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Abstract. Understanding spatio-temporal activities in a city is a typ-
ical problem of spatio-temporal data analysis. For this analysis, ten-
sor factorization methods have been widely applied for extracting a few
essential patterns into latent factors. Non-negative Tensor Factorization
(NTF) is popular because of its capability of learning interpretable fac-
tors from non-negative data, simple computation procedures, and dealing
with missing observation. However, since existing NTF methods are not
fully aware of spatial and temporal dependencies, they often fall short
of learning latent factors where a large portion of missing observation
exist in data. In this paper, we present a novel NTF method for extract-
ing smooth and flat latent factors by leveraging various kinds of spatial
and temporal structures. Our method incorporates a unified structured
regularizer into NTF that can represent various kinds of auxiliary infor-
mation, such as an order of timestamps, a daily and weekly periodic-
ity, distances between sensor locations, and areas of locations. For the
estimation of the factors for our model, we present a simple and effi-
cient optimization procedure based on the alternating direction method
of multipliers. In missing value interpolation experiments of traffic flow
data and bike-sharing system data, we demonstrate that our proposed
method improved interpolation performances from existing NTF, espe-
cially when a large portion of missing values exists.

1 Introduction

Spatio-temporal data covering a wide area of a city have become available due to
the commoditization of sensor-monitoring systems and mobile-phone networks.
These monitoring systems observe various types of data, such as vehicle trans-
portation counts on a road network, bike-renting counts of a bike-sharing system,
and the purchasing records of shops around a city, where missing values often
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appear due to the failure of sensor nodes, data transmission errors, and trouble
with data recording systems. We can find rich and bounteous information in
such spatio-temporal data. However, it becomes difficult to grasp what spatio-
temporal activities appeared in the data at a glance. Therefore, understanding
of such activities via pattern extractions is a typical problem of spatio-temporal
data analysis, in which the interpretability of the extracted patterns is regarded
as one of the most important property for analysis methods.

Tensor factorization methods have been widely applied to discover spatial
and temporal patterns from various kinds of spatio-temporal data [17]. These
methods represent spatio-temporal data as a higher-order dimensional array,
called a tensor that is a generalization of a matrix. For example, we can represent
spatio-temporal data as a three-way tensor whose first, second, and third modes
correspond to sensor locations, timestamps for 24 h, and the observed days. We
illustrated an example of a tensor for spatio-temporal data analysis in Fig. 1.
With this formulation, we can naturally incorporate an assumption that daily
or weekly periodicity can be found in data and similar spatial patterns appear
on different days. We can extract a few numbers of spatial, temporal, and daily
patterns into latent factors by decomposing the tensor. However, since most
existing tensor factorization methods do not consider the non-negativity of data
where observations only contain non-negative values, they often result in messy
and hard to interpret factors.

Latent factor for day mode

Factor 2
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Time [day]

Tensor for spatio-temporal Latent factor matrices for
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Fig. 1. Example for a non-negative tensor factorization method on analysis of a traffic-
flow data set, where latent patterns for location, time, and day modes are extracted in
the latent factor.

Unlike those tensor factorization methods, Non-negative Tensor Factoriza-
tion (NTF) [8], which leverages non-negativity, is effective for extracting inter-
pretable patterns from the non-negative data [13,18]. This method has suc-
cessively yielded interpretable factors from various kinds of spatio-temporal
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data, such as location-based social network services [14,25], mobile phone GPS
logs [10], log messages of network equipment [16], and traffic records of road
networks [32]. However, NTF was not applicable to the existence of missing val-
ues. To deal with missing values, NTF was recently extended to learn the latent
factors from a subset of elements in a tensor, called the non-negative tensor
completion [15,31]. With this NTF, we can interpolate missing values in data
by learned latent factors. However, NTF methods for the missing value comple-
tion problem suffer from overfitting when just a few observations are available.
Because they ignore spatial and temporal contextual information such as the
order of time stamps, weekly periodicity, the distances between sensor locations
and treats each feature of the tensor independently.

To incorporate such contextual information, most matrix/tensor factorization
methods have employed a graph Laplacian based regularizer for encouraging the
latent factors to be smooth with spatio-temporal dependencies [21]. The graph
regularized non-negative matrix factorization [6] is a variant of such schemes and
has been widely utilized in many applications, however, it does not consider sce-
narios where missing values exist and analyzing higher-order dimensional arrays.

