
The Network-Untangling Problem: From
Interactions to Activity Timelines

Polina Rozenshtein(B), Nikolaj Tatti, and Aristides Gionis

HIIT, Aalto University, Espoo, Finland
{Polina.Rozenshtein,Nikolaj.Tatti,Aristides.Gionis}@aalto.fi

Abstract. In this paper we study a problem of determining when enti-
ties are active based on their interactions with each other. More formally,
we consider a set of entities V and a sequence of time-stamped edges
E among the entities. Each edge (u, v, t) ∈ E denotes an interaction
between entities u and v that takes place at time t. We view this input
as a temporal network. We then assume a simple activity model in which
each entity is active during a short time interval. An interaction (u, v, t)
can be explained if at least one of u or v are active at time t. Our goal
is to reconstruct the activity intervals, for all entities in the network, so
as to explain the observed interactions. This problem, which we refer to
as the network-untangling problem, can be applied to discover timelines
of events from complex interactions among entities.

We provide two formulations for the network-untangling problem:
(i) minimizing the total interval length over all entities, and (ii) min-
imizing the maximum interval length. We show that the sum problem is
NP-hard, while, surprisingly, the max problem can be solved optimally
in linear time, using a mapping to 2-SAT. For the sum problem we
provide efficient and effective algorithms based on realistic assumptions.
Furthermore, we complement our study with an evaluation on synthetic
and real-world datasets, which demonstrates the validity of our concepts
and the good performance of our algorithms.

Keywords: Temporal networks · Complex networks
Timeline reconstruction · Vertex cover · Linear programming · 2-SAT

1 Introduction

Data increase in volume and complexity. A major challenge that arises in many
applications is to process efficiently large amounts of data in order to synthesize
the available bits of information into a concise but meaningful picture.

New data abstractions, emerging from modern applications, require new defi-
nitions for data-summarization and synthesis tasks. In particular, for many data
that are typically modeled as networks, temporal information is nowadays readily
available, leading to temporal networks [9,19]. In temporal networks G = (V,E),
edges describe interactions over a set of entities V . For each edge (u, v, t) ∈ E,
the time of interaction t, between entities u, v ∈ V is also available.
c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part I, LNAI 10534, pp. 701–716, 2017.
https://doi.org/10.1007/978-3-319-71249-9_42

702 P. Rozenshtein et al.

In this paper we introduce a new problem for summarizing temporal net-
works. The main idea is to consider that the entities of the network are active
over presumably short time intervals. Edges (interactions) of the temporal net-
work between two entities can be explained by at least one of the two entities
being active at the time of the interaction. Our summarization task is to process
the available temporal edges (interactions) and infer the latent activity intervals
for all entities. In this way, we can infer an activity timeline for the whole net-
work. To motivate the summarization task studied in this paper, consider the
following application scenario.

Example. Consider a news story unfolding over the period of several months,
or years, such as Brexit. There is a sequence of intertwined events (e.g., UK ref-
erendum, prime minister resigns, appointment of new prime minister, supreme
court decision, invoking article 50, etc.) as well as a roster of key characters who
participate in the events (e.g., Cameron, Johnson, May, Tusk, etc.). Consider
now a stream of Brexit-related tweets, as events unfold, and hashtags mentioned
in those tweets (e.g., #brexit, #remain, #ukip, #indyref2, etc.). For our pur-
poses, we view the twitter stream as a temporal network: a tweet mentioning two
hashtags h1 and h2 and posted at time t is seen as a temporal edge (h1, h2, t). A
typical situation is that a hashtag bursts during a time interval that is associated
with a main event, while it may also appear outside the time interval in a con-
nection with other secondary events. For instance, the peak activity for #remain
may have been during the weeks leading to the referendum, but the same hash-
tag may also appear later, say, in reference to invoking article 50, by a user who
wished that EU had not voted for Brexit. The question that we ask in this paper
is whether it is possible to process the temporal network of entity interactions
and reconstruct the latent activity intervals for each entity (hashtags, in this
example), and thus, infer the complete timeline of the news story.

Motivated by the previous example, and similar application scenarios, we
introduce the network-untangling problem, where the goal is to reconstruct an
activity timeline from a temporal network. Our formulation uses a simple model
in which we assume that each network entity is active during a time interval.
An temporal edge (u, v, t) is covered if at least one of u or v are active at time t.
The algorithmic objective is to find a set of activity intervals, one for each entity,
so that all temporal edges are covered, and the length of the activity intervals
is minimized. We consider two definitions for interval length: total length and
maximum length.

We show that the problem of minimizing the maximum length over all activ-
ity intervals can be mapped to 2-SAT, and be solved optimally and in linear
time On the other hand, minimizing the total interval length is an NP-hard
problem. To confront this challenge we offer two iterative algorithms that rely
on the fact that certain subproblems can be solved approximately or optimally.
In both cases the subproblems can be solved by linear-time algorithms, yielding
overall very practical and efficient methods.

We complement our theoretical results with an experimental evaluation,
where we demonstrate that our methods are capable on finding ground-truth

The Network-Untangling Problem: From Interactions to Activity Timelines 703

activity intervals planted on synthetic datasets. Additionally we conduct a case
study where it is shown that the discovered intervals match the timeline of real-
world events and related sub-events.

