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Abstract. PCA is a classical statistical technique whose simplicity and
maturity has seen it find widespread use for anomaly detection. However,
it is limited in this regard by being sensitive to gross perturbations of the
input, and by seeking a linear subspace that captures normal behaviour.
The first issue has been dealt with by robust PCA, a variant of PCA
that explicitly allows for some data points to be arbitrarily corrupted;
however, this does not resolve the second issue, and indeed introduces
the new issue that one can no longer inductively find anomalies on a
test set. This paper addresses both issues in a single model, the robust
autoencoder. This method learns a nonlinear subspace that captures the
majority of data points, while allowing for some data to have arbitrary
corruption. The model is simple to train and leverages recent advances
in the optimisation of deep neural networks. Experiments on a range of
real-world datasets highlight the model’s effectiveness.
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1 Anomaly Detection: Motivation and Challenges

A common need when analysing real-world datasets is determining which
instances stand out as being dramatically dissimilar to all others. Such instances
are known as anomalies, and the goal of anomaly detection (also known as out-
lier detection) is to determine all such instances in a data-driven fashion [9].
Anomalies can be caused by errors in the data but sometimes are indicative of
a new, previously unknown, underlying process; in fact Hawkins [14] defines an
outlier as an observation that deviates so significantly from other observations
as to arouse suspicion that it was generated by a different mechanism.

Principal Component Analysis (PCA) [15] is a core method for a range of
statistical inference tasks, including anomaly detection. The basic idea of PCA
is that while many data sets are high-dimensional, they tend to inhabit a low-
dimensional manifold. PCA thus operates by (linearly) projecting data into a
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lower-dimensional space, so as to separate the signal from the noise; a data point
which is far away from its projection is deemed as anomalous.

While intuitive and popular, PCA has limitations as an anomaly detection
method. Notably, it is highly sensitive to data perturbation: one extreme data
point can completely change the orientation of the projection, often leading to
the masking of anomalies. A variant of PCA, known as a robust PCA (RPCA)
limits the impact of anomalies by using a clever decomposition of the data
matrix [8]. We will discuss RPCA in detail in Sect. 2, but note here that it still
carries out a linear projection, and further cannot be used to make predictions
on test instances; that is, we cannot perform inductive anomaly detection.

In this paper, we will relax the linear projection limitation of RPCA by using
a deep and robust autoencoder [13,30]. The difference between RPCA and a deep
autoencoder will be the use of a nonlinear activation function and the potential
use of several hidden layers in the autoencoder. While this modification is concep-
tually simple, we show it yields noticeable improvements in anomaly detection
performance on complex real-world image data, where a linear projection can-
not capture sufficient structure in the data. Further, the robust autoencoder is
capable of performing inductive anomaly detection, unlike RPCA.

In the sequel, we provide an overview of anomaly detection methods (Sect. 2),
with a specific emphasis on matrix decomposition techniques such as PCA and
its robust extensions. We then proceed to describe our proposed model based on
autoencoders (Sect. 3), and present our experiment setup and results (Sects. 4
and 5). Finally, we describe directions for future work (Sect. 6).

2 Background and Related Work on Anomaly Detection

Consider a feature matrix X ∈ R
N×D, where N denotes the number of data

points and D the number of features for each point. For example, N could be
the number of images in some photo collection, and D the number of pixels used
to represent each image. The goal of anomaly detection is to determine which
rows of X are anomalous, in the sense of being dissimilar to all other rows. We
will use Xi: to denote the ith row of X.

2.1 A Tour of Anomaly Detection Methods

Anomaly detection is a widely researched topic in the data mining and machine
learning community [2,9]. The two primary strands of research have been the
design of novel algorithms to detect anomalies, and the design efficient means of
discovering all anomalies in a large dataset. In the latter strand, starting from
the work of Bay and Schwabacher [4], several optimisations have been proposed
to discover anomalies in near linear time [12].

In the former strand, which is our primary focus, most emphasis has been
on non-parametric methods like distance and density based outliers [7,21]. For
example, distance-based methods define a domain-dependent dissimilarity met-
ric, and deem a point to be anomalous if it is relatively far away from its
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neighbours [35]. Another popular approach is the one-class SVM, which learns a
smooth boundary that captures the majority of probability mass of the data [27].

