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Abstract. Knowledge graph completion with representation learning
predicts new entity-relation triples from the existing knowledge graphs
by embedding entities and relations into a vector space. Most existing
methods focus on the structured information of triples and maximize
the likelihood of them. However, they neglect semantic information con-
tained in most knowledge graphs and the prior knowledge indicated by
the semantic information. To overcome this drawback, we propose an
approach that integrates the structured information and entity types
which describe the categories of entities. Our approach constructs rela-
tion types from entity types and utilizes type-based semantic similarity
of the related entities and relations to capture prior distributions of enti-
ties and relations. With the type-based prior distributions, our approach
generates multiple embedding representations of each entity in different
contexts and estimates the posterior probability of entity and relation
prediction. Extensive experiments show that our approach outperforms
previous semantics-based methods. The source code of this paper can be
obtained from https://github.com/shh/transt.
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1 Introduction

Knowledge graphs (KGs) have become a key resource for artificial intelligence
applications including question answering, recommendation system, knowledge
inference, etc. Recently years, several large-scale KGs, such as Freebase [2],
DBpedia [1], NELL [4], and Wikidata [25], have been built by automatically
extracting structured information from text and manually adding structured
information according to human experiences. Although large-scale KGs have
contained billions of triples, the extracted knowledge is still a small part of
the real-world knowledge and probably contains errors and contradictions. For
example, 71% of people in Freebase have no known place of birth, and 75% have
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no known nationality [5]. Therefore, knowledge graph completion (KGC) is a
crucial issue of KGs to complete or predict the missing structured information
based on existing KGs.

A typical KG transforms real-world and abstract information into triples
denoted as (head entity, relation, tail entity), (h, r, t) for short. To complete or
predict the missing element of triples, such as (h, r, ?), (h, ?, t), (?, r, t), represen-
tation learning (RL) is widely deployed. RL embeds entities and relations into
a vector space, and has produced many successful translation models including
TransE [3], TransH [26], TransR [16], TransG [29], etc. These models aim to gen-
erate precise vectors of entities and relations following the principle h + r ≈ t,
which means t is translated from h by r.

Most RL-based models concentrate on structured information in triples and
neglect the rich semantic information of entities and relations, which is con-
tained in most KGs. Semantic information includes types, descriptions, lexical
categories and other textual information. Although these models have signif-
icantly improved the embedding representations and increased the prediction
accuracy, there is still room for improvement by exploiting semantic information
in the following two aspects.

Representation of entities. One of the main obstacles of KGC is the polysemy
of entities or relations, i.e., each entity or relation may have different seman-
tics in different triples. For example, in the triple (Isaac Newton, birthplace,
Lincolnshire), Newton is a person, while in (Isaac Newton, author of, Opticks),
Newton is a writer or physicist. This is a very common phenomenon in KGs
and it causes difficulty in vector representations. Most works focus on entity
polysemy and utilize linear transformations to model different semantics of an
entity in different triples to attain the high accuracy. However, they represent
each entity as a single vector which cannot capture the uncertain semantics of
entities. This is a critical limitation for modeling the rich semantics.

Estimation of posterior probability. Another problem of most previous works is
the neglect of prior probability of known triples. Most previous works optimize
the maximum likelihood (ML) estimation of vector representations. Few mod-
els discuss the posterior probability, which incorporates a prior distribution to
augment optimization objectives. Specifically, previous ML models essentially
maximize the probability p(h, r, t) that h, r, t form a triple p(h, r, t). When pre-
dicting the missing tail of (h, r, ?), however, h and r are already known and they
may influence the possible choices of t. Thus, the posterior probability p(t |h, r)
of predicting t is a more accurate expression of optimization goals than p(h, r, t).
In another word, we could prune the possible choices based on the prior proba-
bility of the missing element in a triple.

To address the two issues above, we propose a type-based multiple embed-
ding model (TransT). TransT fully utilizes the entity type information which
represents the categories of entities in most KGs. Compared with descriptions
and other semantic information, types are simpler and more specific because
types of an entity are unordered and contain less noise. Moreover, we can con-
struct or extend entity types from other semantic information, if there is no
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explicit type information in a KG. For example, in Wordnet, we can construct
types from the lexical categories of entities. Other semantic information does not
have this advantage. In addition to entity types, we construct multiple types of
relations from common types of related entities. We measure the semantic sim-
ilarity of entities and relations based on entity types and relation types. With
this type-based semantic similarity, we integrate type information into entity
representations and prior estimation which are detailed below.