2 Preliminaries and Problem Definition

Our input is a temporal network G = (V,E), where V is a set of vertices and
E is a set of time-stamped edges. The edges of the temporal network are triples
of the form (u, v, t), where u, v ∈ V and t is a time stamp indicating the time
that an interaction between vertices u and v takes place. In our setting we do
not preclude the case that two vertices u and v interact multiple times. As it
is customary, we denote by n the number of vertices in the graph, and by m
the number of edges. For our algorithms we assume that the edges are given in
chronological order, if not, they can be sorted in additional O(m log m) time.

Given a vertex u ∈ V , we will write E (u) to be the set of edges adjacent to
vertex u, i.e., E (u) = {(u, v, t) ∈ E}. We will also write N (u) = {v | (u, v, t) ∈ E}
to represent the set of vertices adjacent to u, and T (u) = {t | (u, v, t) ∈ E} to
represent the set of time stamps of the edges containing u. Finally, we write t(e)
to denote the time stamp of an edge e ∈ E.

Given a vertex u ∈ V and two real numbers su and eu, we consider the interval
Iu = [su, eu], where su is a start time and eu is an end time. We refer to Iu as
the activity interval of vertex u. Intuitively, we think of Iu as the time interval in
which the vertex u has been active. A set of activity intervals T = {Iu}u∈V , one
interval for each vertex u ∈ V , is an activity timeline for the temporal network G.

Given a temporal network G = (V,E) and an activity timeline T = {Iu}u∈V ,
we say that the timeline T covers the network G if for each edge (u, v, t) ∈ E,
we have t ∈ Iu or t ∈ Iv, that is, when each network edge occurs at least one of
its endpoints is active.

Note that each temporal network has a trivial timeline that provides a cover.
Such a timeline, defined by Iu = [minT (u) ,maxT (u)], may have unnecessarily
long intervals. Instead, we aim finding an activity timeline that have as compact
intervals as possible. We measure the quality of a timeline by the total duration
of all activity intervals in it. More formally, we define the total span, or sum-span,
of a timeline T = {Iu}u∈V by

S (T) =
∑

u∈V

σ(Iu) ,

where σ(Iu) = eu − su is the duration of a single interval. An alternative way to
measure the compactness of a timeline is by the duration of its longest interval,

Δ(T) = max
u∈V

σ(Iu) .

We refer to Δ(T) as the max-span of the timeline T .
Associated with the above compactness measures we define the following two

problems that we consider in this paper.

704 P. Rozenshtein et al.

Problem 1 (MinTimeline). Given a temporal network G = (V,E), find a time-
line T = {Iu}u∈V that covers G and minimizes the sum-span S (T).

Problem 2 (MinTimeline∞). Given a temporal network G = (V,E) find a time-
line T = {Iu}u∈V that covers G and minimizes the max-span Δ(T).

3 Computational Complexity and Algorithms

Surprisingly, while MinTimeline is an NP-hard problem, MinTimeline∞ can
be solved optimally efficiently. The optimality of MinTimeline∞ is a result of
the algorithm presented in Sect. 5. In this section we establish the complexity of
MinTimeline, and we present two efficient algorithms for MinTimeline and
MinTimeline∞.

Proposition 1. The decision version of the MinTimeline problem is NP-
complete. Namely, given a temporal network G = (V,E) and a budget �, it is
NP-complete to decide whether there is timeline T ∗ = {Iu}u∈V that covers G
and has S (T ∗) ≤ �.

Proof. We will prove the hardness by reducing VertexCover to MinTime-
line. Assume that we are given a (static) network H = (W,A) with n vertices
W = {w1, . . . , wn} and a budget �. In the VertexCover problem we are asked
to decide whether there exists a subset U ⊆ W of at most � vertices (|U | ≤ �)
covering all edges in A.

We map an instance of VertexCover to an instance of MinTimeline by
creating a temporal network G = (V,E), as follows. The vertices V consists of
2n vertices: for each wi ∈ W , we add vertex vi and ui. The edges are as follows:
For each edge (wi, wj) ∈ A, we add a temporal edge (vi, vj , 0) to E. For each
vertex wi ∈ W , we add two temporal edges (vi, ui, 1) and (vi, ui, 2n + 1) to E.

Let T ∗ be an optimal timeline covering G. We claim that S (T ∗) ≤ � if and
only if there is a vertex cover of H with � vertices. To prove the if direction,
consider a vertex cover of H, say U , with � vertices. Consider the following
coverage: cover each ui at 2n + 1, and each vi at 1. For each wi ∈ U , cover vi

at 0. The resulting intervals are indeed forming a timeline with a total span of �.
To prove the other direction, first note that if we cover each vi by an interval

[0, 1] and each ui by an interval [2n + 1, 2n + 1], then this yields a timeline T ∗

covering G. The total span intervals T ∗ is n. Thus, S (T ∗) ≤ n. This guarantees
that if 0 ∈ Ivi

, then 2n+1 /∈ Ivi
, so 2n+1 ∈ Iui

. This implies that 1 /∈ Iui
and so

1 ∈ Ivi
. In summary, if 0 ∈ Ivi

, then σ(Ivi
) = 1. This implies that if S (T ∗) ≤ �,

then we have at most � vertices covered at 0. Let U be the set of those vertices.
Since T ∗ is timeline covering G, then U is a vertex cover for H. ��

3.1 Iterative Method Based on Inner Points

As we saw, MinTimeline is an NP-hard problem. The next logical question is
whether we can approximate this problem. Unfortunately, there is evidence that

The Network-Untangling Problem: From Interactions to Activity Timelines 705

such an algorithm would be highly non-trivial: we can show that if we extend
our problem definition to hyper-edges—the coverage then means that one vertex
needs to be covered per edge—then such a problem is inapproximable. This
suggests that an approximation algorithm would have to rely on the fact that
we are dealing with edges and not hyper-edges.