Another choice for representing such auxiliary information is structured regu-
larizers [2] that have become popular in the fields of machine learning, signal pro-
cessing, and data mining [7,28]. For example, the fused lasso [27], which is also
known as the total variation, approximates parameters by piecewise-constant
values with the order of parameters. Since its estimated parameters have the
same estimated value, this is beneficial for finding segments of parameters. In a
pioneering work [29], the penalized matrix decomposition was proposed to uti-
lize the fused lasso as a regularizer on latent factors and was applied to a gene
data analysis problem. They presented latent factors easy to find gene segments
rather than existing matrix factorization methods incorporated the lasso reg-
ularizer. However, this method and its subsequent works have only considered
the fused lasso without incorporating more general structured regularizer such
as spatial dependencies of sensors, and also ignored the non-negative properties
and the existence of missing values.

In this paper, we attempt to solve a problem of extracting latent factors
from spatio-temporal data where a lot of missing values exists. To tackle this
problem, we propose a novel NTF that learns factors by employing spatial and
temporal auxiliary information as regularizers. We utilize this information to
represent phenomena often appear in spatio-temporal data, such as counts of
vehicles passed roads smoothly grow or decrease or take the same value along
with space and time. To exploit such information, we introduce a regularizer
that consists of both a graph-based Laplacian regularizer and structured regu-
larizers that incorporate not only the order of features but also more general
graph and group based structures [3,24]. With our regularizer, we can utilize
various kinds of auxiliary information into NTF including a daily and weekly
periodicity, distances between sensor locations, and areas of locations. Our pro-
posed method is highly robust to the presence of a large portion of missing
values because it encourages latent factors to be smooth and flat with spatial
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and temporal structures, where we regard segments of parameters that take the
same value as flat. To estimate the latent factors for our proposed method, we
present an efficient optimization procedure of the alternating direction method of
multipliers [4] that utilizes simple proximity operators of the conjugate gradient
method [21] and a parametric network flow algorithm [12].

We conducted missing value interpolation experiments with real-world traffic
flow data and compared the performance of our proposed method with exist-
ing NTF methods. We demonstrate that our proposed method improved the
interpolation performances from existing NTF methods. We also show that our
extracted factors were interpretable to detect change points. Because our factors
have segments, we can easily find a boundary of segments as a change point.

2 Non-negative Tensor Factorization

We denote a N-th way non-negative tensor as X € RI;OX'"XIN, where I, is the
number of features in the n-th mode. The n-th mode unfolding of a tensor X is
denoted as X,,. We use i = (i1,...,ix) and D to represent an element and the
whole set of the elements in the tensor, respectively. A subset of the observed
elements in the tensor is denoted by 2 = {i | z; is observed ,Vi € D}.

NTF decomposes the observed values of tensor X into K latent non-negative
factors, where K < min(/ly,...,Iy). The n-th mode factor matrix is denoted

as A™ € RIVK whose k-th column is factor vector al” € Rz . We denote a
whole set of factor vectors as A = {aé") | V(n,k)}. An estimation for element x;

is given by a sum of latent factor vectors &; = Zle agll?kagf?k e agz)’k € X. We

denote the transpose operator as ', the Khatri-Rao product as @, and its series
as ON_ AW =AW o ...0 AW,

The empirical loss function for NTF can be defined as a sum of divergences
that indicates a discrepancy between x; and its estimation Z;:

N K
F(A) = DX )+ 33" g™ (a™), (1)

n=1 k=1

where Do (X|X) = Y ico d(xi]|Z:). We d(pllq) to denote a divergence between
scalars p and ¢, and g™ to denote a penalty function for the n-th mode factor
vector. Because loss function f is non-convex with respect to A, an NTF problem
is to obtain a local minimizer A* of the loss under a non-negative constraint:

A* = argmin f(A) subject to a,g") >0 Y(n,k). (2)
A

The graph regularized non-negative matrix factorization method [6] employs
a graph Laplacian regularizer [22] to represent the smoothness in latent factors.
An adjacency matrix for the n-th mode features is denoted as W) ¢ RI»xIn
that represents a graph whose nodes and capacities of edges correspond to the
features of the n-th mode and the similarity measures between the two features,
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respectively. The Laplacian matrix can be denoted as L™ = D™ — W),
where D™ is a diagonal matrix whose elements are the sums of each row of
W (") Then a graph Laplacian regularizer can be defined:

n )T n n
g(")(agC )) - (1;2 A )a’(C ) (3)

This regularizer penalty function encourages smoothness because its formulation
equals putting a weighted quadratic term on the difference between the adjacency
elements.

