10(+) 15.20

Unsurprisingly, Sen2Vec outperforms Tf-Idf representation (row 6) by a good
margin on both tasks. It gets improvements of up to 11.6 points on classification,
and up to 30.6 points on clustering. This is inline with the finding of [1], and
demonstrates the benefits of using distributed representation over sparse BOW
representations.

Simple averaging of Word2Vec vectors performs quite well for classification,
especially, on Reuters, where it outperforms Sen2Vec by 1.9 to 2.5 points. [8] also
reported similar findings on five out of six datasets. However, averaging does not
perform well on clustering, where the scores are 10.2 to 18.5 points below than
Sen2Vec.

Simple addition-based composition of C-Phrase word vectors performs
poorly on both tasks – lower than Sen2Vec by 2 to 3 points on classification
and by 1.4 to 11.9 points on clustering.

Unexpectedly, FastSent and Skip-Thought perform quite poorly on both
tasks. Skip-Thought, in particular, has the worst performance on both tasks.
These results contradict the claim made by [7] that skip-thought vectors are
generic. To investigate if the poor results are due to shift of domains (book vs.
news), we also trained Skip-Thought on our training corpora with vector size
600 and vocabulary size 30K. The performance was even worse. We hypothesize,
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this is due to our training set size, which may not be enough for the heavy model.
Also, Skip-Thought does not perform any inference to extract the vector using
a context – although the model was trained to generate neighboring sentences,
context was ignored when the encoder was used to extract the sentence vector.

Regarding FastSent, although its classification performance on Reuters is
comparable to Sen2Vec, it performs poorly on Newsgroups, where the measures
are 12.2 to 14.3 points lower than Sen2Vec. The differences get bigger in cluster-
ing. The reason could be that FastSent does not learn sentence representations
directly, rather it simply adds the word vectors. Note that FastSent was outper-
formed by Tf-Idf in all classification tasks in [8]. Since both Skip-Thought and
FastSent learn representations by predicting contents of adjacent sentences, the
learned vectors might capture linguistic properties that are more specific to the
neighbors.

We also experimented with SAE and SDAE auto-encoders proposed in [8].
However, they performed poorly on our tasks (thus not shown in the table).
For example, SAE gave accuracies of around 40% on reuters and 18% on news-
groups. This is similar to what [8] observed. They propose to use pretrained
word embeddings to improve the results. We did not achieve significant gains by
using pretrained embeddings on our tasks.

Interestingly, the retrofitting and regularized models improve over Sen2Vec
on both tasks, showing gains of up to 6.2 points on classification and up to
12.8 points on clustering. The improvements in most cases are significant. This
demonstrates that proximity hypothesis is beneficial for these tasks.

When we compare regularized models with retrofitted ones, we observe that
regularized models consistently outperform the retrofitted counterparts on both
tasks with improvements of up to 1.6 points on classification and up to 7.6 points
on clustering. This demonstrates that incorporating contextual information by
means of regularization is more effective than retrofitting. This could be due to
the fact that regularization approach induces contextual information while learn-
ing the vectors from scratch as opposed to revising them in a post-processing
step.

Finally, we observe further improvements for our complete models (Con-
S2V variants) on both tasks. Compared to the best regularized models, our
models deliver improvements of up to 2.6 points on classification and up to 7.6
points on clustering. This demonstrates that by including the neighbor predic-
tion component to model distributional similarity, our model captures comple-
mentary contextual information to what is captured by the regularized models.
A comparison between the context types reveals that discourse context is more
beneficial than similarity context in most cases, especially for classification. For
clustering, similarity context gives better results in a few cases (e.g., on Reuters).
Overall, our best model outperforms the best existing model by up to 8.8 and
15.20 points on classification and clustering tasks, respectively.

5.4 Summarization Results

Table 5 shows ROUGE-1 scores of our models on DUC datasets for the sum-
mary length of 100 words. W2V-avg performs well achieving comparable score
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to Sen2Vec on DUC’01 and 1.4 points improvement on DUC’02. C-Phrase
outperforms Sen2Vec by 2.5 and 1.7 points on DUC’01 and DUC’02, respec-
tively. FastSent and Skip-Thought again perform disappointingly. Sen2Vec out-
performs FastSent by 4.15 and 7.53 points on DUC’01 and DUC’02, respectively.
Skip-Thought performs comparably to Sen2Vec on DUC’01, but gets worse on
DUC’02.

Interestingly, Tf-Idf performs quite well on this task. It gives the top score on
DUC’01 (i.e., 48.7 ROUGE-1), and an improvement of 1.5 points over Sen2Vec on
DUC’02. These results suggest that existing distributed representation methods
are inferior to traditional methods in modeling aspects that are necessary for
measuring sentence importance.

Table 5. ROUGE-1 scores of the models on
DUC datasets in comparison with Sen2Vec.

DUC’01 DUC’02

Sen2Vec 43.88 54.01

W2V-avg (−) 0.62 (+) 1.44

C-Phrase (+) 2.52 (+) 1.68

FastSent (−) 4.15 (−) 7.53

Skip-Thought (+) 0.88 (−) 2.65

Tf-Idf (+) 4.83 (+) 1.51

Ret-sim (−) 0.62 (+) 0.42

Ret-dis (+) 0.45 (−) 0.37

Reg-sim (+) 2.90 (+) 2.02

Reg-dis (−) 1.92 (−) 8.77

Con-S2V-sim (+) 3.16 (+) 2.71

Con-S2V-dis (+) 1.15 (−) 4.46

Retrofitted models give mixed
results and fail to get significant
improvement over Sen2Vec. On the
other hand, with similarity con-
text, regularized model improves
over Sen2Vec by 2 to 3 points. This
again suggests that regularization
is a better method to incorporate
context proximity. By including the
neighbor prediction component to
incorporate distributional similar-
ity, our combined model improves
the scores further; it achieves the
second best result on DUC’01, and
becomes top-performer on DUC’02.
It is not surprising that similarity context is more suitable than discourse con-
text for this task. From a context of topically similar sentences, our model learns
representations that capture linguistic aspects related to information centrality.
Given that the existing models fail to beat the Tf-Idf baseline on this task, our
results are rather encouraging.

6 Discussion and Future Directions

We have presented a novel model to learn distributed representation of sen-
tences by considering content as well as context of a sentence. Our results on
tasks involving classifying, clustering and ranking sentences confirm that extra-
sentential contextual information is crucial for modeling sentences, and this infor-
mation is best captured by our model that comprises a neighbor-based prediction
component and a regularization component to capture distributional similarity
and contextual proximity, respectively.

One important property of our model is that it encodes a sentence directly,
and it considers neighboring sentences as atomic units. Apart from the improve-
ments that we achieve in various tasks, this property makes our model quite
efficient to train compared to compositional methods like encoder-decoder mod-
els (e.g., SDAE, Skip-Thought) that compose a sentence vector from the word



768 T. K. Saha et al.

vectors. Encoder-decoder approaches attempt to capture the structure of a sen-
tence, which could be beneficial to model long distance relations between words
(e.g., negation in sentiment classification). It would be interesting to see how
our model compares with compositional models on sentiment classification task.
However, this would require creating a new dataset of comments with sentence-
level sentiment annotations. We intend to create such datasets and evaluate the
models in the future.
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