Luckily, we can consider meaningful subproblems. Assume that we are given
a temporal network G = (V,E) and we also given a set of time point {mv}v∈V ,
i.e., one time point mv for each vertex v ∈ V , and we are asked whether we can
find an optimal activity timeline T = {Iu}u∈V so that the interval Iv of vertex
v contains the corresponding time point mv, i.e., mv ∈ Iv, for each v ∈ V . Note
that these inner points can be located anywhere within the interval (not just,
say, in the center of the interval). This problem definition is useful when we know
one time point that each vertex was active, and we want to extend this to an
optimal timeline. We refer to this problem as MinTimelinem.

Problem 3 (MinTimelinem). Given a temporal network G = (V,E) and a
set of inner time points {mv}v∈V , find a timeline T = {Iu}u∈V that covers G,
satisfies mv ∈ Iv for each v ∈ V , and minimizes the sum-span S (T).

Interestingly, we can show that the MinTimelinem problem can be solved
approximately, in linear time, within a factor of 2 of the optimal solution. The
2-approximation algorithm is presented in Sect. 4.

Being able to solve MinTimelinem, motivates the following algorithm for
MinTimeline, which uses MinTimelinem as a subroutine: initialize mv =
(minT (v)+maxT (v))/2 to be an inner time point for vertex v; recall that T (v)
are the time stamps of the edges containing v. We then use our approximation
algorithm for MinTimelinem to obtain a set of intervals {Iv} = {[sv, ev]}v∈V .
We use these intervals to set the new inner points, mv = (sv + ev)/2, and repeat
until the score no longer improves. We call this algorithm Inner.

3.2 Iterative Method Based on Budgets

Our algorithm for MinTimeline∞ also relies on the idea of using a subproblem
that is easier to solve.

In this case, we consider as subproblem an instance in which, in addition
to the temporal network G, we are also given a set of budgets {bv} of interval
durations; one budget bv for each vertex v. The goal is to find a timeline T =
{Iu}u∈V that covers the temporal network G and the length of each activity
interval Iv is at most bv. We refer to this problem as MinTimelineb.

Problem 4 (MinTimelineb). Given a temporal network G = (V,E) and a set
of budgets {bv}v∈V , find a timeline T = {Iu}u∈V that covers G and satisfies
σ(Iv) ≤ bv for each v ∈ V .

Surprisingly, the MinTimelineb problem can be solved optimally in linear
time. The algorithm is presented in Sect. 5. Note that this result is compatible
with the NP-hardness of MinTimeline, since here we know the budgets for

706 P. Rozenshtein et al.

individual intervals, and thus, there are an exponential number of ways that we
can distribute the total budget among the individual intervals.

We can now use binary search to find the optimal value Δ(T). We call
this algorithm Budget. To guarantee a small number of binary steps, some
attention is required: Let T = t1, . . . , tm be all the time stamps, sorted.
Assume that we have L, the largest known infeasible budget and U , the small-
est known feasible budget. To define a new candidate budget, we first define
W (i) = {tj − ti | L < tj − ti < U}. The optimal budget is either U or one of the
numbers in W (i). If every W (i) is empty, then the answer is U . Otherwise, we
compute m(i) to be the median of W (i), ignore any empty W (i). Finally, we test
the weighted median of all m(i), weighted by |W (i)|, as a new budget. We can
show that at each iteration

∑
|W (i)| is reduced by 1/4, that is, only O(log m)

iterations is needed. We can determine the medians m(i) and the sizes |W (i)|
in linear time since T is sorted, and we can determine the weighted median in
linear time by using a modified median-of-medians algorithm. This leads to a
O(m log m) running time. However, in our experimental evaluation, we use a
straightforward binary search by testing (U + L)/2 as a budget.

4 Approximation Algorithm for MINTIMELINEm

In this section we design a 2-approximation linear-time algorithm for the Min-
Timelinem problem. As defined in Problem3, our input is a temporal network
G = (V,E) and a set of interior time points {mv}v∈V . As before, T (v) denotes
the set of time stamps of the edges containing vertex v.

Consider a vertex v and the corresponding interior point mv. For a time
point t we define the peripheral time stamps p(t; v) to be the time stamps that
are on the other side of t than mv,

p(t; v) =

⎧
⎪⎨

⎪⎩

{s ∈ T (v) | s ≥ t} if t > mv,

{s ∈ T (v) | s ≤ t} if t < mv,

T (v) if t = mv.

