
K-Clique-Graphs for Dense Subgraph Discovery

Giannis Nikolentzos1,2(B), Polykarpos Meladianos1,2, Yannis Stavrakas3,
and Michalis Vazirgiannis1,2

1 LIX, École Polytechnique, Palaiseau, France
2 Athens University of Economics and Business, Athens, Greece

{nikolentzos,pmeladianos,mvazirg}@aueb.gr
3 Institute for the Management of Information Systems RC “Athena”, Athens, Greece

yannis@imis.athena-innovation.gr

Abstract. Finding dense subgraphs in a graph is a fundamental graph
mining task, with applications in several fields. Algorithms for identify-
ing dense subgraphs are used in biology, in finance, in spam detection,
etc. Standard formulations of this problem such as the problem of find-
ing the maximum clique of a graph are hard to solve. However, some
tractable formulations of the problem have also been proposed, focusing
mainly on optimizing some density function, such as the degree density
and the triangle density. However, maximization of degree density usu-
ally leads to large subgraphs with small density, while maximization of
triangle density does not necessarily lead to subgraphs that are close to
being cliques.

In this paper, we introduce the k-clique-graph densest subgraph prob-
lem, k ≥ 3, a novel formulation for the discovery of dense subgraphs.
Given an input graph, its k-clique-graph is a new graph created from
the input graph where each vertex of the new graph corresponds to a
k-clique of the input graph and two vertices are connected with an edge
if they share a common k − 1-clique. We define a simple density func-
tion, the k-clique-graph density, which gives compact and at the same
time dense subgraphs, and we project its resulting subgraphs back to
the input graph. In this paper, we focus on the triangle-graph densest
subgraph problem obtained for k = 3. To optimize the proposed func-
tion, we provide an exact algorithm. Furthermore, we present an efficient
greedy approximation algorithm that scales well to larger graphs.

We evaluate the proposed algorithms on real datasets and compare
them with other algorithms in terms of the size and the density of
the extracted subgraphs. The results verify the ability of the proposed
algorithms in finding high-quality subgraphs in terms of size and den-
sity. Finally, we apply the proposed method to the important problem
of keyword extraction from textual documents. Code related to this
chapter is available at: https://github.com/giannisnik/k-clique-graphs-
dense-subgraphs.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-71249-9 37) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part I, LNAI 10534, pp. 617–633, 2017.
https://doi.org/10.1007/978-3-319-71249-9_37

https://github.com/giannisnik/k-clique-graphs-dense-subgraphs
https://github.com/giannisnik/k-clique-graphs-dense-subgraphs
https://doi.org/10.1007/978-3-319-71249-9_37
https://doi.org/10.1007/978-3-319-71249-9_37

618 G. Nikolentzos et al.

1 Introduction

In recent years, graph-based representations have become extremely popular for
modelling real-world data. Some examples of data represented as graphs include
social networks, protein or gene regulation networks and textual documents. The
problem of extracting dense subgraphs from such graphs has received a lot of
attention due to its potential applications in many fields. Specifically, in the web
graph, dense subgraphs may correspond to link spam [18] and hence, they can
be used for spam detection. In bioinformatics, they are used for finding molec-
ular complexes in protein-protein interaction networks [6] and for discovering
motifs in genomic DNA [17]. In the field of finance, they are used for discover-
ing migration motifs in financial markets [14]. Other applications include graph
compression [10], graph visualization [1], real-time identification of important
stories in Twitter [3] and community detection [12].

Given an undirected, unweighted graph G = (V,E), we will denote |V | = n
the number of vertices and |E| = m the number of edges. Given a subset of
vertices S ⊆ V , let E(S) be the set of edges that have both end-points in S.
Hence, G(S) = (S,E(S)) is the subgraph induced by S. The density of the set
S is δ(S) = |E(S)|/(|S|

2

)
, the number of edges in S over the total possible edges.

Finding the set S that maximizes δ is not a meaningful problem, as density δ
does not take into account the size of the subgraph. For example, a subgraph
consisting of two vertices connected with an edge has higher density δ than a
subgraph consisting of 100 vertices and all but one edge between them. However,
clearly, we would prefer the latter subgraph from the former even if it achieves
a lower value of density δ. Typically, the problem of dense subgraph discovery
asks for a set of vertices S which is large and which has high density. Several
different functions have been proposed in the literature that aim to solve this
problem. Some of these functions can be optimized in polynomial time, however,
most of these formulations of extracting dense subgraphs are NP-hard and also
hard to approximate.

Recently, there was a growing interest in the extraction of subgraphs whose
vertices are highly connected to each other [7,34,35]. However, existing methods
do not always find subgraphs with high density δ. Instead, they prefer subgraphs
with many vertices even if their density δ is not very high. In many cases, we are
interested in discovering sets of vertices where there is an edge between almost
all their pairs. In this paper, we introduce a new formulation for extracting
dense subgraphs. We define a new family of functions for measuring the density
of a subgraph and we provide exact and approximate algorithms that allow the
extraction of large subgraphs with high density δ by maximizing these functions.
Our contributions are fourfold:

(i) New formulation: We introduce the k-clique-graph densest subgraph (k-
clique-GDS) problem, a new formulation for finding large subgraphs with
high density δ. Given a value for k, we create a graph whose vertices cor-
respond to k-cliques of the original graph and we draw edges between two
k-cliques if they share a common (k − 1)-clique. We then extract a dense

K-Clique-Graphs for Dense Subgraph Discovery 619

subgraph from the new graph and we project the result back to the original
graph. We focus on the special case obtained for k = 3 which we call the
triangle-graph densest subgraph (TGDS) problem. We define a new density
function which is suited to the needs of our problem.