We model each entity as multiple semantic vectors with type information
to represent entities more accurately. Different from using semantics-based lin-
ear transformations to separate the mixed representation [16,26,27,31], TransT
models the multiple semantics separately and utilizes the semantic similarity to
distinguish entity semantics. In order to capture entity semantics accurately, we
dynamically generate new semantic vectors for different contexts.

We utilize the type-based semantic similarity to incorporate prior probability
in the optimization objective. It is inspired by the observation that the missing
element of a triple semantically correlates to the other two elements. Specifically,
all entities appearing in the head (or tail) with the same relation have some
common types, or these entities have some common type owned by the entities
appearing in the tail (or head). In the “Newton” example mentioned above, if
the head of (Isaac Newton, author of, Opticks) is missing, we can predict the
head is an entity with “author” or “physicist” since we know the relation is
“author of” and the tail is “Opticks”, a physics book. Therefore, we design a
type-based semantic similarity based on the similarity of type sets. With this
similarity, TransT captures the prior probability of missing elements in triples
for the accurate posterior estimation.

Our contributions are summarized as follows:

– We propose a new approach for fusing structured information and type infor-
mation. We construct multiple types of relations from entity types and design
the type-based semantic similarity for multiple embedding representations
and prior knowledge discovering.

– We propose a multiple embedding model that represents each entity as mul-
tiple vectors with specific semantics.

– We estimate prior probabilities for entity and relation predictions based on
the semantic similarity between elements of triples in KGs.

The rest of this paper is organized as follows. Section 2 shows the recent
studies of KGC. Section 3 introduces our approach including multiple embed-
ding model, prior probability estimation, and objective function optimization.
Section 4 displays the evaluation of our approach on FB15K and WN18. Section 5
concludes the paper.

2 Related Work

TransE [3] proposes the principle h + r ≈ t to assign a single vector for each
entity and relation by minimizing the energy function ‖h+r−t‖ of every triple.
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It is a simple and efficient model but unable to capture the rich semantics of
entities and relations.

Some models revise function ‖ · ‖ in the energy functions for the complex
structures in KGs. TransA [13] adaptively finds the optimal loss function without
changing the norm function. Tatec [7] utilizes canonical dot products to design
different energy functions for different relations. HolE [20] designs the energy
function based on a tensor product which captures the interaction in features of
entities and relations. ComplEx [24] represents entities and relations as complex-
number vectors and calculates Hermitian dot product in the energy function.
ManifoldE [28] expands the position of triples from one point to a hyperplane or
sphere and calculates energy function for the two manifolds. KG2E [9] models
the uncertainty of entities and relations by Gaussian embedding and defines KL
divergence of entity and relation distributions as the energy function. ProjE [22]
proposes a neural network model to calculate the difference between h+r and t.

Some models design ‖hr + r − tr‖ to make an entity vector adaptive to
different relations. They aim to find appropriate representations of hr and tr .
TransH [26] projects entity vector into hyperplanes of different relations. It rep-
resents hr as the projection vector of hr on the relation hyperplanes. TransR
[16] adjusts entity vectors by transform matrices instead of projections. It repre-
sents hr as the result of linear transformation of h. TranSparse [12] considers the
transform matrix should reflect the heterogeneous and imbalance of entity pairs
and improves the transform matrix into two sparse matrices corresponding to
the head entity and the tail entity respectively. TransG [29] considers relations
also have multiple semantics like entities. It generates multiple vectors for each
relation.

Semantic information, such as types, descriptions, and other textual informa-
tion, is an important supplement to structured information in KGs. DKRL [30]
represents entity descriptions as vectors for tuning the entity and relation vec-
tors. SSP [27] modifies TransH by using the topic distribution of entity descrip-
tions to construct semantic hyperplanes. Entity descriptions are also used to
derive a better initialization for training models [17]. With type information,
type-constraint model [14] selects negative samples according to entity and rela-
tion types. TKRL [31] encodes type information into multiple representations
in KGs with the help of hierarchical structures. It is a variant of TransR with
semantic information and it is the first model introducing type information.
However, TKRL also neglects the two issues mentioned above.