Our next step is to express MinTimelinem as an integer linear program. To do
that we will define a variable xvt for each vertex v ∈ V and time stamp t ∈ T (v).
Instead of going for the obvious construction, where xvt = 1 indicates that v is
active at t, we will do a different formulation: in our program xvt = 1 indicates
that t is either the beginning or the end of the active region of v. It follows that
the integer program

min
∑

v,t

|t − mv|xvt,

such that
∑

s∈p(v;t)

xvs +
∑

s∈p(u;t)

xus ≥ 1, for all (u, v, t) ∈ E

solves MinTimelinem. Naturally, here we also require that xvt ∈ {0, 1}. Min-
imizing the first sum corresponds to minimizing the sum-span of the timeline,

The Network-Untangling Problem: From Interactions to Activity Timelines 707

while the constraint on the second sum ensures that the resulting timeline cov-
ers the temporal network. Note that we do not require that each vertex should
have exactly one beginning and one end, however, the minimality of the optimal
solution ensures that this constraint will be satisfied, too.

Relaxing the integrality constraint and considering the program as linear
program, allows us to write the dual. The variables in the dual can be viewed as
positive weights αe on the edges, with the goal of maximizing the total sum of
these weights.

To express the constraints on the dual, let us define an auxiliary function
h(v, t, s) as the sum of the weights of adjacent edges between t and s,

h(v, t, s) =
∑

{αe | e ∈ E (v) , t(e) is between s and t} ,

where, recall that, E (v) denotes the edges adjacent to v and t(e) denotes the
time stamp of edge e ∈ E. The dual can now be formulated as

max
∑

e∈E

αe, such that h(v, t,mv) ≤ |t − mv|, for all v ∈ V, t ∈ T (v) ,

that is, we maximize the total weight of edges such that for each vertex v and
for each time stamp t, the sum of adjacent edges is bounded by |t − mv|.

We say that the solution to dual is maximal if we cannot increase any edge
weight αe without violating the constraints. An optimal solution is maximal but
a maximal solution is not necessarily optimal.

Our next result shows that a maximal solution can be used to obtain a
2-approximation dynamic cover.

Proposition 2. Consider a maximal solution αe to the dual program. Define a
set of intervals T = {Iv} by Iv = [min Xv,max Xv], where

Xv = {mv} ∪ {t ∈ T (v) | h(v, t,mv) = |t − mv|} .

Then T is a 2-approximation solution for the problem MinTimelinem.

Proof. We first show that a maximal dual solution is a feasible timeline. Let
e = (u, v, t) be a temporal edge. If p(t; v)∩Xv = ∅ and p(t;u)∩Xu = ∅, then we
can increase the value of αe without violating the constraints, so the solution is
not maximal. Thus t ∈ Iv ∪ Iu, making T a feasible timeline.

Next we show that the resulting solution T is a 2-approximation to Min-
Timelinem. Write xv = min{Xv} and yv = max{Xv}. Let T ∗ be the optimal
solution. Then

S (T) =
∑

v∈V

|xv − mv| + |yv − mv| =
∑

v∈V

h(v, xv,mv) + h(v, yv,mv)

≤
∑

v∈V

∑

e∈E(v)

αe = 2
∑

e∈E

αe ≤ 2S (T ∗) ,

where the second equality follows from the definition of Xv, the first inequality
follows from the fact that αe ≥ 0, and the last inequality follows from primal-dual
theory. This proves the claim. ��

708 P. Rozenshtein et al.

We have established that as long as we can obtain a maximal solution for the
dual, we can extract a timeline that is 2-approximation. We will now introduce
a linear-time algorithm that computes a maximal dual solution. The algorithm
visits each edge e = (u, v, t) in chronological order and increases αe as much as
possible without violating the dual constraints. To obtain a linear-time complex-
ity we need to determine in constant time by how much we can increase αe. The
pseudo-code is given in Algorithm 1, and the remaining section is used to prove
the correctness of the algorithm.

Algorithm 1. Maximal, yields 2-approximation to MinTimelinem.
b[v] ← ∞ for v ∈ V ;
a[v] ← 0 for v ∈ V ;
foreach e = (u, v, t) ∈ E in chronological order do

αe ← min{z(u), z(v)} ; {see Eq. (2)}
if t < mv then b[v] ← min{b[v] − αe, mv − t − αe} ;
else a[v] ← a[v] + αe ;
if t < mu then b[u] ← min{b[u] − αe, mu − t − αe} ;
else a[u] ← a[u] + αe ;

Let us enumerate the edges chronologically by writing ei for the i-th edge,
and let us write αi to mean αei

. We will also write ti for the time stamp of ei.
Finally, let us define kv to be the smallest index of an edge (u, v, t) with t ≥ mv,
and ov to be the largest index of an edge (u, v, t) with t ≤ mv.1

For simplicity, we rewrite the dual constrains using indices instead of time
stamps. Given two indices i ≤ j, we slightly overload the notation and we write

h(v, i, j) =
∑

{α� | e� ∈ E (v) , � is between i and j} .

The dual constraints can be written as

h(v, i, ov) ≤ |ti − mv|, if i < kv, and h(v, i, kv) ≤ |ti − mv|, if i ≥ kv. (1)

Each dual constraint is included in these constraints. Equation (1) may also con-
tain some additional constraints but they are redundant, so the dual constraints
hold if and only if constraints in Eq. (1) hold.