3 Proposed Model

We introduce a unified structured regularizer to employ both smooth and
piecewise-constant properties with auxiliary structures:

al™) ZA 9 (al”) + g5 (af), (4)

where A, Ao and A3 are the hyperparameters for each regularizer. We
employ a Generalized Fused Lasbo (GFL) [5,30] and a Higher-Order Fused
Lasso (HOFL) [24] as g1 ) and 92 ). respectively. ggn) corresponds to the Lapla-
cian regularizer for extracting Smooth patterns. We use an indicator function for

the non-negative region:

(M) (M) = 0 (ifaik >0, Vi)
7 ] +00  (otherwise) '

(5)

The GFL penalty is defined:

I, I,
“)) _ Z Z w™
j=1j'=1

The GFL prefers parameters with the same value if they are adjacent on the given
graph, such as distances between sensor locations and temporal lags between
time stamps. The HOFL encourages parameters in a given group to take identical
values [24]. With this regularizer, we can utilize auxiliary information, such as
sensors placed in a specific area that may output similar values and a group
of time stamps when a specific train leaves from a station. We denote the -

(n) (n)
VAR

(6)

th group of features in the n-th mode as gr ) C D,, and a set of groups by
G = {g%n) . ,gR } where D,, and R,, are a set of elements in the n-th
mode and the number of groups, respectively. The Welghts of each element for
the r-th group on the n-th mode are denoted by c&",?l = crm if me g(n)7 nd

0 otherwise, where 55”,?1 > 0. Then a simplified HOFL penalty gg(a,(c )) is given:

Z Z Cr Jm 57;) ai’;)mk| + 97{”)(ai:1?k - agf,)k)v (7)

r=1m=1
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where 9&") > ( is a hyperparameter that controls the consistency of the param-

eters in a group. dgn) is defined as afwzl b= agn e (i m > sp), at k (if m <
tr) and a;:t)’k (otherwise) for distinct indices j1,j2,...,41, € D, that corre-

spond to a permutation that arranges the entries of a(") in a non- increasing

D)

order. Thresholding indices s, and ¢, are given as s = min {m’ | Zm 1G>

o } and t, = min {m’ | S In < 9(n)}

,C
m=m' “1r,Jm

For convenience, we denote 3\ (a (”)) S Amgo) (a ,(Cn)) (>"0)(a,(C )). By

adopting our structured regularizers to the loss of NTF, we define the following
minimization problem for our purpose:

N K
A* —argmmDQ (x| x) + ZZ (n) )+ A g(")( ffn)) (8)

Note that when A\; = Ao = A3 = 0, our method is reduced to an original NTF.
When Ay = A3 = 0, our method can be regarded as a tensor extension of the
graph-regularized non-negative matrix factorization. Our method includes those
methods as special cases.

4 Parameter Estimation

We present an efficient parameter estimation procedure for obtaining a local min-
imizer of our proposed method. We employ a scaled formulation of the Alternat-
ing Direction Method of Multipliers (ADMM) for NTF [15]. The minimization
problem for our proposed method can be rewritten:

N K
%ing(XHZ) + Z Zg(")(b( N+ gl (@™

’ n=1k=1
subject to 2 = X, 4" = b (vn, k), (9)

where Z and b;ﬂ") are auxiliary variables, and P, is a projection function that
only retains the divergence of the observed elements. To solve our problem effi-
ciently with keeping both constraints and separability, we define an augmented
Lagrangian for our problem:

L,(A,B, Z) = Do(X||2) + £112 - X + Ul

3" S ) + o+ o
n=1 k=1

where U and ué") are Lagrangian multipliers, and p is a step-size parameter,
respectively. We summarize the minimization procedure for our proposed method

in Algorithm 1. The minimization for ADMM can be ePﬁciently calculated if a

(10)

simple minimization operator for each of each ak ) and b( exists.
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Algorithm 1. Alternative direction method of multiplier for our proposed
non-negative tensor factorization

Input : X,2,A, Mo, hs, K, W™

Output: set of factor matrices A

1 Initialize parameters

2 Sample A, B, and Z from random distributions
3 repeat

4 Alternatively update parameters;

5 | 2 agming Do(X[2)+ (p/2)]|2 — X +Ull3
6 for n=1to N do

7 Update A™ by solving Eq. (11)

8 for k=1to K do

9 ‘ Update b,(f) by solving Eq. (12)
10 end

11 U™ —u™ 4 (A("> _ B(">)

12 end

13 U—U+ (X —-X)

14 until convergence;

The loss function with respect to A™ and b,(Cn) contains the graph Lapla-
cian regularizer and the non-separable graph-based and group-based penalties,
respectively. Thus the main difficulty with our proposed method lies in the min-
imization of A and b,i"), whose minimization problems can be rewritten:

K
A® = argmin §1Z, — AWV, 7B+ Z1AY Va5 + % 308" (@) (1)

Am 2 k=1

n « —(n n Py ~(n n

b = argming™ (b") + Sl — b3, (12)
bk"

where Z = Z+ U, V, = @nN:n,A("), V,, = B — U™ and v,(cn) = a,(cn) +
ugc”). We efficiently solve the minimization of Eq.(11) by using the fact that
it corresponds to the loss function of the graph regularized alternating least
squares [21], which approximately runs in O(nnz(L(™)K) (nnz(-) is the number
of non-zero elements).