There are several other approaches to modeling KGs as graphs. PRA [15] and
SFE [8] predict missing relations from existing paths in KGs. These approaches
consider that sequences of relations in paths between two entities can comprise
the relation between the two entities. RESCAL [21], PITF [6] and ARE [19]
complete KGs through retrieving their adjacent matrices. These approaches need
to process large adjacent matrices of entities.
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3 Methodology

3.1 Overview

The goal of our model is to obtain the vector representations of entities and rela-
tions, which maximize the prediction probability over all existing triples. The
prediction probability is a conditional probability because except the missing
element, the rest two elements in a triple are known. Specifically, when predict-
ing the tail entity for a triple (h, r, t), we expect to maximize the probability of
t under the condition that the given triple satisfies the principle h + r ≈ t and
the head entity and relation are h and r. We denote this conditional probability
entity as p(t |h, r, true) which means triple (h, r, ∗) is “true”. “true” represents
the triple satisfies h + r ≈ t principle. “true” triples are also called correct
triples in this paper. Maximizing this probability is the aim of the tail predic-
tion. According to Bayes’ theorem [10], p(t |h, r, true) can be seen as a posterior
probability and its correlation with the prior probability is derived as

p(t |h, r, true) =

{
p(true | h,r,t) p(t | h,r)

p(true | h,r) p(t |h, r) �= 0

0 p(t |h, r) = 0,
(1)

where p(true |h, r, t) is the probability that (h, r, t) is “true”, p(t |h, r) is the
prior probability of t. To obtain the most possible entity, we can only compare
probabilities of triples (h, r, ∗). All these probabilities have the same p(t |h, r).
Thus, we can omit p(true |h, r) in (1):

p(t |h, r, true) ∝ p(true |h, r, t) p(t |h, r). (2)

Similarly, the objective of the head prediction is

p(h | r, t, true) ∝ p(true |h, r, t) p(h | r, t), (3)

and the objective of the relation prediction is

p(r |h, t, true) ∝ p(true |h, r, t) p(r |h, t). (4)

All the three formulas have two components: likelihood and prior probability.
p(true |h, r, t) is the likelihood estimated by the multiple embedding representa-
tions. The other component is the prior probability estimated by the semantic
similarity. TransT introduces a type-based semantic similarity to estimate the
two components and optimizes the vector representations to maximize these
posterior probabilities over the training set.

3.2 Type-Based Semantic Similarity

In order to estimate the likelihood and prior probability, we introduce the seman-
tic similarity to measure the distinction of entity semantics with the type infor-
mation.
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Fig. 1. The entities in the head or tail of a relation have some common types. In
this example, all the head entities have “person” type and all the tail entities have
“location” type. Therefore, “person” and “location” are the head and tail type of this
relation, respectively. Moreover, if we relax this constraint, “physicist” type is also the
head type of the relation since most head entities contain this type.

All entities appearing in the head (or tail) with the same relation have some
common types. These common types determine this relation as shown in Fig. 1.
There are head and tail positions for each relation. Thus, each relation r has
two type sets Tr,head for entities in the head and Tr,tail for entities in the tail.
We construct type sets of relations from these common types:

Tr,head =
⋂

e∈Headr
ρ

Te Tr,tail =
⋂

e∈Tailr
ρ

Te, (5)

where Te is the type sets of entity e, Headr and Tailr are the set of entities
appearing respectively in the head and tail with relation r.

⋂
ρ is a special inter-

section which contains elements belonging to most of the type sets. This intersec-
tion can capture more type information of entities than the normal intersection.
However, more information may include more noises. Thus, we balance the influ-
ence by the parameter ρ, which is the lowest frequency of types in all Te.

With the type information of entities and relations, we denote the asymmetric
semantic similarity of relations and entities as the following similarity of two sets
inspired by Jaccard Index [11]:

s(rhead, h) =
|Tr,head ∩ Th|

|Tr,head| s(rtail, t) =
|Tr,tail ∩ Tt|

|Tr,tail| s(h, t) =
|Th ∩ Tt|

|Th| , (6)

where s(rhead, h) is the semantic similarity between the relation and the head,
s(rtail, t) is the semantic similarity between the relation and the tail, s(h, t) is
the semantic similarity between the head and tail.