As the algorithm goes over the edges, we maintain two counters per each
vertex, a[v] and b[v]. Let ej = (u, v, t) be the current edge. The counter a[v] is
maintained only if t ≥ mv, and the counter b[v] is maintained if t < mv. Our
invariant for maintaining the counters a[v] and b[v] is that at the beginning of
j-th round they are equal to

a[v] = h(v, kv, j) and b[v] = min
�<j

{t� − mv − h(v, �, j − 1)}.

The following lemma tells us how to update αj using a[v] and b[v].
1 If there is an edge exactly at mv, then kv = ov.

The Network-Untangling Problem: From Interactions to Activity Timelines 709

Lemma 1. Assume that we are processing edge ej = (u, v, t). We can increase
αj by at most

min{z(u), z(v)}, where z(w) =

{
t − mw − a[w] if j ≥ kv,

min{mw − t, b[w]} if j < kv.
(2)

Proof. We will prove this result by showing that αe ≤ z(v) if and only if all
constraints in Eq. (1) related to v are valid. Since the same holds also for u the
lemma follows. We consider two cases.

First case: j < kv. In this case we have z(v) = min{mw − t, b[w]} =
min�≤j{t� − mv − h(v, �, ov)}, before increasing αj . This guarantees that if
αj ≤ z(v), then h(v, �, ov) ≤ |t�−mv|, for every � ≤ j. Moreover, when αj = z(v)
one of these constraints becomes tight. Since these are the only constraints con-
taining αj , we have proven the first case.

Second case: j ≥ kv. If � < j, the sum h(v, �, kv) does not contain αj , so
the corresponding constraint remains valid. If � ≥ j, then the corresponding
constraint is valid if and only if h(v, j, kv) ≤ |tj − mv|. This is because α� = 0
for all � > j. But z(v) corresponds exactly to the amount we can increase αi so
that h(v, j, kv) = |tj − mv|. This proves the second case. ��

Our final step is to how to maintain a[v] and b[v]. Maintaining a[v] is trivial:
we simply add αj to a[v]. The new b[v] is equal to

min
�≤j

{t� − mv − h(v, �, j)} = min{b[v] − αj ,mv − t − αj}.

Clearly the counters a[v] and b[v] and the dual variables αe can be maintained
in constant time per edge processed, making Maximal a linear-time algorithm.

5 Exact Algorithm for MINTIMELINEb

In this section we develop a linear-time algorithm for the problem MinTime-
lineb. Here we are given a temporal network G, and a set of budgets {bv} of
interval durations, and all activity intervals should satisfy σ(Iv) ≤ bv.

The idea for this optimal algorithm is to map MinTimelineb into 2-SAT.
To do that we introduce a boolean variable xvt for each vertex v and for each
timestamp t ∈ T (v). To guarantee the solution will cover each edge (u, v, t) we
add a clause (xvt ∨ xut). To make sure that we do not exceed the budget we
require that for each vertex v and each pair of time stamps s, t ∈ T (v) such
that |s − t| > bv either xvs is false or xvt is false, that is, we add a clause
(¬xvs ∨ ¬xvt). It follows immediately, that MinTimelineb has a solution if and
only if 2-SAT has a solution. The solution for MinTimelineb can be obtained
from the 2-SAT solution by taking the time intervals that contain all boolean
variables set to true. Since 2-SAT is a polynomially-time solvable problem [1],
we have the following.

Proposition 3. MinTimelineb can be solved in a polynomial time.

710 P. Rozenshtein et al.

Solving 2-SAT can be done in linear-time with respect to the number of
clauses [1]. However, in our case we may have O

(
m2

)
clauses. Fortunately, the

2-SAT instances created with our mapping have enough structure to be solvable
in O(m) time. This speed-up is described in the remainder of the section.

Let us first review the algorithm by Aspvall et al. [1] for solving 2-SAT. The
algorithm starts with constructing an implication graph H = (W,A). The graph
H is directed and its vertex set W = P ∪ Q has a vertex pi in P and a vertex qi

in Q for each boolean variable xi. Then, for each clause (xi ∨ xj), there are two
edges in A: (qi → pj) and (qj → pi); The negations are handled similarly.

In our case, the edges A are divided to two groups A1 and A2. The set
A1 contains two directed edges (qvt → put) and (qut → pvt) for each edge
e = (u, v, t) ∈ E. The set A2 contains two directed edges (pvt → qvs) and
(pvs → qvt) for each vertex v and each pair of time stamps s, t ∈ T (v) such that
|s − t| > bv. Note that A1 goes from Q to P and A2 goes from P to Q. Moreover,
|A1| ∈ O(m) and |A2| ∈ O

(
m2

)
.

Next, we decompose H in strongly connected components (SCC), and order
them topologically. If any strongly connected component contains both pvt and
qvt, then we know that 2-SAT is not solvable. Otherwise, to obtain the solution,
we start enumerate over the components, children first: if the boolean variables
corresponding to the vertices in the component do not have truth assignment,2

then we set xvt to be true if pvt is in the component, and xvt to be false if qvt is
in the component

The bottleneck of this method is the SCC decomposition, which requires
O(|W | + |A|) time, and the remaining steps can be done in O(|W |) time. Since
|W | ∈ O(m), we need to optimize the SCC decomposition to perform in O(m)
time. We will use the algorithm by Kosajaru (see [10]) for the SCC decompo-
sition. This algorithm consists of two depth-first searches, performing constant-
time operations on each visited node. Thus, we need to only optimize the DFS.