The minimization problem in Eq. (12) corresponds to the calculation of the
proximity operator, which is defined as: prox. () = arg min, h(0) + % 16 —6]2.
We present a minimization procedure for Eq. (12) by leveraging the proper-
ties of the proximity operator, and obtaining a minimizer for the sum of the
non-negative indication function and other convex functions by the following
property [26]: prox;m) = PIOX, () © Prox Thus, if we have a mini-

mizer for AngL) + )\ggén)

)\lg§71.)+>\2gén)~
, we can attain the exact minimizer for (") by setting

negative parameters to zeros. A minimizer for A\ g%n) + )\ggé") can be simply
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calculated by employing a submodular function minimization procedure. Because
the penalty functions of GFL and HOFL are the Lovasz extensions [19] of the
graph-representable submodular functions [11], we can attain a minimizer for

the sum of functions Alggn) + )\ggén) by an efficient parametric network flow
algorithm [7,24,30]. We show the details of our minimization procedure for this
function in the appendix.

5 Related Works

There has been a lot of articles in which NTF was applied to analyze spatio-
temporal data. Kimura et al. proposed a special NTF that decomposes a three-
way tensor into two-factor matrices and a three-mode tensor for extracting log
messages related to network failures [16]. Yang et al. proposed a combination of
NTF without regularizers and post-processing for modeling user activities [32].
Takeuchi et al. proposed an NTF that simultaneously decomposes multiple ten-
sors to extract patterns appeared among different tensors [25]. NTF was used
to extract spatio-temporal patterns from human-flow data [10]. However, all of
those methods did not employ regularizers into NTF and their methods were
not applicable to missing values. One exception is a paper of Sun and Axhausen
[23], in which they proposed a probabilistic non-negative Tucker decomposition
for discovering interactions among factors. However, they did not incorporate
the spatial and temporal structures into regularizers. Han and Moutarde pro-
posed an extension of NTF for predicting future observations [14]. However, they
did not consider spatial structures. Our method can be applied to their frame-
work to utilizing spatial and temporal regularizers. The estimation procedures
of them were based on the multiplicative update rule and EM algorithm. Our
proposed method can utilize graphs and groups of spatial and temporal features
to regularize parameters and also employ ADMM as an estimation procedure.

6 Experiments

We conducted missing value completion problems with a traffic flow data set
provided by City Pulse [1] and two bike-sharing system data sets recorded in
Washington D.C.! and New York? [1].

The traffic flow data consist of the numbers of cars that passed at 419 loca-
tions every thirty minutes in Arhus City, Denmark. We picked 30 days from
August 2nd to 31st 2014, and constructed three-way tensor X € R48x30x441
whose modes corresponded to 48 daily time points, 30 days, and 441 observa-
tion locations, respectively. From the bike-sharing system data in Washington
D.C. and New York, we employed 15 days from April 1st to the 15th with 351
and 344 bike stations. We constructed three-way tensors X' € R24x15x351 apd
X € R?4x15X44 whose values were the numbers of bikes returned to the station

! https://www.capitalbikeshare.com.
2 http://www.citibikenyc.com/.
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in an hour. For the time mode, we utilized the adjacency of the time points as a
graph. For the day mode, we employed the adjacency of days and the days of the
week as a graph and groups. For the location mode, we used the inverse of the
Euclid distance of GPS locations and clusters attained by k-nearest neighbors
(k =5,10) for a graph and groups.

We exploited the Euclid distance as the divergence in experiments. We com-
pared our proposed method (Proposed 1) and our proposed method with only the
graph Laplacian regularizer (Proposed 2, Ay = Ag = 0) with NTF estimated by
ADMM [15] (ADMM), NTF with the graph Laplacian regularizer [6] estimated
by a multiplicative update rule considering missing values (Multi+Lap) [9], and
NTF estimated by the multiplicative update rule (Multi). We set the proportion
of observations to p = {0.1,0.01,0.005,0.001}. By five-fold cross validation, we
selected K and other hyperparameters from K = {3,5,10} and {0.1,1,10}. We
utilized the normalized RMSE (NRMSE) and the normalized deviation (ND) as
error measurements:

NRMSE:\/(1/|Q) S (@ — i)/ Q, (13)
(p,t)€R
ND = (1/]2)) Y |zps — dpal/Q, (14)

(p,t)eNR

here Q = (1/|92)) Z(m)eﬂ |zp.¢|. We ran our experiments five times with ran-
domly selected different missing values.