(ii) Exact algorithm: We present an algorithm that solves exactly the TGDS
problem. The algorithm finds the optimal subgraph by solving a series of
supermodular maximization problems.

(iii) Approximation algorithm: We propose an efficient greedy approxi-
mation algorithm for the TGDS problem which removes one vertex at
each iteration. The algorithm achieves nearly-optimal results on real-world
networks.

(iv) Experimental evaluation: We evaluate our exact and approximation
algorithms on several real-world networks. We compare the obtained sub-
graphs with those outputted by state-of-the-art algorithms and we observe
that the proposed algorithms extract subgraphs of high quality. We also
present an application of our problem to the task of keyword extraction
from textual documents.

2 Related Work

In this section, we review the related work published in the areas of Clique
Finding, Dense Subgraph Discovery and Triangle Listing.

Clique Finding. A clique is a graph whose vertices are all connected to each
other. Hence, all cliques have density δ = 1. A maximum clique of a graph is
a clique, such that there is no clique with more vertices. Finding the maximum
clique of a graph is an NP-complete problem [22]. The maximum clique problem
is also hard to approximate. More specifically, H̊astad showed in [20] that for any
ε > 0, there is no polynomial algorithm that approximates the maximum clique
within a factor better than O(n1−ε), unless NP has expected polynomial time
algorithms. Feige presented in [15] a polynomial-time algorithm that approxi-
mates the maximum clique within a ratio of O(n(log log n)2/(log n)3). A maximal
clique is a clique that is not included in a larger clique. The Bron–Kerbosch
algorithm is a recursive backtracking procedure [9] that lists all maximal cliques
in a graph in O(3n/3) time.

Dense Subgraph Discovery. The problem of finding a dense subgraph given
an input graph has been widely studied in the literature [24]. As mentioned
above, such a problem aims at finding a subset of vertices S ⊆ V of an input
graph G that maximizes some notion of density. Among all the functions for
evaluating dense subgraphs, degree density has gained increased popularity. The
degree density of a set of vertices S is defined as d(S) = 2|E(S)|/|S|. The problem
of finding the set of vertices that maximizes the degree density is known as
the densest subgraph (DS) problem. The set of vertices S ⊆ V that maximizes
the degree density can be identified in polynomial time by solving a series of
minimum-cut problems [19]. Charikar showed in [11] that the DS problem can
also be formulated as a linear programming (LP) problem. In the same paper, the

620 G. Nikolentzos et al.

author proved that the greedy algorithm proposed by Asahiro et al. [5] provides
a 1

2 -approximation to the DS problem in linear time.
Some variations of the DS problem include the densest k-subgraph (DkS),

the densest at-least-k-subgraph (DalkS) and the densest at-most-k-subgraph
(DamkS) problems. These variations put restrictions on the size of the extracted
subgraph. The DkS identifies the subgraph with exactly k vertices that maxi-
mizes the degree density and is known to be NP-complete [4]. Feige et al. pro-
vided in [16] an approximation algorithm with approximation ratio O(nδ), where
δ < 1/3. The DalkS and DamkS problems were introduced by Andersen and
Chellapilla [2]. The first problem asks for the subgraph of highest degree density
among all subgraphs with at least k vertices and is known to be NP-hard [23],
while the second problem asks for the subgraph of highest density among all
subgraphs with at most k vertices and is known to be NP-complete [2].

Tsourakakis introduced in [34] the k-clique densest subgraph (k-clique-DS)
problem which generalizes the DS problem. The k-clique-DS problem maximizes
the average number of k-cliques induced by a set S ⊆ V over all possible vertex
subsets. For k = 3, we obtain the so-called triangle densest subgraph (TDS)
problem which maximizes the triangle density defined as dtr(S) = t(S)/|S| where
t(S) is the number of triangles in S. The author provides two polynomial-time
algorithms that identify the exact set of vertices that maximizes the triangle
density and a 1

3 -approximation algorithm which runs asymptotically faster than
any of the exact algorithms.

There are several other recent algorithms that extract dense subgraphs by
maximizing other notions of density [32,35,36]. It is worthwhile mentioning
Tsourakakis et al.’s work [35]. The authors defined the optimal quasi-clique
(OQC) problem which finds the subset of vertices S ⊆ V that maximizes the
function fα(S) = |E(S)|−α

(|S|
2

)
where α ∈ (0, 1) is a constant. The OQC prob-

lem is not polynomial-time solvable and the authors provided a greedy approxi-
mation algorithm that runs in linear time and a local-search heuristic.

Triangle Listing. Given a graph G, the triangle listing problem reports all the
triangles in G. The triangle listing problem has been extensively studied and a
large number of algorithms has been proposed [13,21,30]. A listing algorithm
requires at least one operation per triangle. In the worst case, there are n3

triangles in terms of the number of vertices and m3/2 in terms of the number of
edges. Hence, in the worst case, it takes m3/2 time just to report the triangles.
The above algorithms require O(m3/2) time to list the triangles and they are thus
optimal in the worst case. Recently, Björklund et al. proposed output sensitive
algorithms which run asymptotically faster when the number of triangles in the
graph is small [8].