In recent years, matrix factorization methods for anomaly detection have
become popular. These methods provide a reconstruction matrix X̂ ∈ R

N×D of
the input X, and use the norm ‖Xi: − X̂i:‖22 as a measure of how anomalous
a particular point Xi: is; if the reconstruction is close to the input, then it is
deemed normal; else, anomalous. We describe several popular examples of this
approach, beginning with principal component analysis (PCA).

2.2 PCA for Anomaly Detection

PCA finds the directions of maximal variance of the data. Supposing without
loss of generality that the data matrix X has zero mean, this may be understood
as the result of a matrix factorisation [6]:

min
WTW=I,Z

‖X − WZ‖2F = min
U

‖X − XUUT ‖2F . (1)

Here, the reconstruction matrix is X̂ = XUUT , where U ∈ R
D×K for some

number of latent dimensions K � D. We can interpret XU as a projection (or
encoding) of X into a K-dimensional subspace, with the application of UT as
an inverse projection (or decoding) back into the original D dimensional space.

2.3 Autoencoders for Anomaly Detection

PCA assumes a linear subspace explains the data. To relax this assumption,
consider instead

min
U,V

‖X − f(XU)V‖2F (2)

for some non-decreasing activation function f : R → R, and U ∈ R
D×K ,V ∈

R
K×D. For the purposes of anomaly detection, one can define the reconstruction

matrix as X̂ = f(XU)V.
Equation 2 corresponds to an autoencoder with a single hidden layer [13].

Popular choices of f(·) include the sigmoid f(a) = (1 + exp(−a))−1 and the
rectified linear unit or ReLU f(x) = max(0, a). As before, we can interpret XU
as an encoding of X into a K-dimensional subspace; however, by applying a
nonlinear f(·), the projection is implicitly onto a nonlinear manifold.

2.4 Robust PCA

Another way to generalise PCA is to solve, for a tuning parameter λ > 0,

min
S,N

‖S‖∗ + λ · ‖N‖1 : X = S + N, (3)

where ‖ · ‖∗ denotes the trace or nuclear norm ‖X‖∗ = tr((XTX)1/2), and ‖ · ‖1
the elementwise �1 norm. For the purposes of anomaly detection, one can define
the reconstruction matrix X̂ = X − N = S.
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Intuitively, Eq. 3 separates X into a signal matrix S and a noise matrix N,
where the signal matrix has low-rank structure, and the noise is assumed to
not overwhelm the signal for most of the matrix entries. The trace norm may
be seen as a convex relaxation of the rank function; thus, this objective can be
understood as a relaxed version of PCA.

Equation 3 corresponds to robust PCA (RPCA) [8]. Unlike standard PCA,
this objective can effortlessly deal with a single entry perturbed arbitrarily. When
λ → +∞, we will end up with N = 0,S = X, i.e. we will claim that there is
no noise in the data, and so all points are deemed normal. On the other hand,
when λ → 0, we will end up with N = X,S = 0, i.e. we will claim that there is
no signal in the data, and so points with high norm are deemed anomalous.

2.5 Direct Robust Matrix Factorization

Building upon RPCA, Xiong et al. [32] introduced the direct robust matrix
factorization method (DRMF), where for tuning parameters K, e one solves:

min
S,N

‖X − (N + S)‖2F : rank(S) ≤ K, ‖N‖0 ≤ e. (4)

As before, the matrix N captures the anomalies and S captures the signal. Unlike
RPCA, one explicitly constraints S to be low-rank, rather than merely having
low trace norm; and one explicitly constraints N to have a maximal number of
nonzeros, rather than merely having bounded �1 norm. The lack of convexity of
the objective requires a bespoke algorithm for the optimisation.

2.6 Robust Kernel PCA

Another way to overcome the linear assumption of PCA is the robust kernel PCA
(RKPCA) approach of [25]. For a feature mapping Φ into a reproducing kernel
Hilbert space, and projection operator P of a point into the KPCA subspace, it
is proposed to reconstruct an input x ∈ R

D by solving the pre-image problem

x̂ = argmin
z∈RD

E0(x, z) + C · ‖Φ(z) − PΦ(z)‖2, (5)

where E0 is a robust measure of reconstruction error (i.e. not merely the
Euclidean norm), and C > 0 is a tuning parameter. RKPCA does not explicitly
handle gross outliers, unlike RPCA; however, by choosing a rich feature mapping
Φ, one can capture nonlinear anomalies. This choice of feature mapping must be
pre-specified, whereas autoencoder methods implicitly learn a good mapping.