To speed-up the DFS, we need to design an oracle such that given a vertex
p ∈ P it will return an unvisited neighboring vertex q ∈ Q in constant time. Since
|Q| ∈ O(m), this guarantees that DFS spends at most O(m) time processing
vertices p ∈ P . On the other hand, if we are at q ∈ Q, then we can use the
standard DFS to find the neighboring vertex p ∈ P . Since |A1| ∈ O(m), this
guarantees that DFS spends at most O(m) time processing vertices q ∈ Q.

Next, we describe the oracle: first we keep the unvisited vertices Q in lists
�[v] = (qvt ∈ Q; qvt is not visited) sorted chronologically. Assume that we are at
pvt ∈ P . We retrieve the first vertex in �[v], say qvs, and compare if |s − t| > bv.
If true, then qvs is a neighbor of pvt, so we return qvs. Naturally, we delete qvs

from �[v] the moment we visit qvs. If |s − t| ≤ bv, then test similarly the last
vertex in �[v], say qvs′ . If both qvs′ and qvs are non-neighbors of pvt, then, since
�[v] is sorted chronologically, we can conclude that �[v] does not have unvisited
neighbors of pvt. Since pvt does not have any neighbors outside �[v], we conclude
that pvt does not have any unvisited neighbors.

2 Due to the property of implication graph, either all or none variables will be set in
the component.

The Network-Untangling Problem: From Interactions to Activity Timelines 711

Using this oracle we can now perform DFS in O(m) time, which in turns
allows us to do the SCC decomposition in O(m) time, which then allows us to
solve MinTimelineb in O(m) time.

6 Related Work

To the best of our knowledge, the problem we consider in this paper has not
been studied before in the literature. In this section we review briefly the lines
of work that are most closely related to our setting.

Vertex cover. Our problem definition can also be considered a temporal version
of the classic vertex-cover problem, one of 21 original NP-complete problems in
Karp’s seminal paper [12]. A factor-2 approximation is available for vertex cover,
by taking all vertices of a maximal matching [6]. Slightly improved approxima-
tions exist for special cases of the problem, while assuming that the unique
games conjecture is true, the minimum vertex cover cannot be approximated
within any constant factor better than 2 [13]. Nevertheless, our formulation can-
not be mapped directly to the static vertex-cover problem, thus, the proposed
solutions need to be tailor-made for the temporal setting.

Modeling and discovering burstiness on sequential data. Modeling and
discovering bursts in time sequences is a very well-studied topic in data mining.
In a seminal work, Kleinberg [14] discovered burstiness using an exponential
model over the delays between the events. Alternative techniques are based on
modeling event counts in a sliding window: Ihler et al. [11] modeled such a
statistic with Poisson process, while Fung et al. [5] used Binomial distribution.
Additionally, Zhu and Shasha [26] used wavelet analysis, Vlachos et al. [23]
applied Fourier analysis, and He and Parker [8] adopted concepts from Mechanics
to discover burst events. Finally, Lappas et al. [15] propose discovering maximal
bursts with large discrepancy.

A highly related problem for discovering bursty events is segmentation. Here
the goal is to segment the sequence in k coherent pieces. One should expect
that time periods of high activity will occur in its own segment. If the overall
score is additive with respect to the segments, then this problem can be solved
in O

(
n2k

)
time [3]. Moreover, under some mild assumptions we can obtain a

(1 + ε) approximation in linear time [7].
The difference of all these works with our setting is that we consider net-

worked data, i.e., sequences of interactions among pairs of entities. By assuming
that for each interaction only one entity needs to be active, our problem becomes
highly combinatorial. In order to counter-balance this increased combinatorial
complexity, we consider a simpler burstiness model than previous works: in par-
ticular, we assume that each entity has only one activity interval. Extending
our definition to more complex activity models (multiple intervals per entity, or
multiple activity levels) is left for future work.

Event detection in temporal data. As the input to our problem is a sequence
of temporal edges, our work falls in the broad area of mining temporal net-
works [9,19]. More precisely, the network-untangling problem can be considered

712 P. Rozenshtein et al.

an event-detection problem, where the goal is to find time intervals and/or sets
of nodes with high activity. Typical event-detection methods use text or other
meta-data, as they reveal event semantics. One line of work is based of con-
structing different types of word graphs [4,18,24]. The events are detected as
clusters or connected components in such graphs and temporal information is
not considered directly.

Another family of methods uses statistical modeling for identify events as
trends [2,17]. Leskovec et al. [16] and Yang et al. [25] consider spreading of
short quotes in the citation network of social media. These methods rely on
clustering “bursty” keywords. Our setting is considerably different as we focus on
interactions between entities and explicitly model entity activity by continuous
time intervals.

Information maps. From an application point-of-view, our work is loosely
related with papers that aim to process large amounts of data and create maps
that present the available information in a succinct and easy-to-understand man-
ner. Shahaf and co-authors have considered this problem in the context of news
articles [21,22] and scientific publications [20]. However, their approach is not
directly comparable to ours, as their input is a set of documents and not a tem-
poral network, and their output is a “metro map” and not an activity timeline.