3 Problem Definition

In this section, we will introduce the k-clique-graph densest subgraph (k-clique-
GDS) problem, a novel formulation for finding dense subgraphs. In the following,
we will restrict ourselves to the case where k = 3, that is to triangles. At the end

K-Clique-Graphs for Dense Subgraph Discovery 621

Algorithm 1. Construct triangle-graph
Input: graph G = (V, E)
Output: graph G′ = (V ′, E′)

1: Assign a unique label to each edge of the input graph G.
2: Extract all triangles in G by running a triangle listing algorithm. Let T (S) be the
set of the extracted triangles.
3: Create a new empty graph G′.
4: For each triangle t ∈ T (G) create a vertex in the G′.
5: Connect two vertices in G′ with an edge if the corresponding triangles in G share
a common edge.
6: Assign to the new edge the label of the edge that is shared between the two
triangles.
7: Return G′.

of the section, we will describe how the proposed approach can be generalized
to the case of k-cliques, k > 3.

The cornerstone of the proposed method is the transformation of the input
graph G = (V,E) into another graph G′ = (V ′, E′). The transformed graph
G′ is a more abstract representation of G. Specifically, it encodes information
regarding the triangles of the input graph G and the relationships between them.

As a preprocessing step before applying the transformation, we assign labels
to the edges of the input graph G. Given a set of labels L, � : E → L is a func-
tion that assigns labels to the edges of the graph. Each edge is assigned a unique
label. Hence, the cardinality of the set L is equal to that of set E, |L| = |E|.
We next proceed with the transformation of G into G′. The first step of the
transformation procedure is to run a triangle listing algorithm. There are sev-
eral available triangle listing algorithms as described in Sect. 2. Let T (S) be the
set of triangles extracted from G. For each triangle t ∈ T (G), we create a ver-
tex in the new graph G′. Therefore, each vertex represents one of the triangles
extracted from G. Pairs of triangles that share a common edge in G are con-
sidered neighbors and are connected with an edge in G′. In other words, each
edge in G′ corresponds to a pair of triangles sharing the same edge. The edges
of G′ are also assigned labels. Each edge in G′ is given the label of the edge that
is shared between the two corresponding triangles in G. For example, given a
pair of triangles t1 = (v1, v2, v3) and t2 = (v1, v2, v4) where t1, t2 ∈ T (G), these
triangles have a common edge e = (v1, v2) and the edge e′ that links them in G′

gets the same label as e, that is �(e′) = �(e). A triangle has three edges, hence,
although it can have any number of adjacent edges in G′, its labels come from
a limited alphabet consisting of only three items (the labels of the three edges
of the triangle in G). We call the transformed graph G′ the triangle-graph of G.
Algorithm 1 describes the steps required to create G′ from G and Fig. 1 illustrates
how a graph containing 4 triangles is transformed into its triangle-graph.

After creating the triangle-graph G′, we can find a subset of vertices S′ ⊂ V ′

that correponds to a dense subgraph. As mentioned earlier, each vertex v ∈ S′

represents a triangle t of the input graph G. Each triangle t is a set of three

622 G. Nikolentzos et al.

vertices. Intuitively, the union of the vertices of all the triangles that belong to
the set S′ will form a dense subgraph of G. To extract the set of vertices S′, we
can define a density measure and optimize it. A simple measure we can employ
is the well-known degree density defined as d(S′) = 2|E(S′)|/|S′|. However,
the above function will not necessarily lead to subgraphs with high density.
Consider the two graphs shown in Fig. 2. As can be seen from the Figure, the
triangle-graphs emerging from the two input graphs are structurally equivalent,
and hence, they have the same degree density. As a result, if the two graphs
are components of a larger graph and there are no other subgraphs with higher
value, they are equally likely solutions to the DS problem. However, it is obvious
that the upper graph suits better our purpose, and we would like our algorithm
to prefer this compared to the lower graph.

To account for this problem, we define a new density measure which we call
the triangle-graph density.

3

1

5
2

4

8

9
10

12

11

6

7

3

4

Fig. 1. Example of an input graph (left) and the triangle-graph (right) created from
it. There are 4 triangles in the input graph defined by the following triads of edges:
(1, 2, 3), (3, 4, 5), (4, 7, 8) and (9, 10, 11). The first two as well as the second and third
triangles have a common edge (edge 3 and edge 4 respectively). Hence, these pairs of
triangles are connected with an edge in the triangle-graph. The fourth triangle does
not share any edges with the other triangles, therefore, it has no adjacent edges in the
triangle-graph.

Definition 1 (Triangle-Graph Density). Given an undirected, unweighted
graph G = (V,E), first construct its triangle graph G′ = (V ′, E′). For any
S′ ⊆ V ′, we define its triangle-graph density as f(S′) = d(S′)

|S′| where d(S′) =
∑

v∈S′ minl∈L(v)

(
degS′(v, l)

)
, L(v) the set of labels of the edges adjacent to v

(three labels at most), and degS′(v, l) the number of edges that are adjacent to v
in the subgraph induced by S′ and are assigned the label l.

The triangle-graph density will allow the discovery of subgraphs with high values
of density δ. This is due to the fact that for each triangle t in G, the function takes
into account the number of neighbors from all three edges of t. If a triangle t cor-
responding to the vertex v in G′ shares one of its edges with many other triangles,

K-Clique-Graphs for Dense Subgraph Discovery 623

3

1

5
2

4

6 3

1

5
2

4

6

1

1

1
1

1

1
1

2 3

4

5

6 7

8

9

Fig. 2. Two input graphs (left) and their triangle-graphs (right). The two triangle-
graphs are structurally equivalent although the input graphs are not.

but the other two edges with no triangles, then minl∈L(v)

(
degS′(v, l)

)
= 0.