3 From Robust PCA to Robust Autoencoders

We now present our robust (convolutional) autoencoder model for anomaly
detection. The method can be seen as an extension of robust PCA to allow
for a nonlinear manifold that explains most of the data.



40 R. Chalapathy et al.

3.1 Robust (Convolutional) Autoencoders

Let f : R → R be some non-decreasing activation function. Now consider the
following objective, which combines the salient elements of Eqs. 2 and 3:

min
U,V,N

‖X − (f(XU)V + N)‖2F +
μ

2
· (‖U‖2F + ‖V‖2F ) + λ · ‖N‖1, (6)

where f(·) is understood to act elementwise, and λ, μ > 0 are tuning parameters.
This is a form of robust autoencoder : one encodes the input into the latent
representation Z = f(XU), which is then decoded via V. The additional N
term captures gross outliers in the data, as with robust PCA. For the purposes
of anomaly detection, we have reconstruction matrix X̂ = f(XU)V.

When λ → +∞, we get N = 0, and the model reduces to a standard autoen-
coder (Eq. 2). When λ → 0, then one possible solution is N = X and U = V = 0,
so that the model memorises the training data. For intermediate λ, the model
augments a standard autoencoder with a noise absorption term that endows
robustness.

More generally, Eq. 6 can be seen as an instance of

min
θ,N

‖X − (X̂(θ) + N)‖2F +
μ

2
· Ω(θ) + λ · ‖N‖1, (7)

where X̂(θ) is some generic predictor with parameters θ, and Ω(·) a regularisation
function. Observe that we could pick X̂(θ) to be a convolutional autoencoder [19,
30], which would be suitable when dealing with image data; such a model will be
studied extensively in our experiments. Further, the regulariser Ω could involve
more general matrix norms, such as the �1,2 norm [16].

3.2 Training the Model

The objective function of the model of Eqs. 6, 7 is non-convex, but unconstrained
and sub-differentiable. There are several ways of performing optimisation. For
example, for differentiable activation f , one could compute sub-gradients with
respect to all model parameters and apply backpropagation. However, to leverage
existing advances in training deep networks, we observe that:
– For fixed N, the objective is equivalent to that of a standard (convolutional)

autoencoder on the matrix X − N. Thus, one can optimise the parameters
θ using any modern (stochastic) optimisation tool for deep learning that
exploits gradients, such as Adam [20].

– For fixed θ (i.e. U,V in the standard autoencoder case), the objective is

min
θ,N

‖N − (X − X̂(θ))‖2F + λ · ‖N‖1,

which trivially solvable via the soft thresholding operator on the matrix X−
X̂(θ) [3], with solution

Nij =

⎧
⎪⎨

⎪⎩

(X − X̂(θ))ij − λ
2 if (X − X̂(θ))ij > λ

2

(X − X̂(θ))ij + λ
2 if (X − X̂(θ))ij < −λ

2

0 else.
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We thus alternately optimise N and θ until the change in the overall objective is
below some threshold. The use of stochastic optimisation for the first step, and
the simplicity of the optimisation for the second step, means that we can easily
train the model where data arrives in an online or streaming fashion.

3.3 Predicting with the Model

One convenient property of our model is that the anomaly detector will be
inductive, i.e. it can generalise to unseen data points. One can interpret the
model as learning a robust representation of the input, which is unaffected by
gross noise; such a representation should thus be able to accurately model any
unseen points that lie on the same manifold as the data used to train the model.

Formally, given a new x∗ ∈ R
D, one simply computes f(xT

∗ U)V to score this
point. The larger ‖x∗ − VT f(UTx∗)‖22 is, the more likely the point is deemed
to be anomalous. We emphasise that such inductive predictions are simply not
possible with the robust PCA method, as it estimates parameters for the N ×D
observations present in X, with no means of generalising to unseen data.

3.4 Connection to Robust PCA

While the robust autoencoder of Eq. 6 has clear conceptual similarity to robust
PCA, it may seem that choices such as the �2 penalty on U,V are somewhat
arbitrarily used in place of the trace norm. We now show how the objective can
in fact be naturally derived as an extension of RPCA.