The results are shown in Tables1, 2, 3, 4, 5, and 6, where the left and
right values in a cell correspond to the average and the standard deviation of
those values. We confirmed that our proposed methods showed the best perfor-
mance in every setting. Our proposed method was robust to the appearance of
a large portion of missing values for every data set p = {0.01,0.005,0.001}. Our
proposed method with both the graph-based Laplacian and structured regular-
izer (Proposed 1) showed better or competitive performance with our proposed
method with the graph-based Laplacian regularizer (Proposed 2). Furthermore,
our proposed method with the graph-based Laplacian regularizer (Proposed 2)

Table 1. NRAME for the traffic flow data of our proposed method (Proposed 1), our
proposed method with the graph Laplacian regularizer (Proposed 2), NTF estimated
by ADMM (ADMM), NTF with the graph Laplacian regularizer estimated by the
multiplicative update rule (Multi+Lap), and NTF (Multi)

p=0.1 p=001 p=0005 | p=0.001
Proposed 1| 0.50 (0.00)  0.99 (0.03) 1.49 (0.03) 1.87 (0.01)
Proposed 2| 0.51 (0.00) | 1.12 (0.05) | 1.49 (0.03) 1.89 (0.01)
ADMM  0.51 (0.00) |1.15(0.03) | 1.50 (0.02) | 1.91 (0.00)
Multi+Lap | 0.52 (0.00) | 2.98 (1.86) | 2.92 (1.00) |11.9 (11.7
Multi 0.52 (0.00) | 2.89 (2.22) | 3.27 (1.80) | 5.98 (6.24)
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Table 2. NRAME for the bike-sharing record data of Washington D.C.

Method p=0.1 p=0.01 p = 0.005 p = 0.001
Proposed 1| 1.67 (0.02) | 2.14 (0.02) | 2.21 (0.04)  2.43 (0.02)
Proposed 2 |1.68 (0.01) |2.14 (0.05) | 2.22 (0.05) |2.62 (0.08)
ADMM 1.68 (0.02) |2.21 (0.05) 2.32 (0.03) |2.47 (0.01)
Multi4+Lap | 1.69 (0.01) |2.72 (0.22) 2.76 (0.24) |11.2 (4.62)
Multi 1.70 (0.01) |299.1 (405.7) | 8.25 (4.87) |16.3 (3.13)

Table 3. NRAME for the bike-sharing record data of New York

Method p=0.1 p=0.01 p = 0.005 p = 0.001
Proposed 1 0.98 (0.00) | 1.28 (0.02) | 1.42 (0.01) 1.62 (0.01)
Proposed 2| 0.98 (0.00) | 1.30 (0.03) |1.44 (0.01) |1.63 (0.01)
ADMM 0.98 (0.00) | 1.34 (0.02) |1.49 (0.01) |1.65 (0.01)
Multi+Lap | 1.00 (0.02) |27.2 (41.3) |5.68 (3.22) |1.86 (0.17)
Multi 1.00 (0.02) |53.7 (22.0) |26.6 (29.4) |3.04 (1.03)
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Table 4. ND for the traffic flow data of our proposed method (Proposed 1), our
proposed method with the graph Laplacian regularizer (Proposed 2), NTF estimated
by ADMM (ADMM), NTF with the graph Laplacian regularizer estimated by the
multiplicative update rule (Multi+Lap), and NTF (Multi)

Method p=0.1 p=0.01 p = 0.005 p =0.001
Proposed 1| 0.27 (0.00) | 0.46 (0.01) | 0.70 (0.01) | 0.92 (0.01)
Proposed 2| 0.28 (0.00) |0.51 (0.02) |0.71 (0.02) |0.94 (0.00)
ADMM 0.28 (0.00) |0.53 (0.01) |0.73 (0.01) |0.94 (0.00)
Multi+Lap | 0.28 (0.00) |0.61 (0.08) |0.78 (0.02) |1.19 (0.16)
Multi 0.28 (0.00) |0.60 (0.08) |0.81 (0.04) |1.18 (0.24)

Table 5. ND for the bike-sharing record data of Washington D.C.