Therefore, even if t has many neighbors, it contributes nothing to the triangle-
graph density. Triangle-graph density seeks for subgraphs whose vertices belong
to edges which all consist of large sets of vertices. Cliques are natural candidates
for maximizing the function since all their edges are shared between several
triangles.

We next introduce the triangle-graph densest subgraph problem, the opti-
mization problem we address in this paper.

Problem 1 (TGDS problem). Given an undirected, unweighted graph G = (V,E),
create its triangle-graph G′ = (V ′, E′), and find a subset of vertices S∗ ⊆ V ′

such that f(S∗) = arg maxS′⊆V ′ f(S′).

After optimizing the triangle-graph density, we end up with a set of vertices
S′ ⊆ V ′ and from these we obtain the set of vertices S ⊆ V that corresponds
to the resulting subgraph. The set S consists of all the vertices that form the
triangles in S′. It is clear that the TGDS problem can result in subgraphs with
high values of density δ.

What needs to be investigated next is what are the properties of the extracted
subgraphs and how they differ from the ones extracted from existing meth-
ods. The proposed triangle-graph densest subgraph (TGDS) problem seems to
be very related to the triangle densest subgraph (TDS) problem introduced by
Tsourakakis in [34]. However, as we will show next, the two problems can result
in different solutions, and the subgraphs returned by TGDS are closer to being
near-cliques compared to the ones returned by TDS. Consider the graph G and
its triangle-graph G′ both shown in Fig. 3. The optimal solution of TDS is the
whole graph. Conversely, the optimal solution of TGDS is the subgraph induced
by the vertices that form the 4-clique. Hence, the optimal solution of the pro-
posed problem is a clique, while the optimal solution of TDS is a larger graph
with lower density δ. The above example demonstrates that the optimal solutions

624 G. Nikolentzos et al.

of TGDS correspond to subgraphs that exhibit a stronger near-clique structure
compared to TDS.

31 5

2

4

31 5

2

4

6

7 8
9

10

11

5

86
6

6

5
10

Fig. 3. Example of an input graph (left) and the triangle-graph (right) created from
it. There are 7 triangles in the input graph defined by the following triads of edges:
(1, 2, 3), (1, 4, 6), (2, 4, 5), (3, 5, 6), (6, 7, 8), (8, 9, 10) and (5, 10, 11).

The process of creating the k-clique graph for k > 3 is similar to the one
described above for k = 3. Specifically, to construct the k-clique graph G′ =
(V ′, E′), we first extract all the k-cliques from G. Then for each k-clique in
G, we create a vertex v in G′. Two vertices v1, v2 ∈ V ′ are connected with
an edge if the corresponding cliques share a common (k − 1)-clique in G. For
example, for k = 4, if two 4-cliques in G share a common triangle, an edge
is drawn between them in G′. Each (k − 1)-clique in G is assigned a unique
label and the edges of the k-clique graph are assigned the labels of the (k − 1)-
cliques that are shared between their two endpoints. Then, the k-clique-graph
density and the k-clique-graph densest subgraph (k-clique-GDS) problem are
defined in a similar way as in the case of triangles. The algorithms presented
in the next section for maximizing triangle-graph density can be generalized to
maximizing the k-clique-graph density. However, extracting k-cliques for k > 3
is a computationally demanding task, and hence, we restrict ourselves to the
case where k = 3.

4 Proposed Methods

In this section, we present some algorithms for solving the TGDS problem. These
algorithms are inspired by previously-introduced algorithms in the field of dense
subgraph discovery. More specifically, we provide an algorithm that solves the
TGDS problem exactly as well as a greedy approximation algorithm. In what
follows, we assume that we have extracted all triangles from the input graph
and we have created the triangle-graph. Note that, for simplicity of notation,
from now on, we denote by G = (V,E) the triangle-graph and not the input
graph. We also denote by qS(v) the minimum degree of vertex v with respect
to the three labels of its adjacent edges in the subgraph induced by S, that is
qS(v) = minl∈L(v)

(
degS(v, l)

)
.

K-Clique-Graphs for Dense Subgraph Discovery 625

4.1 A Supermodular Maximization Approach

In this section, we provide an exact algorithm for finding the set of vertices
S∗ that maximizes the triangle-graph density. The algorithm is based on the
supermodular maximization approach proposed by Tsourakakis in [34]. More
specifically, maximizing the triangle-graph density can be cast as a supermodular
maximization problem. We next introduce a brief background on submodularity
and supermodularity.

Submodular and supermodular functions are classes of functions with many
useful properties which have found application in several real world problems.
The main property of supermodular functions is that given two sets A and B,
where A ⊆ B ⊆ V \v, the difference in the incremental value of the function
that a single element v makes when added to an input set increases as the size
of the input set increases. Hence, the incremental value of adding v to sets A
and B is larger for B compared to A. Let V be a finite ground set. A function
h : 2V → R that maps subsets S ⊆ V to a real value h(S) is called supermodular
if the following equation holds for any A,B ⊆ V

h(A ∪ B) + h(A ∩ B) ≥ h(A) + h(B)

We next give a second equivalent definition of supermodularity. Let A,B be two
sets such that A ⊆ B ⊆ V and v ∈ V \B. Then, function h is supermodular if

h(B ∪ {v}) − h(B) ≥ h(A ∪ {v}) − h(A)

This second form of supermodularity shows that the value added by a new
element v never decreases when the context gets larger. Submodular and super-
modular functions have gained increased popularity due to the fact that they
can be minimized and maximized respectively in strongly polynomial time [31].
More specifically, Orlin proposed in [28] an algorithm for maximizing an integer
valued supermodular function f which runs in O(n5EO + n6) where EO is the
time to evaluate h(S) for some S ⊆ V .