The type-based semantic similarity plays an important role in the following
estimations especially in the prior probability estimation.

3.3 Multiple Embedding Representations

Entities with rich semantics are difficult to be accurately represented in KGC.
Thus it is difficult to measure the likelihood p(true |h, r, t) accurately. In this
section, we introduce the multiple embedding representations to capture the
entity semantics for the accurate likelihood.
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Fig. 2. TransE represents each entity as a single vector which tries to describe all
semantics of the entity. Thus the vector representation is not accurate for any entity
semantics. In TransT, separate representations of entity semantics describe the rela-
tionship among a triple more accurately.

As shown in Fig. 2, there is only one vector representation for one entity
in previous work, e.g., TransE. To overcome this drawback, TransT represents
each entity semantics as a vector and denotes each entity as a set of semantic
vectors. In our approach, we embed each semantics into a vector space. We
assume relations have single semantics and entities have multiple semantics.
Thus, each relation is represented as a single vector. To adapt the rich entity
semantics, we represent each entity as a set of semantic vectors instead of a
single vector. Therefore, an entity can be viewed as a random variable of its
multiple semantic vectors. Furthermore, the likelihood p(true |h, r, t) depends
on the expected probability of all possible semantic combinations of random
variables h and t. This can define the likelihood of the vector representations for
the triple as below

p(true |h, r, t) =
nh∑
i=1

nt∑
j=1

wh,iwt,jptrue(vh,i, vr, vt,j), (7)

where nh and nt are the number of entity semantics of h and t; wh =
(wh,1, . . . , wh,nh

) and wt = (wt,1, . . . , wt,nt
) are the distributions of random

variables h and t; vh,i, vr, vt,j are the vectors of h, r, t; ptrue(vh,i, vr, vt,j) is
the likelihood of the component with i-th semantic vector vh,i of h and j-th
semantic vector vt,j of t. According to the principle h + r ≈ t, this likelihood is
determined by the difference between h + r and t:

ptrue(vh,i, vr, vt,j) = σ(d(vh,i + vr, vt,j)), (8)

where the distance function d measures this difference; the squashing function
σ transforms values of d from 0 to +∞ into probability values from 1 to 0 since
the probability of a semantic combination is larger if the distance between their
corresponding vectors is smaller. To satisfy the property, we set d(x, y) = ‖x−y‖1
(1-norm) and σ(x) = e−x.

In order to capture entity semantics more accurately, we do not assign the
specific semantics of entities and the size of their vector sets in advance. We
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model the generating process of semantic vectors as a random process revised
from Chinese restaurant process (CRP), a widely employed form for the Dirichlet
process [10]. This avoids the man-made subjectivity for setting nh and nt.

In training process, the tail (or head) entity in each triple generates a new
semantic vector with the following probability

pnew,tail(h, r, t) =
(

1 − max
ti∈Semanticst

s(ti, rtail)
)

βe−‖r‖1

βe−‖r‖1 + p(true |h, r, t)
, (9)

where β is the scaling parameter in CRP which controls the generation proba-
bility. The bracketed formula means t more possibly generates a new semantics
when the existing semantics are more different from r; the fraction part is simi-
lar to the CRP in TransG [29], which indicates that t possibly generates a new
semantics if its current semantic set cannot represent t accurately. Similarly, the
new semantic vector of h can be generated with the probability pnew,head(h, r, t).

3.4 Prior Probability Estimation

In our model, the prior probability reflects features of a KG from the perspective
of semantics. We estimate the prior probabilities (2), (3) and (4) by the type-
based semantic similarity.

Note that the type sets of three elements in a triple have obvious relation-
ships. We can estimate the prior distribution of the missing element from the
semantic similarity between the missing element and the others.