The trace norm can be represented in the variational form [26] ‖S‖∗ =
minWV=S

1
2 · (‖W‖2F + ‖V‖2F ). The robust PCA objective is thus equivalently

min
W,V,N

1
2

· (‖W‖2F + ‖V‖2F ) + λ · ‖N‖1 : X = WV + N.

This objective has the disadvantage of being non-convex, but the advantage of
being amenable to extensions. Pick some μ > 0, and consider a relaxed version
of the robust PCA objective:

min
W,V,N,E

‖E‖2F +
μ

2
· (‖W‖2F + ‖V‖2F ) + λ · ‖N‖1 : X = WV + N + E.

Here, we allow for further systematic errors E which have low average magnitude.
We can equally consider the unconstrained objective

min
W,V,N

‖X − (WV + N)‖2F +
μ

2
· (‖W‖2F + ‖V‖2F ) + λ · ‖N‖1 (8)

This re-expression of robust PCA has been previously noted, for example in
Sprechmann et al. [29]. To derive the robust autoencoder from Eq. 8, suppose
now that we constrain W = XU. This is a natural constraint in light of Eq. 1,
since for standard PCA we factorise X into X̂ = XUUT . Then, we have the
objective
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min
U,V,N

‖X − (XUV + N)‖2F +
μ

2
· (‖XU‖2F + ‖V‖2F ) + λ · ‖N‖1.

Now suppose we modify the regulariser to only operate on U rather than XU:

min
U,V,N

‖X − (XUV + N)‖2F +
μ

2
· (‖U‖2F + ‖V‖2F ) + λ · ‖N‖1.

This is again natural in the context of standard PCA, since there we have W =
XU satisfying WTW = I. Observe now that we have derived Eq. 6 for a linear
activation function f(x) = x. The robust autoencoder thus extends this model
by employing a nonlinear activation.

3.5 Relation to Existing Models

Our contribution is a nonlinear extension of RPCA for anomaly detection. As
noted above, the key advantages over RPCA are the ability to capture nonlinear
structure in the data, as well as the ability to detect anomalies in an inductive
setting. The price we have to pay is the lack of convexity of the objective func-
tion, unlike RPCA; nonetheless, we shall demonstrate that the model can be
effectively trained using the procedure described in Sect. 3.2.

Some works have employed deep networks for anomaly detection [31,34],
but without explicitly accounting for gross anomalies. For example, the recent
work of [34] employed an autoencoder-inspired objective to train a probabilistic
neural network, with extensions to structured data; the use of an RPCA-style
noise matrix N may be useful to explore in conjunction with such methods.

Our method is also distinct to denoising autoencoders (DNA), wherein noise
is explicitly added to instances [30], whereas we infer the noise automatically.
The approaches have slightly different goals: DNAs aim to extract good features
from the data, while our aim is to identify anomalies.

Finally, while nonlinear extensions of PCA-style matrix factorisation (includ-
ing via autoencoders) have been explored in contexts such as collaborative fil-
tering [23,28], we are unaware of prior usage for anomaly detection.

4 Experimental Setup

In this section we show the empirical effectiveness of Robust Convolutional
Autoencoder over the state-of-the-art methods on real-world data. Our primary
focus will be on non-trivial image datasets, although our method is applicable
in any context where autoencoders are useful e.g. speech.

4.1 Methods Compared

We compare our proposed Robust Convolutional Autoencoder (RCAE) with the
following state-of-the art methods for anomaly detection:

• Truncated SVD, which for zero-mean features is equivalent to PCA.
• Robust PCA (RPCA) [8], as per Eq. 3.
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• Robust kernel PCA (RKPCA) [25], as per Eq. 5.
• Autoencoder (AE) [5], as per Eq. 2.
• Convolutional Autoencoder (CAE), a convolutional autoencoder with-

out any accounting for gross anomalies i.e. Eq. 7 where λ = +∞.
• Robust Convolutional Autoencoder (RCAE), our proposed model as

per Eq. 7.

We used TensorFlow [1] for the implementation of AE, CAE and RCAE1. For
RPCA and RKPCA, we used publicly available implementations2,3.

4.2 Datasets

We compare all methods on three real-world datasets:

• restaurant, comprising video background modelling and activity detection
consisting of snapshots of restaurant activities [32].