We next show that for any α ∈ R+, the function h : 2V → R defined by
h(S) = d(S) − α|S| is supermodular.

Theorem 1. Function h : 2V → R where h(S) = d(S) − α|S| is supermodular.

Proof. The proof is left to the supplementary material [27].

To find the set of vertices S∗ that maximizes the triangle-graph density, we
can use Algorithm 2. The algorithm terminates in logarithmic number of rounds.
In each iteration, we run the Orlin-Supermodular-Opt procedure in order to
find the set of vertices that maximize function h given the current value of
parameter α.

Theorem 2. There exists an algorithm that solves the TGDS problem and runs
in O

(
m3/2 +

(
t5(t + y) + t6

)
log t

)
time where m is the number of edges of the

input graph, t is the number of triangles in the input graph and y is the number
of edges of the triangle-graph.

626 G. Nikolentzos et al.

Algorithm 2. Supermodular maximization algorithm
Input: triangle-graph G = (V, E)
Output: Subset of vertices S∗ ⊆ V

l ← d(V)
n

u ← n(n−1)
3n

S∗ ← V
while u − l ≥ 1

n(n−1)
do

α ← l+u
2

(val, S) ← Orlin-Supermodular-Opt(G, α)
if val < 0 then

u ← α
else

l ← α
S∗ ← S

end if
end while
Return S∗

To create the triangle-graph from the input graph, we first need to run a triangle
listing algorithm. The one proposed by Itai and Rodeh runs in O(m3/2) time [21].
As mentioned above, the algorithm will run in a logarithmic number of rounds.
Furthermore, Orlin’s algorithm runs in O(n5EO+n6) time where n is the size of
the ground set and EO is the time to evaluate h(S) for some S ⊆ V [28]. In our
case, the ground set corresponds to the vertices of the triangle-graph. Hence, it is
equal to the number of triangles t in the input graph. As regards the complexity
of computing h(S), it is linear to the number of vertices and number of edges of
the triangle-graph. Let y denote the number of edges of the triangle-graph. The
overall running time of Algorithm2 is thus O

(
m3/2 +

(
t5(t + y) + t6

)
log t

)
.

Lemma 1. Algorithm2 solves the TGDS problem and runs in O
(
m3/2+

(
t5(t+

y) + t6
)
log t

)
time.

Proof. The proof is left to the supplementary material [27].

4.2 A Greedy Approximation Algorithm

In this section, we provide an efficient algorithm for extracting a set of vertices
S ⊆ V with high value of triangle-graph density f(S). The proposed algorithm
is an adaptation of the greedy algorithm of Asahiro et al. [5]. The algorithm
is illustrated as Algorithm 3. The algorithm iteratively removes the vertex v
whose value d(v) is the smallest among all vertices. Subsequently, it computes
the triangle-graph density of the subgraph induced by the remaining vertices.
The output is the subgraph over all the produced subgraphs that maximizes
triangle-graph density. The algorithm is linear to the number of vertices and the

K-Clique-Graphs for Dense Subgraph Discovery 627

Algorithm 3. Greedy algorithm
Input: graph G = (V, E)
Output: Subset of vertices S ⊆ V

S|V | ← V
for i ← |V | to 1 do

Let v be the vertex whose minimum value of the three degrees is the smallest in
the subgraph induced by Si

Si−1 ← Si \ {v}
end for
S ← arg maxi=1,...,|V | f(Si)

number of edges of the triangle-graph, hence its complexity is O(t + y) where t
is the number of triangles in the input graph and y is the number of edges of
the triangle-graph.

Theorem 3. Let S be the set of vertices returned after the execution of Algo-
rithm3 and let S∗ be the set of vertices of the optimal subgraph. Consider the
iteration of the greedy algorithm just before the first vertex u that belongs in the
optimal set S∗ is removed, and let SI denote the vertex set currently kept in that
iteration. Let also qSI

(u) be the minimum degree of vertex u in SI with respect
to the three labels of its adjacent edges. Then, it holds that

f(S) ≥ |S∗|
|SI | f

∗
G +

(
1 − |S∗|

|SI |
)

qSI
(u)

Proof. The proof is left to the supplementary material [27].

From the above result, we can see that the bound provided by the approximation
algorithm highly depends on the relationship between |SI |, the size of the vertex
set just before the first vertex of S∗ is removed, and |S∗|, the size of the optimal
set. It also depends on the relationship between the optimal value of the triangle-
graph density f(S∗) and the minimum degree qSI

(u) of the first vertex of the
optimal set S∗ to be removed from SI with respect to its three labels. The
difference between |SI | and |S∗|, and between f(S∗) and qSI

(u) is not very large
in practice, and the algorithm leads to subgraphs with quality almost equal to
that of the optimal subgraphs.

5 Experiments and Evaluation

In this section, we present the evaluation of the proposed approach for extracting
dense subgraphs. We first give details about the datasets that we used for our
experiments. We then present the employed experimental settings. And we last
report on the results obtained by our approach and some other methods.