7 Experimental Evaluation

In this section we empirically evaluate the performance of our methods. 3

Setup. We first test the algorithms on synthetic datasets and then present a
case study on a real-world social-media dataset.

For the Synthetic dataset, we start by generating a static background net-
work of n = 100 vertices with a power law degree distribution (we use the
configuration model with power law exponent set to 2.0). Then for every vertex
we generate a ground-truth activity interval and we add 100 interactions with
random neighbors. These interactions are placed consequently with unit time
distance, and thus each activity interval has length of � = 99 time units. We
place the ground-truth activity intervals on a timeline in an overlapping man-
ner, and we control their temporal overlap using a parameter p ∈ [0, 1]. When
p = 0, all intervals are disjoint and every timestamp has only one interaction,
thus, it should be easy to find the correct activity intervals. When p = 1, all
intervals are merged into one, and every time stamp has 100 of different interac-
tions, so there is a large number of solutions whose score is even better than the
ground-truth solution. In all cases Synthetic has 10 000 interactions in total.

For the case study we use a dataset collected from Twitter. The dataset
records activity of Twitter users in Helsinki during 12.2008–05.2014. We con-
sider only tweets with more than one hashtag (666 487 tweets) and build the
3 The implementation of all algorithms and scripts used for the experimental

evaluation is available at https://github.com/polinapolina/the-network-untangling-
problem.

https://github.com/polinapolina/the-network-untangling-problem
https://github.com/polinapolina/the-network-untangling-problem

The Network-Untangling Problem: From Interactions to Activity Timelines 713

co-occurrence network of these hashtags: vertices corresponding to hashtags and
time-stamped edges corresponding to a tweet in which two hashtags are men-
tioned. The temporal network contains 304 573 vertices and 3 292 699 edges.

(a) (b) (c)

Fig. 1. Output of both algorithms for different overlaps p in the ground truth activity
intervals. All values are averaged over 100 runs. (a) F -measure of correctly identi-
fies active time-stamped vertices, (b) L, total activity interval length divided by true
total activity interval length, (c) M , maximum activity interval length divided by true
maximum activity interval length.

(a) (b) (c)

Fig. 2. Convergence of Maximal algorithm. Overlap p is set to 0.5, values are averaged
over 100 runs. (a) Precision, recall and F -measure, (b) L, relative total length, (c) M ,
relative length of the maximum interval.

Results from synthetic datasets. To evaluate the quality of the discovered
activity intervals we compare the set of discovered intervals with the ground-
truth intervals. For every vertex u we define precision Pu = |TPu|

|Fu| , where TPu

is the set of correctly identified moments of activity of u, and Fu is the set of all
discovered moments of activity of u. Similarly, we define the recall for vertex u

as Ru = |TPu|
|Au| , where Au is the set of true moments of activity of u. We calculate

the average precision and recall: P = 1
|V |

∑
u∈V Pu and R = 1

|V |
∑

u∈V Ru; and
report the F -measure F = 2PR

P+R .
In addition to F -measure, we calculate the relative total length L and the

relative maximum length M . Here, L is the total length of the discovered intervals
divided by the ground-truth total length of the activity intervals. Similarly, M
is the maximum length of the discovered intervals divided by the true maximum
length of activity intervals.

We test both algorithms on the Synthetic dataset with varying overlap
parameter p. The results are shown in Fig. 1. All measures are averaged over

714 P. Rozenshtein et al.

Fig. 3. Part of the output of Maximal algorithm on Twitter dataset for November’13.
Intervals of activity of co-occurring tags, seeded from hashtags #slush13, #mtvema and
#nokiaemg.

100 runs. Note that in the Synthetic dataset all activity intervals have the same
length, thus, if during binary search the correct value of budget is found, then
automatically all vertices receive the correct budget.

Figure 1a demonstrates that for algorithm Maximal the F -measure is typically
high for all values of the overlap parameter, but drops, when p increases. On
the other hand, Fig. 1b shows that algorithm Maximal takes advantage of the
overlaps and for large values of p it finds solutions that have better score than the
ground truth. This however, leads to decrease in accuracy. As for the maximum
interval length, shown in Fig. 1c, algorithm Maximal is not designed to optimize
it and it typically finds few large intervals, while keeping the total length low.
Budget finds solutions of correct total and maximum lengths on the Synthetic
dataset for all values of overlap parameter p.

In Fig. 2 we show how the solution of Maximal evolves during iterations with
re-initialization. After a couple of iterations the value and quality (F -measure,
precision and recall) of the solution are improved significantly. During the next
iterations the value of the solution does not change, but the quality keeps increas-
ing. The method converges in less than 10 iterations.

Scalability. Both Budget and Inner use linear-time algorithms in their inner
loops and the number of needed outer loop iterations is small. This means that
our methods are scalable. To demonstrate this, we were able to run Maximal
with a network of 1 million vertices and 1 billion interactions in 15 min, despite
the large constant factor due to the Python implementation.