Method p=0.1 p=0.01 p = 0.005 p = 0.001
Proposed 1|0.81 (0.00) | 0.91 (0.01) | 1.04 (0.02) 1.04 (0.08)
Proposed 2| 0.81 (0.01) | 0.91 (0.00)  1.04 (0.02)  1.05 (0.09)
ADMM | 0.81 (0.01) | 0.91 (0.01) 1.10 (0.01) | 1.20 (0.01)
Multi+Lap | 0.81 (0.00) 1.19 (0.05) | 1.51 (0.15) | 1.9 (0.54)
Multi 0.81 (0.00) 9.70 (6.91) | 1.44 (0.10) | 2.56 (0.31)
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Table 6. ND for the bike-sharing record data of New York

Method p=0.1 p=0.01 p = 0.005 p = 0.001
Proposed 1| 0.60 (0.00) | 0.72 (0.01) 0.81 (0.01) | 0.93 (0.01)
Proposed 2| 0.60 (0.00) 0.73 (0.01) | 0.82 (0.01) |0.93 (0.01)
ADMM 0.60 (0.00) |0.74 (0.01) |0.84 (0.01) |0.94 (0.01)
Multi+Lap | 0.60 (0.00) | 2.13 (1.48) | 1.53 (0.21) |1.05 (0.05)
Multi 0.60 (0.00) | 4.48 (0.79) |2.51 (0.95) |1.21 (0.07)
© Degree of freedom: 73 , _Degree of freedom: 240
> 35 o Wt S N 1 _ NI~
o e
e —— &
0 /\ ‘ ﬂgl M +
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Time stamp [30mins] Time stamp [30mins]
Fig. 2. Time factors of Proposed 1 Fig.3. Time factors of Multi+Lap
on the traffic flow data (Color figure on the traffic flow data (Color figure
online) online)

always outperformed the same model estimated by the multiplicative update rule
(Multi+Lap). This result was caused by the benefits of simultaneously combining
graph-based and structured regularizers with graph and group structures. Thus
our proposed model and parameter estimation procedure both contributed to the
improvements on missing value interpolations. The existing methods resulted in
poor performances with settings where a large portions of tensor elements were
missing.

To check the qualitative performances of the interpretability, we showed the
extracted factors of proposed method (Proposed 1) and existing NTF with the
Laplacian regularizer (Multi+Lap) from traffic flow data in Figs.2, 3, 4, 5, 6,
and 7, where p = 0.1. The degree of freedom (DoF) in Figures corresponded the
number of segments in a factor matrix. Thanks to the Laplacian and structured
regularizers, proposed method extracted the interpretable latent factors in which
both smooth and flat properties appeared, whose DoF' of parameters in factor
matrices were extremely less than that of NTF with the Laplacian regularizer.
Our factors with low DoF were easy to find change points. For example, the blue
factor had a change at 3 am and gradually grew until 6 am. Then it took the
constant values until 3 pm in Fig. 2. This factor also has the same value from day
2 to day 6 and from day 8 to day 13. Thus, we can easily understand that the blue
factor in Figs. 2 and 4 corresponded to activity that occurred in weekday during
daylight with a spatial pattern in Fig.6. However, NMF with the Laplacian
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Fig. 5. Day factors of Multi+Lap on
the traffic flow data (Color figure
online)

Fig. 6. A spatial pattern of the blue
factor of Proposed 1 on the traffic flow
data (Color figure online)

Degree of freedom: 86
— —N

]
|
]

5 10 15 20 25 30 35 40 45 50
Time stamp [30mins]

Fig. 8. Time factors of Proposed 1 on
the bike-sharing data of Washington
D.C. (Color figure online)

Fig. 7. A spatial pattern of the blue
factor of Multi+Lap on the traffic flow
data (Color figure online)
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Fig. 9. Time factors of Multi+Lap on
the bike-sharing data of Washington
D.C. (Color figure online)
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Degree of freedom: 16

O M RO N BO N HO N KO N A
o/ r—Tr—Tr—r—

Fig. 10. Day factors of Proposed 1 on
the bike-sharing data of Washington
D.C. (Color figure online)

Fig. 12. A spatial pattern of the yel-
low factor of Proposed 1 on the
bike-sharing data of Washington D.C.
(Color figure online)
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Fig.13. A spatial pattern of the
yellow factor of Multi+Lap on the
bike-sharing data of Washington D.C.

(Color figure online)

regularizer resulted in messy factors. We also showed that of bike-sharing data
in Washington D.C. in Figs.8, 9, 10, 11, 12, and 13. Our proposed method
also extracted more interpretable patterns than existing NTF. For example, the
yellow factor of ours in Fig. 8 had a change point at 8 am. After it had taken a
peak at 12 am, it kept the same value from 1 pm to 5 pm. Then its value gradually
decreased to zero. The yellow factor in Fig. 10 had the same high value on day 2,
3, 9, and 10. Thus, we confirmed that this factor indicated a weekend afternoon
activity with a spatial pattern in Fig. 12. Similar interpretations can be obtained

from other factors of ours.
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7 Conclusion

In this paper, we proposed a structurally regularized non-negative tensor factor-
ization that incorporated both the graph Laplacian and the structured regulariz-
ers on latent factors. For the structured regularizer, we employed the generalized
fused lasso and the higher-order fused lasso to represent both graph-based and
group-based information in time and space. We introduced a flexible and efficient
parameter estimation method based on the alternating direction method of mul-
tipliers and showed a proximity operator for our unified structured regularizer.
With experiments on a missing value imputation problem of three data sets, we
confirmed that our proposed method showed the best quantitative performance
and successfully extracted more interpretable latent factors than the existing
non-negative tensor factorization methods.