628 G. Nikolentzos et al.

5.1 Experimental Setup

For the evaluation of the proposed algorithms, we employed several publicly
available graphs. The algorithms are applicable to simple unweighted, undirected
graphs. Hence, we made all graphs simple by ignoring the edge direction in the
case of directed graphs and by removing self-loops and edge weights, if any.
Table 1 shows statistics of these graphs. The first ten datasets were obtained from
UCIrvine Network Data Repository1, while the remaining datasets were obtained
from Stanford SNAP Repository2. We compared the proposed algorithms with
algorithms that solve the densest subgraph (DS), the triangle densest subgraph
(TDS) and the optimal quasi-clique (OQC) problems. For the first two (DS and
TDS problems) as well as for the proposed problem, there are algorithms that
solve these problems exactly in polynomial time. Hence, for small-sized datasets,
we present the results obtained from both the exact and greedy approximation
algorithms for each problem. For larger datasets, we report only on the results
achieved by the greedy approximation algorithms. With regards to the objective
function of the OQC problem, we set the value of parameter α equal to 1/3 as sug-
gested in [35]. All algorithms were implemented in Python3 and all experiments
were conducted on a single machine with a 3.4 GHz Intel Core i7 processor and
32 GB of RAM. To assess the quality of the extracted subgraphs, we employed the
following measures: the density of the extracted subgraph δ(S) = |E(S)|/(|S|

2

)
,

the density with respect to the number of triangles τ(S) = t(S)/
(|S|

3

)
, that is

the number of triangles in S over the total possible triangles, and the size of the
subgraph |S|. The δ and τ measures take values between 0 and 1. The larger their
value, the closer the subgraph to being a clique. Therefore, we are interested in
finding large subgraphs (large value of |S|) with δ and τ values close to 1.

5.2 Results and Discussion

Table 2 summarizes the results obtained on small-sized graphs. We observe that
on the small-sized graphs, the proposed algorithms (Exact TGDS and Greedy
TGDS) return in general subgraphs that are closer to being a clique compared
to the competing algorithms. As we can see from the Table, the densities δ and
τ of the subgraphs extracted by our algorithms are relatively high. Our initial
intention was to design an algorithm for finding a set of vertices with many
edges between them. The obtained results verify our intuition that the proposed
approach is capable of finding near-cliques. Furthermore, we show in Table 3 the
triangle-graph density of the subgraphs extracted by the exact and the greedy
approximation algorithm. We notice that on four out of the six graphs, the two
densities are equal to each other, while on the other two, they are very close

1 https://networkdata.ics.uci.edu/index.php.
2 http://snap.stanford.edu/data/index.html.
3 Code is available at https://github.com/giannisnik/k-clique-graphs-dense-subgr

aphs.

https://networkdata.ics.uci.edu/index.php
http://snap.stanford.edu/data/index.html
https://github.com/giannisnik/k-clique-graphs-dense-subgraphs
https://github.com/giannisnik/k-clique-graphs-dense-subgraphs

K-Clique-Graphs for Dense Subgraph Discovery 629

Table 1. Graphs used for evaluating the algorithms.

Graph |V | |E|
Karate 34 78

Dolphins 62 159

Lesmis 77 254

Adjnoun 112 425

Football 115 613

Polbooks 105 441

Celegansneural 297 2,148

Polblogs 1,224 16,715

Power 4,941 6,594

Wiki-Vote 7,115 100,762

ca-CondMat 23,133 93,439

p2p-Gnutella31 62,586 147,892

Slashdot0902 82,168 504,230

email-EuAll 265,009 364,481

web-NotreDame 325,729 1,497,134

Amazon 334,863 925,872

Youtube 1,134,890 2,987,624

roadNet-CA 1,965,206 2,766,607

Table 2. Comparison of the extracted subgraphs by Goldberg’s exact algorithm
for the DS problem (Exact DS), Charikar’s 1

2
approximation algorithm for the

DS problem (Greedy DS), Tsourakakis’s algorithm for the TDS problem (Exact
TDS), Tsourakakis’s 1

3
approximation algorithm for the TDS problem (Greedy TDS),

Tsourakakis et al.’s greedy approximation algorithm for the OQC problem (Greedy
OQC), our exact algorithm for the TGDS problem (Exact TGDS), and our greedy
approximation algorithm for the TGDS problem (Greedy TGDS).

Dataset Exact DS Greedy DS Exact TDS Greedy TDS Greedy OQC Exact TGDS Greedy TGDS

|S| δ τ |S| δ τ |S| δ τ |S| δ τ |S| δ τ |S| δ τ |S| δ τ

Karate 16 0.35 0.05 16 0.35 0.05 6 0.93 0.80 6 0.93 0.80 10 0.55 0.18 6 0.93 0.80 6 0.93 0.80

Dolphins 20 0.32 0.04 36 0.17 0.01 7 0.80 0.54 6 0.93 0.80 13 0.47 0.11 6 0.93 0.80 6 0.93 0.80

Lesmis 23 0.49 0.18 23 0.49 0.18 13 0.88 0.71 13 0.88 0.71 22 0.50 0.19 12 0.93 0.83 12 0.93 0.83

Adjnoun 48 0.20 0.01 44 0.22 0.01 41 0.23 0.01 41 0.23 0.01 16 0.48 0.11 8 0.82 0.51 7 0.85 0.62

Football 115 0.09 0.00 115 0.09 0.00 18 0.48 0.20 18 0.48 0.20 10 0.88 0.66 18 0.48 0.20 18 0.48 0.20

Polbooks 24 0.41 0.09 48 0.19 0.02 20 0.49 0.15 36 0.26 0.04 14 0.67 0.30 16 0.59 0.23 13 0.69 0.34

to each other. The obtained results indicate that the greedy algorithm achieves
approximation ratios close to 1 on real-world networks. Hence, the approximation
algorithm is nearly-optimal in practice.