When we predict t in a triple (h, r, t), the entities with more common types
belonging to r and h have higher probability. Therefore, we use the semantic
similarity between t and its context (∗, h, r) to estimate t’s prior probability:

p(t |h, r) ∝ s(rtail, t)
λtail s(h, t)λrelation , (10)

where λrelation, λhead, λtail ∈ {0, 1} are the similarity weights, because h and
r have different impacts on the prior probability of t. We use these weights to
select different similarity for different situation. Similarly, the prior estimation
of head entity h is

p(h | r, t) ∝ s(rhead, h)λhead s(t, h)λrelation . (11)

By the similar derivation, the prior estimation of relation r is

p(r |h, t) ∝ s(rhead, h)λhead s(rtail, t)
λtail . (12)

To adapt different datasets, the parameters, λrelation, λhead and λtail, should
be adjusted.

3.5 Objective Function with Negative Sampling

To achieve the goal of maximizing posterior probabilities, we define the objective
function as the sum of prediction errors with negative sampling [18].
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For a triple (h, r, t) in the training set Δ, we sample its negative triple
(h′, r′, t′) /∈ Δ by replacing one element with another entity or relation. When
predicting different elements of a triple, we replace the corresponding elements
to obtain the negative triples. Therefore, the prediction error is denoted as a
piecewise function:

l(h, r, t, h′, r′, t′) =

⎧⎪⎨
⎪⎩

− ln p(h | r, t, true) + ln p(h′ | r, t, true) h′ �= h

− ln p(t |h, r, true) + ln p(t′ |h, r, true) t′ �= t

− ln p(r |h, t, true) + ln p(r′ |h, t, true) r′ �= r,

(13)

where we measure the performance of the probability estimation by the prob-
ability difference of the training triple and its negative sample. We define the
objective function as the total of prediction errors:∑

(h,r,t)∈Δ

∑
(h′,r′,t′)∈Δ′

(h,r,t)

max {0, γ + l(h, r, t, h′, r′, t′)} , (14)

where Δ′
(h,r,t) is the negative triple set of (h, r, t).

The total posterior probabilities of predictions are maximized through the
minimization of the objective function. Moreover, stochastic gradient descent
is applied to optimize the objective function, and we normalize the semantic
vectors of entities to avoid overfitting.

4 Experiments

In this paper, we adopt two public benchmark datasets that are the subsets
of Freebase and Wordnet, FB15K [3] and WN18 [3], to evaluate our models
on knowledge graph completion and triple classification [23]. As for knowledge
graph completion, we divide the task into two sub-tasks: entity prediction and
relation prediction. Following [3], we split datasets into train, validation and test
set. The statistics of datasets are listed in Table 1.

Type information of entities in FB15K has been collected in [31]. There
are 4,064 types in FB15K and the average number of types for entities is
approximately 12. There is no explicit type information in WN18. Thus we
construct type sets of entities from lexical categories. For example, the name of
“ trade name NN 1” contains its lexical category “NN” (noun), we define the
type of “ trade name NN 1” as “NN”. Because each entity in Wordnet repre-
sents the exact semantics, the number of types for entities is 1. There are 4 types
in WN18.

The baselines include three semantics-based models: TKRL [31] utilizes entity
types; DKRL [30] and SSP [27] take advantage of entity descriptions.

4.1 Entity Prediction

Entity prediction aims at predicting the missing entity when given an entity and
a relation, i.e. we predict t given (h, r, ∗), or predict h given (∗, r, t). FB15K and
WN18 are the benchmark dataset for this task.
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Table 1. Statistics of datasets

Dataset #Ent #Rel #Train #Valid #Test

FB15k 14,951 1,345 483,142 50,000 59,071

WN18 40,943 18 141,442 5,000 5,000

Evaluation Protocol. We adopt the same protocol used in previous studies.
For each triple (h, r, t) in the test set, we replace the tail t (or the head h) with
every entity in the dataset. We calculate the probabilities of all replacement
triples and rank these probabilities in descending order. Two measures are con-
sidered as evaluation metrics: Mean Rank, the mean rank of original triples in
the corresponding probability ranks; HITS@N, the proportion of original triples
whose rank is not larger than N. In this task, we use HITS@10. This setting
is called “Raw”. Some of these replacement triples exist in the training, valida-
tion, or test sets, thus ranking them ahead of the original triple is acceptable.
Therefore, we filter out these triple to eliminate this case. This filtering setting
is called “Filter”. In both settings, a higher HITS@10 and a lower Mean Rank
mean better performance.