Case study. Next we present our results on the Twitter dataset. In Fig. 3 we
show a subset of hashtags from tweets posted in November 2013. We also depict
the activity intervals for those hashtags, as discovered by algorithm Maximal.
Note that for not cluttering the image, we depict only a subset of all rele-
vant hashtags. In particular, we pick 3 “seed” hashtags: #slush13, #mtvema

The Network-Untangling Problem: From Interactions to Activity Timelines 715

and #nokiaemg and the set of hashtags that co-occur with the “seeds.” Each
of the seeds corresponds to a known event: #slush13 corresponds to Slush’13 –
the world’s leading startup and tech event, organized in Helsinki in November
13–14, 2013. #mtvema is dedicated to MTV Europe Music Awards, held on 10
November, 2013. #nokiaemg is Extraordinary General Meeting (EGM) of Nokia
Corporation, held in Helsinki in November 19, 2013.

For each hashtag we plot its entire interval with a light color, and the dis-
covered activity interval with a dark color. For each selected hashtag, we draw
interactions (co-occurrence) with other selected hashtags using black vertical
lines, while we mark interactions with non-selected hashtags by ticks.

Figure 3 shows that the tag #slush13 becomes active exactly at the start-
ing date of the event. During its activity this tag covers many technical tags,
e.g. #zenrobotics (Helsinki-based automation company), #younited (personal
cloud service by local company) and #walkbase (local software company). Then
on 19 November, the tag #nokiaemg becomes active: this event is very narrow
and covers mentions of Microsoft executive Stephen Elop. Another large event
is occurring around 10 November with active tags #emazing, #ema2013 and
#mtvema. They cover #bestpop, #bestvideo and other related tags.

8 Conclusions

In this paper we introduced and studied a new problem, which we called net-
work untangling. Given a set of temporal undirected interactions, our goal is
to discover activity time intervals for the network entities, so as to explain the
observed interactions. We consider two settings: MinTimeline, where we aim to
minimize the total sum of activity-interval lengths, and MinTimeline∞, where
we aim to minimize the maximum interval length. We show that the former prob-
lem is NP-hard and we develop efficient iterative algorithms, while the latter
problem is solvable in polynomial time.

There are several natural open questions: it is not known whether there
is an approximation algorithm for MinTimeline or whether the problem is
inapproximable. Second, our model uses one activity interval for each entity. A
natural extension of the problem is to consider k intervals per entity, and/or
different activity levels.

Acknowledgements. This work was supported by the Tekes project “Re:Know,”
the Academy of Finland project “Nestor” (286211), and the EC H2020 RIA project
“SoBigData” (654024).

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. IPL 14(4), 195 (1982)

2. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: Real-world event
identification on Twitter. In: ICWSM (2011)

716 P. Rozenshtein et al.

3. Bellman, R.: On the approximation of curves by line segments using dynamic
programming. CACM 4(6), 284 (1961)

4. Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on twitter based
on temporal and social terms evaluation. In: MDMKDD (2010)

5. Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection
in text streams. In: VLDB (2005)

6. Gary, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of
NP-completeness (1979)

7. Guha, S., Koudas, N., Shim, K.: Approximation and streaming algorithms for
histogram construction problems. TODS 31(1), 396–438 (2006)

8. He, D., Parker, D.S.: Topic dynamics: an alternative model of bursts in streams of
topics. In: KDD (2010)

9. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
10. Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms, vol. 175.

Addison-Wesley, Boston (1983)
11. Ihler, A., Hutchins, J., Smyth, P.: Adaptive event detection with time-varying

Poisson processes. In: KDD (2006)
12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of com-

puter computations (1972)
13. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.

JCSS 74(3), 335–349 (2008)
14. Kleinberg, J.: Bursty and hierarchical structure in streams. DMKD 7(4), 373–397

(2003)
15. Lappas, T., Arai, B., Platakis, M., Kotsakos, D., Gunopulos, D.: On burstiness-

aware search for document sequences. In: KDD (2009)
16. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the

news cycle. In: KDD (2009)
17. Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the Twitter

stream. In: KDD (2010)
18. Meladianos, P., Nikolentzos, G., Rousseau, F., Stavrakas, Y., Vazirgiannis, M.:

Degeneracy-based real-time sub-event detection in Twitter stream. In: ICWSM
(2015)

19. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016)

20. Shahaf, D., Guestrin, C., Horvitz, E.: Metro maps of science. In: KDD (2012)
21. Shahaf, D., Guestrin, C., Horvitz, E.: Trains of thought: generating information

maps. In: WWW (2012)
22. Shahaf, D., Yang, J., Suen, C., Jacobs, J., Wang, H., Leskovec, J.: Information

cartography: creating zoomable, large-scale maps of information. In: KDD (2013)
23. Vlachos, M., Meek, C., Vagena, Z., Gunopulos, D.: Identifying similarities, period-

icities and bursts for online search queries. In: SIGMOD (2004)
24. Weng, J., Lee, B.S.: Event detection in Twitter. In: ICWSM (2011)
25. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: WSDM

(2011)
26. Zhu, Y., Shasha, D.: Efficient elastic burst detection in data streams. In: KDD

(2003)

	The Network-Untangling Problem: From Interactions to Activity Timelines
	1 Introduction
	2 Preliminaries and Problem Definition
	3 Computational Complexity and Algorithms
	3.1 Iterative Method Based on Inner Points
	3.2 Iterative Method Based on Budgets

	4 Approximation Algorithm for MINTIMELINEm
	5 Exact Algorithm for MINTIMELINEb
	6 Related Work
	7 Experimental Evaluation
	8 Conclusions
	References