Next, we present results obtained on larger graphs. Specifically, Table 4 com-
pares the four approaches on 12 graphs. In general, the proposed algorithm still
manages to extract subgraphs with high values of δ and τ . However, on two

630 G. Nikolentzos et al.

Table 3. Triangle-graph densities of the subgraphs extracted by the exact and the
greedy approximation algorithms.

Dataset Exact TGDS Greedy TGDS

Karate 2.25 2.25

Dolphins 2.25 2.25

Lesmis 7.60 7.60

Adjnoun 2.39 2.36

Football 6.0 6.0

Polbooks 4.02 3.89

Table 4. Comparison of the extracted subgraphs by Charikar’s 1
2

approximation algo-
rithm for the DS problem (Greedy DS), Tsourakakis’s 1

3
approximation algorithm for

the TDS problem (Greedy TDS), Tsourakakis et al.’s greedy approximation algorithm
for the OQC problem (Greedy OQC), and our greedy approximation algorithm for the
TGDS problem (Greedy TGDS).

Dataset Greedy DS Greedy TDS Greedy OQC Greedy TGDS

|S| δ τ |S| δ τ |S| δ τ |S| δ τ

Celegansneural 127 0.13 0.005 30 0.47 0.13 22 0.61 0.25 24 0.55 0.21

Polblogs 278 0.20 0.020 102 0.54 0.195 100 0.55 0.202 74 0.67 0.343

Power 31 0.20 0.021 12 0.54 0.195 12 0.54 0.195 12 0.54 0.195

Wiki-Vote 828 0.11 0.004 464 0.19 0.014 133 0.47 0.131 152 0.42 0.104

ca-CondMat 26 1.0 1.0 26 1.0 1.0 26 1.0 1.0 26 1.0 1.0

p2p-Gnutella31 1,549 0.005 0.0 10 0.40 0.11 14 0.48 0.0 22 0.15 0.016

soc-Slashdot0902 219 0.39 0.097 171 0.50 0.165 155 0.54 0.200 145 0.56 0.225

email-EuAll 505 0.13 0.005 200 0.29 0.041 97 0.51 0.164 91 0.52 0.179

web-NotreDame 1,367 0.11 0.012 457 0.34 0.114 305 0.51 0.255 155 1.0 1.0

Amazon 9 0.91 0.761 16 0.45 0.178 9 0.91 0.761 170 0.03 0.001

Youtube 1,860 0.049 0.0006 729 0.11 0.005 125 0.46 0.115 442 0.17 0.012

roadNet-CA 19,899 0.0001 0.0 168 0.017 0.0002 5 0.80 0.40 168 0.017 0.0002

graphs (Amazon, roadNet-CA), it fails to discover high-quality subgraphs in
terms of density. Overall, the Greedy DS algorithm returns the largest subgraphs,
followed by the Greedy TDS algorithm, while the Greedy OQC algorithm and
the proposed algorithm return smaller subgraphs with higher values of density.
We notice that the subgraphs extracted by the proposed greedy approximation
algorithm resemble most those extracted by the Greedy TDS algorithm. On the
ca-CondMat dataset, all the algorithms extract the same subgraph.

6 Application

In this section, we apply the proposed algorithm to a central problem in Natural
Language Processing: extracting keywords from a textual document. Keyword
extraction finds applications in several fields from information retrieval to text
classification and summarization. Given a document d, we can represent it as

K-Clique-Graphs for Dense Subgraph Discovery 631

a statistical graph-of-words, following earlier approaches in keyword extraction
[26,29,33] and in summarization [25]. The construction of the graph is preceded
by a preprocessing phase where standard text processing tasks are performed.
The processed document is then transformed into an unweighted, undirected
graph G whose vertices represent unique terms and whose edges represent co-
occurrences between the connected terms within a fixed-size window. We then
employ the proposed algorithm to extract a dense subgraph from G. The vertices
of the subgraph act as representative keywords of the document.

To demonstrate the ability of the proposed approach to identify meaningful
keywords, we extracted the text of this paper and we transformed it into a
graph G using a window of size 3 (each word is connected with an edge with
each one of its two preceding and two following words, if any). We then extracted
a dense subgraph from G using the proposed greedy approximation algorithm.
The output subgraph consists of the following 25 vertices:

set, labels, number, subgraphs, triangles, maximizes, given,
density, graph, input, function, triangle, subgraph, cliques,
vertex, edges, clique, algorithm, k, vertices, value, edge,

supermodular, hence, problem

As we can observe, the extracted keywords capture the main concepts of the
paper.

7 Conclusion

In this paper, we propose a novel approach for extracting dense subgraphs. Given
a graph, our algorithm first transforms it to a k-clique-graph. We then intro-
duce a simple density measure to extract high-quality subgraphs. We propose an
algorithm for exactly maximizing the density function. We also present a greedy
approximation algorithm. We evaluate our proposed approach for the case where
k = 3 on real graphs and we compare it with other popular measures. Overall,
our algorithms show good performance in finding large near-cliques, and can
serve as useful additions to the list of dense subgraph discovery algorithms.