Experiment Settings. As the datasets are the same, we directly reuse the best
results of several baselines from the literature [16,26,31]. We have attempted
several settings on the validation dataset to get the best configuration. Under
the “unif.” sampling strategy [26], the optimal configurations are: learning rate
α = 0.001, vector dimension k = 50, margin γ = 3, CRP factor β = 0.0001,
similarity weights λhead = λhead = 0, λrelation is set to 0 or 1 for different
relations depending on statistical results of the training set, on WN18; α =
0.00025, k = 300, γ = 3.5, β = 0.0001, λhead = λtail = 1, λrelation = 0 on
FB15K. We train the model until convergence.

Results. Evaluation results on FB15K and WN18 are shown in Table 2. On
FB15K, we compare impacts of multiple vectors and type information. Single
or Multiple means entities are represented as single vectors or multiple vectors.
Type or no type means type information is used or not. From the result, we
observe that:

1. TransT significantly outperforms all baselines on WN18. On FB15K, TransT
significantly outperforms all baselines with the filter setting. This demon-
strates that our approach successfully utilizes the type information and mul-
tiple entity vectors can capture the different semantics of every entity more
accurately than linear transformations of single entity vector.

2. Compared with baselines, TransT has the largest difference between the
results of Raw and Filter settings on FB15K. This indicates that TransT
ranks more correct triples ahead of the original triple. This is caused by the
prior estimation of TransT. Specifically, if the predicted element is the head of
the original triple, these correct triples have the same relation and tail. Thus,
when we learn the prior knowledge from the training set, the head entities
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Table 2. Evaluation results on entity prediction

FB15K Mean rank HITS@10 (%)

Raw Filter Raw Filter

TransE 238 143 46.4 62.1

TransH 212 87 45.7 64.4

TransR 199 77 47.2 67.2

DKRL (CBOW) 236 151 38.3 51.8

DKRL (CNN) 200 113 44.3 57.6

DKRL (CNN)+TransE 181 91 49.6 67.4

TKRL (RHE) 184 68 49.2 69.4

TKRL (WHE+STC) 202 87 50.3 73.4

SSP (Std.) 154 77 57.1 78.6

SSP (Joint) 163 82 57.2 79.0

TransT (type information) 181 72 54.0 82.3

TransT (multiple vectors) 215 62 50.6 83.6

TransT (multiple+type) 199 46 53.3 85.4

WN18 Mean Rank HITS@10 (%)

Raw Filter Raw Filter

TransE 263 251 75.4 89.2

TransH 401 338 73.0 82.3

TransR 238 225 79.8 92.0

SSP (Std.) 204 193 81.3 91.4

SSP (Joint) 168 156 81.2 93.2

TransT 137 130 92.7 97.4

of these correct triples have higher semantic similarities to the head entity of
the original triple than other triples. TransT utilizes these similarities to esti-
mate the prior probability resulting in ranking similar entities higher. In fact,
this phenomenon shows that the prior probability improves the prediction
performance.

3. There is less difference between the results of Raw and Filter settings on
WN18 than FB15K. The reason is that the type-based prior knowledge in
WN18 is more accurate than that in FB15K. Specifically, WN18 includes 4
types with simple meanings: noun, verb, adjective and adverb. In addition, an
entity in WN18 can only have one type. Thus, types in WN18 have stronger
ability to distinguish different entities.

4. Both the two approaches, multiple-vector representation and type informa-
tion, have their own advantages. Type information performs better in raw
setting, while multiple-vector representation performs better in filter setting.
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4.2 Relation Prediction

Relation prediction aims at predicting the missing relation when given two enti-
ties, i.e., we predict r given (h, ∗, t). FB15K is the benchmark dataset for this
task.

Evaluation Protocol. We adopt the same protocol used in entity prediction.
For each triple (h, r, t) in the test set, we replace the relation r with every relation
in the dataset. Mean Rank and HITS@1 are considered as evaluation metrics for
this task.

Experiment Settings. As the datasets are the same, we directly reuse the
experimental results of several baselines from the literature. We have attempted
several settings on the validation dataset to get the best configuration. Under
the “unif.” sampling strategy, the optimal configurations are: learning rate α =
0.0001, vector dimension k = 300, margin γ = 3.0, CRP factor β = 0.001,
similarity weights λhead = λtail = 1, λrelation = 0.