Acknowledgements. The part of this work was supported by JSPS KAKENHI Grant
Numbers JP16H01548 and JP26280086, and NICT “Research and Development on
Fundamental and Utilization Technologies for Social Big Data”.

A Appendix

Although the issue in Eq.(12) is a general problem containing the previous
problems [5,24,30] as special cases, we can solve it in a similar manner as
these works. We first briefly introduce the parametric optimization method
for a non-decreasing set function. Let @ € R, and define set function
1o(S) = I(S) — al(S) (VS C V), where 1(S) = >, ¢ 1. Then if [ is a non-
decreasing submodular function, then there exists a set of r + 1 (< |V]) sub-
sets: S* = {Sp € S1 C -+ C S,}, where S; C V, Sy = 0, and S, =V,
and 7 + 1 subintervals @, of a: Qo = [0, ), Q1 = [@1,2), -, Qr = [a, 0),

such that, for each j € {0,1,---,r}, S; is the unique maximal minimizer of
ha(S),Ya € Q. A minimizer of Eq. (12) t* = (¢],¢5,-- -, |*V‘) is then deter-
mined: tf = %, Vie (Sj+1\S55), j=(1,---,r). We introduce two

lemmas [20] to see that [ is a non-decreasing submodular function.

Lemma 1 (Lemma). For any n € R and submodular function h, t* is an
optimal solution to mingepy |83 if and only if t* —nl is an optimal solution
to mingep(y4q1 ||t]5-

Lemma 2 (Lemma). Set n = max;—; .. y{0,1(V \ {i}) — I(V)}, and then
l4+nl is a non-decreasing submodular function.

With Lemma 2, we solve

i —2(5 —a)l 1
mi £(S) - £(5) + (1 - a)1(S), (15)
and apply Lemma 1 to obtain a solution to the original problem. With fixed «,
we can efficiently attain the optimal of Eq. (15) because this is a minimum cut
problem.
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N—

. 7 a—(v—a)
(if z; <y — @) Q (> —a)
Fig. 14. Minimum s/t-cut problem of Problem (15). Given graph G = (V', E’) for our
proposed method, capacities of edges c(vf, v;) are defined as: ¢(s, ur) = Ok, c(vi,v;) =
Wi,y (Uk, Vi) = Chiy ¢(8,v:) = 2s — (v — ) if z; > v — a, and c(v;,t) = (v — a) — 2; if
z; <y — . Nodes ur k = (1,---, K) are hyper nodes that correspond to the groups
gr. And s,t, and v; are source, sink, and parameters nodes, respectively.

Proposition 1. The problem in Eq.(15) is equivalent to a minimum s/t-cut
problem.

Proof. Each component in f is graph-representable. The graph is obtained due to
the additive property of the graph-representative submodular functions, where
the groups of parameters are represented with hyper nodes u¥,uf that corre-
sponds to each group, and the capacities of the edges between hyper and ordinal
nodes v; € V.

The attained graph includes both of the GFL and HOFL graphs as spacial cases.
As a consequence, we can attain a sequence of solutions for all « of the parametric
s/t minimun-cut problem (15) using an efficient parametric-flow algorithm, such

s [12], that runs in O(|V'||E’|log(|V'|?/|E’|)) as the worst case and |V’| and
|E'| are the number of nodes and edges of the graph (Fig. 14).

References

1. Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evaluate
RSP engines using smart city datasets. In: Arenas, M., Corcho, O., Simperl, E.,
Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J.,
Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 374-389.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_25

2. Bach, F.R.: Structured sparsity-inducing norms through submodular functions. In:
Proceedings of NIPS, pp. 118-126 (2010)

3. Barbero, A., Sra, S.: Fast Newton-type methods for total variation regularization.
In: Proceedings of ICML, pp. 313-320 (2011)

4. Boyd, S., Parikh, N.; Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1-122 (2011)


https://doi.org/10.1007/978-3-319-25010-6_25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Structurally Regularized Non-negative Tensor Factorization 597

Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach.
Intell. 26(9), 1124-1137 (2004)

Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix fac-
torization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8),
1548-1560 (2011)

Chambolle, A., Darbon, J.: On total variation minimization and surface evolution
using parametric maximum flows. Int. J. Comput. Vis. 84(3), 288 (2009)
Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley, Hoboken (2009)

Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with Breg-
man divergences. In: Proceedings of NIPS, vol. 18 (2005)

Fan, Z., Song, X., Shibasaki, R.: CitySpectrum: a non-negative tensor factorization
approach. In: Proceedings of UbiComp, pp. 213-223 (2014)

Fujishige, S.: Submodular Functions and Optimization, vol. 58. Elsevier, Amster-
dam (2005)

Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1), 30-55 (1989)

Gillis, N.: The why and how of nonnegative matrix factorization. In: Regularization,
Optimization, Kernels, and Support Vector Machines, pp. 257-291. Chapman and
Hall/CRC (2014)

Han, Y., Moutarde, F.: Analysis of large-scale traffic dynamics in an urban trans-
portation network using non-negative tensor factorization. Int. J. Intell. Transp.
Syst. Res. 14(1), 36-49 (2016)

Huang, K., Sidiropoulos, N.D., Liavas, A.P.: A flexible and efficient algorithmic
framework for constrained matrix and tensor factorization. IEEE Trans. Sig. Pro-
cess. 64(19), 5052-5065 (2016)

Kimura, T., Ishibashi, K., Mori, T., Sawada, H., Toyono, T., Nishimatsu, K.,
Watanabe, A., Shimoda, A., Shiomoto, K.: Spatio-temporal factorization of log
data for understanding network events. In: Proceedings of INFOCOM, pp. 610-
618 (2014)

Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. STAM Rev.
51(3), 455-500 (2009)

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788-791 (1999)

Lovédsz, L.: Submodular functions and convexity. In: Bachem, A., Korte, B.,
Grotschel, M. (eds.) Mathematical Programming The State of the Art, pp. 235—
257. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-68874-4_10
Nagano, K., Kawahara, Y., Aihara, K.: Size-constrained submodular minimization
through minimum norm base. In: Proceedings of ICML, pp. 977-984 (2011)

Rao, N.; Yu, H.-F., Ravikumar, P.K., Dhillon, I.S.: Collaborative filtering with
graph information: consistency and scalable methods. In: Proceedings of NIPS,
pp. 2107-2115 (2015)

Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Scholkopf, B.,
Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144-158.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_-12

Sun, L., Axhausen, K.W.: Understanding urban mobility patterns with a proba-
bilistic tensor factorization framework. Transp. Res. Part B: Methodol. 91, 511-524
(2016)


https://doi.org/10.1007/978-3-642-68874-4_10
https://doi.org/10.1007/978-3-540-45167-9_12

598

24.

25.

26.

27.

28.

29.

30.

31.

32.

K. Takeuchi et al.

Takeuchi, K., Kawahara, Y., Iwata, T.: Higher order fused regularization for super-
vised learning with grouped parameters. In: Appice, A., Rodrigues, P.P., San-
tos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015. LNCS
(LNAI), vol. 9284, pp. 577-593. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23528-8_36

Takeuchi, K., Tomioka, R., Ishiguro, K., Kimura, A., Sawada, H.: Non-negative
multiple tensor factorization. In: Proceedings of ICDM, pp. 1199-1204 (2013)
Tandon, R., Sra, S.: Sparse nonnegative matrix approximation: new formulations
and algorithms. Rapp. Tech. 193, 38—42 (2010)

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smooth-
ness via the fused lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(1), 91-108
(2005)

Wang, Y.-X., Sharpnack, J., Smola, A., Tibshirani, R.J.: Trend filtering on graphs.
J. Mach. Learn. Res. 17(105), 1-41 (2016)

Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition with
applications to sparse principal components and canonical correlation analysis.
Biostatistics 10, 515-534 (2009)

Xin, B., Kawahara, Y., Wang, Y., Gao, W.: Efficient generalized fused lasso with
its application to the diagnosis of Alzheimer’s disease. In: Proceedings of AAAI,
pp. 2163-2169 (2014)

Yangyang, X., Yin, W.: A block coordinate descent method for regularized mul-
ticonvex optimization with applications to nonnegative tensor factorization and
completion. SIAM J. Imaging Sci. 6(3), 1758-1789 (2013)

Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by
leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man
Cybern.: Syst. 45(1), 129-142 (2015)


https://doi.org/10.1007/978-3-319-23528-8_36
https://doi.org/10.1007/978-3-319-23528-8_36

	Structurally Regularized Non-negative Tensor Factorization for Spatio-Temporal Pattern Discoveries
	1 Introduction
	2 Non-negative Tensor Factorization
	3 Proposed Model
	4 Parameter Estimation
	5 Related Works
	6 Experiments
	7 Conclusion
	A  Appendix
	References