References

1. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale net-
works fingerprinting and visualization using the k-core decomposition. In: NIPS
2005, pp. 41–50 (2005)

2. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In:
Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp.
25–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95995-3 3

3. Angel, A., Koudas, N., Sarkas, N., Srivastava, D., Svendsen, M., Tirthapura, S.:
Dense subgraph maintenance under streaming edge weight updates for real-time
story identification. VLDB J. 23(2), 175–199 (2014)

https://doi.org/10.1007/978-3-540-95995-3_3

632 G. Nikolentzos et al.

4. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discret.
Appl. Math. 121(1), 15–26 (2002)

5. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense sub-
graph. J. Algorithms 34(2), 203–221 (2000)

6. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes
in large protein interaction networks. BMC Bioinform. 4(1), 1 (2003)

7. Balalau, O.D., Bonchi, F., Chan, T., Gullo, F., Sozio, M.: Finding subgraphs with
maximum total density and limited overlap. In: WSDM 2015, pp. 379–388 (2015)

8. Björklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 223–234. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7 19

9. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

10. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph
compression with communities. In: WSDM 2008, pp. 95–106 (2008)

11. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X 10

12. Chen, J., Saad, Y.: Dense subgraph extraction with application to community
detection. TKDE 24(7), 1216–1230 (2012)

13. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. In: SICOMP
1985, vol. 14, no. 1, pp. 210–223 (1985)

14. Du, X., Jin, R., Ding, L., Lee, V.E., Thornton Jr., J.H.: Migration motif: a spatial-
temporal pattern mining approach for financial markets. In: KDD 2009, pp. 1135–
1144 (2009)

15. Feige, U.: Approximating maximum clique by removing subgraphs. In: SIDMA
2004, vol. 18, no. 2, pp. 219–225 (2004)

16. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica
29(3), 410–421 (2001)

17. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: MotifCut: regulatory
motifs finding with maximum density subgraphs. Bioinformatics 22(14), e150–e157
(2006)

18. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive
graphs. In: VLDB 2005, pp. 721–732 (2005)

19. Goldberg, A.V.: Finding a maximum density subgraph. Technical report, Univer-
sity of California Berkeley (1984)

20. H̊astad, J.: Clique is hard to approximate within n1−ε. In: FOCS 1996, pp. 627–636
(1996)

21. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. In: SICOMP 1978,
vol. 7, no. 4, pp. 413–423 (1978)

22. Karp, R.M.: Reducibility Among Combinatorial Problems. Springer, Boston
(1972). https://doi.org/10.1007/978-1-4684-2001-2 9

23. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009.
LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02927-1 50

24. Lee, V.E., Ruan, N., Jin, R., Aggarwal, C.: A survey of algorithms for dense sub-
graph discovery. In: Managing and Mining Graph Data, pp. 303–336 (2010)

https://doi.org/10.1007/978-3-662-43948-7_19
https://doi.org/10.1007/978-3-662-43948-7_19
https://doi.org/10.1007/3-540-44436-X_10
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1007/978-3-642-02927-1_50

K-Clique-Graphs for Dense Subgraph Discovery 633

25. Meladianos, P., Nikolentzos, G., Rousseau, F., Stavrakas, Y., Vazirgiannis, M.:
Degeneracy-based real-time sub-event detection in Twitter stream. In: ICWSM
2015, pp. 248–257 (2015)

26. Mihalcea, R., Tarau, P.: TextRank: bringing order into texts. In: EMNLP 2004,
pp. 404–411 (2004)

27. Nikolentzos, G., Meladianos, P., Stavrakas, Y., Vazirgiannis, M.: Supplementary
material for k-clique-graphs for dense subgraph discovery (2017). http://www.db-
net.aueb.gr/nikolentzos/files/ecml pkdd17 suppl.pdf

28. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function
minimization. Math. Program. 118(2), 237–251 (2009)

29. Rousseau, F., Vazirgiannis, M.: Main core retention on graph-of-words for single-
document keyword extraction. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N.
(eds.) ECIR 2015. LNCS, vol. 9022, pp. 382–393. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16354-3 42

30. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs,
an experimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp.
606–609. Springer, Heidelberg (2005). https://doi.org/10.1007/11427186 54

31. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. JCT 80(2), 346–355 (2000)

32. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: KDD 2010, pp. 939–948 (2010)

33. Tixier, A.J.P., Malliaros, F.D., Vazirgiannis, M.: A graph degeneracy-based app-
roach to keyword extraction. In: EMNLP 2016 (2016)

34. Tsourakakis, C.: The k-clique densest subgraph problem. In: WWW 2015, pp.
1122–1132 (2015)

35. Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.: Denser than the
densest subgraph: extracting optimal quasi-cliques with quality guarantees. In:
KDD 2013, pp. 104–112 (2013)

36. Wang, N., Zhang, J., Tan, K.L., Tung, A.K.: On triangulation-based dense neigh-
borhood graph discovery. VLDB Endow. 4(2), 58–68 (2010)

http://www.db-net.aueb.gr/nikolentzos/files/ecml_pkdd17_suppl.pdf
http://www.db-net.aueb.gr/nikolentzos/files/ecml_pkdd17_suppl.pdf
https://doi.org/10.1007/978-3-319-16354-3_42
https://doi.org/10.1007/978-3-319-16354-3_42
https://doi.org/10.1007/11427186_54

	K-Clique-Graphs for Dense Subgraph Discovery
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Proposed Methods
	4.1 A Supermodular Maximization Approach
	4.2 A Greedy Approximation Algorithm

	5 Experiments and Evaluation
	5.1 Experimental Setup
	5.2 Results and Discussion

	6 Application
	7 Conclusion
	References