• usps, comprising the USPS handwritten digits [17].
• cifar-10 consisting of 60000 32 × 32 colour images in 10 classes, with 6000

images per class [22].

For each dataset, we perform further processing to create a well-posed anomaly
detection task, as described in the next section.

4.3 Evaluation Methodology

As anomaly detection is an unsupervised learning problem, model evaluation is
challenging. For the restaurant dataset, there are no ground truth anomalies,
and so we perform a qualitative analysis by visually comparing the anomalies
flagged by various methods, as done in the original robust PCA paper [8].

For the other two datasets, we follow a standard protocol (see e.g. [32])
wherein anomalies are explicitly identified in the training set. We can then eval-
uate the predictive performance of each method as measured against the ground
truth anomaly labels, using three standard metrics:

• the area under the precision-recall curve (AUPRC)
• the area under the ROC curve (AUROC)
• the precision at 10 (P@10).

AUPRC and AUROC measure ranking performance, with the former being pre-
ferred under class imbalance [11]. P@10 measures classification performance,
being the fraction of the top 10 scored instances which are actually anomalous.

For CIFAR − 10, the labelled dataset is created by combining 5000 images of
dog and 50 images of cat; a good anomaly detection method should thus flag the
cats to be anomalous. Similarly, for usps, the dataset is created by a mixture
1 https://github.com/raghavchalapathy/rcae.
2 http://perception.csl.illinois.edu/matrix-rank/sample code.html.
3 http://www3.cs.stonybrook.edu/∼minhhoai/downloads.html.

https://github.com/raghavchalapathy/rcae
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://www3.cs.stonybrook.edu/~minhhoai/downloads.html
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Table 1. Summary of datasets used in experiments.

Dataset # instances # anomalies # features

restaurant 200 Unknown (foreground) 19200

usps 231 11 (‘7’) 256

cifar-10 5000 50 (cats) 1024

of 220 images of ‘1’s, and 11 images of ‘7’as in [33]. Details of the datasets are
summarised in Table 1.

Additionally, we also test the ability of our model to perform denoising of
images, as well as detecting inductive anomalies.

4.4 Network Parameters

Although we have observed that deeper RCAE networks tend to achieve better
image reconstruction performance, there exist four fold options related to net-
work parameters to be chosen: (a) number of convolutional filters, (b) filter size,
(c) strides of convolution operation and (d) activation applied. We tuned via
grid search additional hyper-parameters, including the number of hidden-layer
nodes H ∈ {3, 64, 128}, and regularisation λ within range [0, 100]. The learning,
drop-out rates and regularization parameter μ were sampled from a uniform
distribution in the range [0.05, 0.1]. The embedding and initial weight matrices
were all sampled from the uniform distribution within range [−1, 1].

5 Experimental Results

In this section, we present experiments for three scenarios:

(a) non-inductive anomaly detection,
(b) inductive anomaly detection, and
(c) image denoising.

5.1 Non-inductive Anomaly Detection Results

We present results on the three datasets described in Sect. 4.

(1) restaurant dataset. We work with the restaurant video activity detection
dataset [32], and consider the problem of inferring the background of videos via
removal of (anomalous) foreground pixels. Estimating the background in videos
is important for tasks such as anomalous activity detection. It is however difficult
because of the variability of the background (e.g. due to lighting conditions) and
the presence of foreground objects such as moving objects and people.

For this experiment, we only compare the RPCA and RCAE methods, owing
to a lack of ground truth labels.
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(a) RCAE.

(b) RPCA.

Fig. 1. Top anomalous images containing original image (people walking in the lobby)
decomposed into background (lobby) and foreground (people), restaurant dataset.

Parameter settings. For RPCA, rank K = 64 is used. Per the success of the
Batch Normalization architecture [18] and Exponential Linear Units [10], we
have found that convolutional+batch-normalization+elu layers provide a bet-
ter representation of convolutional filters. Hence, in this experiment the RCAE
adopts four layers of (conv-batch-normalization-elu) in the encoder part and four
layers of (conv-batch-normalization-elu) in the decoder portion of the network.
RCAE network parameters such as (number of filter, filter size, strides) are cho-
sen to be (16, 3, 1) for first and second layers and (32, 3, 1) for third and fourth
layers of both encoder and decoder layers.