Table 3. Evaluation results on relation prediction

Method Mean rank HITS@1 (%)

Raw Filter Raw Filter

TransE 2.91 2.53 69.5 90.2

TransH 8.25 7.91 60.3 72.5

TransR 2.49 2.09 70.2 91.6

DKRL (CBOW) 2.85 2.51 65.3 82.7

DKRL (CNN)+TransE 2.41 2.03 69.8 90.8

TKRL (RHE) 2.12 1.73 71.1 92.8

TKRL (WHE+STC) 2.47 2.07 68.3 90.6

SSP (Std.) 1.58 1.22 69.9 89.2

SSP (Joint) 1.87 1.47 70.9 90.9

TransT 1.59 1.19 72.0 94.1

Results. Evaluation results on FB15K are shown in Table 3. From the result,
we observe that:

1. TransT significantly outperforms all baselines. Compared with TKRL, which
also utilized type information, TransT improves HITS@1 by 3.5% and Mean
Rank by 0.88.

2. In the Raw setting, TransT also achieves the best performance. This result is
different from the entity prediction task. The reason is more prior knowledge
of relation predictions. In the entity prediction task, the prior knowledge is
derived from relations. In the relation prediction task, the prior knowledge is



TransT: Type-Based Multiple Embedding Representations for KGC 729

derived from the head and tail entities. The latter has more sources for prior
estimation. Thus, TransT ranks more incorrect triples behind the original
triple. This further supports the necessity of the prior probability.

4.3 Triple Classification

Triple classification aims at predicting whether a given triple is correct or incor-
rect, i.e., we predict the correctness of (h, r, t). FB15K is the benchmark dataset
of this task.

Evaluation Protocol. We adopt the same protocol used in entity prediction.
Since FB15K has no explicit negative samples, we construct negative triples
following the same protocol used in [23]. For each triple (h, r, t) in the test set, if
the probability of its correctness is below a threshold σr, the triple is incorrect;
otherwise, it is correct. The thresholds {σr} are determined on the validation
dataset with negative samples.

Experiment Settings. As the datasets are the same, we directly reuse the
experimental results of several baselines from the literature. We have attempted
several settings on the validation dataset to get the best configuration. Under
the “unif.” sampling strategy, the optimal configurations are: learning rate α =
0.001, vector dimension k = 300, margin γ = 3.0, CRP factor β = 0.01, similarity
weights λhead = λtail = λrelation = 0.

Table 4. Evaluation results on triple classification

Method Accuracy (%)

TransE 85.7

TransH 87.7

TransR 86.4

TKRL (RHE) 86.9

TKRL (WHE+STC) 88.5

TransT 91.0

Results. Evaluation results on FB15K are shown in Table 4. TransT outper-
forms all baselines significantly. Compared with the best result, TransT improves
the accuracy by 2.5% and it is the only model whose accuracy is over 90%. This
task shows the ability to discern which triples are correct.

4.4 Semantic Vector Analysis

We analyze the correlations between the semantic vector number and several
statistical properties of different entities. We adopt the vector representations
obtained by TransT and TransE during the entity prediction task on FB15K.
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Figure 3 shows that the correlations between the number of semantic numbers
and the average number of relations/types/triples for different entities. For an
entity represented by more semantic vectors, it has more types and appears
with more different relations and triples in the training set. Thus the entities
with more semantic vectors have more complex semantics. Therefore, the result
of TransT conforms to our understanding of the entity semantics.

Figure 4 shows that the prediction probabilities of several selected entities.
Our approach generates at most 11 semantic vectors for entities. The entities
with more semantic vectors have broader concepts. Thus, popular places and peo-
ple including “Paris”, “Alan Turing”, have more semantic vectors than awards
like “Film Award” and events like “2007 NBA draft”. Compared with TransE,
multiple semantic vectors improve prediction probability of most entities.
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5 Conclusion

This paper proposes TransT, a new approach for KGC, which combines struc-
tured information and type information. With the type-based prior knowledge,
TransT generates semantic vectors for entities in different contexts based on
CRP and optimizes the posterior probability estimation. This approach makes
full use of type information and accurately captures semantic features of enti-
ties. Extensive experiments show that TransT achieves markable improvements
against the baselines.
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