Results. While there are no ground truth anomalies in this dataset, a quali-
tative analysis reveals RCAE to outperforms its counterparts in capturing the
foreground objects. Figure 1 compares the top 6 most anomalous images for
RCAE and RPCA. We see that the most anomalous images contain high fore-
ground activity (which are recognised as anomalous). Visually, we see that the
background reconstruction produced by RPCA contains a few blemishes in some
cases, while for RCAE the backgrounds are smooth.

(2) usps dataset. From the usps handwritten digit dataset, we create a dataset
with a mixture of 220 images of ‘1’s, and 11 images of ‘7’, as in [33]. Intuitively,
the latter images are treated as being anomalous, as the corresponding images
have different characteristics to the majority of the training data. Each image is
flattened as a row vector, yielding a 231 × 256 training matrix.
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Table 2. Comparison between the baseline (bottom four rows) and state-of-the-art
systems (top three rows). Results are the mean and standard error of performance
metrics over 20 random training set draws. Highlighted cells indicate best performer.

(a) usps

Methods AUPRC AUROC P@10

RCAE 0.9614 ± 0.0025 0.9988± 0.0243 0.9108 ± 0.0113

CAE 0.7003 ± 0.0105 0.9712 ± 0.0002 0.8730 ± 0.0023

AE 0.8533 ± 0.0023 0.9927 ± 0.0022 0.8108 ± 0.0003

RKPCA 0.5340 ± 0.0262 0.9717 ± 0.0024 0.5250 ± 0.0307

DRMF 0.7737 ± 0.0351 0.9928 ± 0.0027 0.7150 ± 0.0342

RPCA 0.7893 ± 0.0195 0.9942 ± 0.0012 0.7250 ± 0.0323

SVD 0.6091 ± 0.1263 0.9800 ± 0.0105 0.5600 ± 0.0249

(b) cifar-10

AUPRC AUROC P@10

0.9934 ± 0.0003 0.6255 ± 0.0055 0.8716 ± 0.0005

0.9011 ± 0.0000 0.6191 ± 0.0000 0.0000 ± 0.0000

0.9341 ± 0.0029 0.5260 ± 0.0003 0.2000 ± 0.0003

0.0557 ± 0.0037 0.5026 ± 0.0123 0.0550 ± 0.0185

0.0034 ± 0.0000 0.4847 ± 0.0000 0.0000 ± 0.0000

0.0036 ± 0.0000 0.5211 ± 0.0000 0.0000 ± 0.0000

0.0024 ± 0.0000 0.5299 ± 0.0000 0.0000 ± 0.0000

(a) RCAE. (b) RPCA.

Fig. 2. Top anomalous images, usps dataset.

Parameter settings. For SVD and RPCA methods, rank K = 64 is used. For
AE, the inputs are flattened images as a column vector of size 256, and the
hidden layer is a column vector of size 64 (matching the rank K).

For DRMF, we follow the settings of [33]. For RKPCA, we used a Gaussian
kernel with bandwidth 0.01, a cost parameter C = 1, and requested 60% of the
KPCA spectrum (which roughly selects 64 principal components).

For RCAE, we set two layers of convolution layers with the filter number to
be 32, filter size to be 3× 3, with number of strides as 1 and rectified linear unit
(ReLU) as activation with max-pooling layer of dimension 2 × 2.

Results. From Table 2, we see that it is a near certainty for all ‘7’ are accurately
identified as outliers. Figure 2 shows the top anomalous images for RCAE, where
indeed the ‘7”s are correctly placed at the top of the list. By contrast, for RPCA
there are also some ‘1”s placed at the top.

(3) cifar-10 dataset. We create a dataset with anomalies by combining 5000
random images of dog and 50 images of cat, as illustrated in Fig. 3. In this
scenario the cats are anomalies, and the goal is to detect all the cats in an
unsupervised manner.

Parameter settings. For SVD and RPCA methods, rank K = 64 is used. We
trained a three-hidden-layer autoencoder (AE) (1024-256-64-256-1024 neurons).
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(a) RCAE.

(b) RPCA.

Fig. 3. Top anomalous images, cifar-10 dataset.

The middle hidden layer size is set to be same as rank K = 64, and the model
is trained using Adam [20]. The decoding layer uses sigmoid function in order
to capture the nonlinearity characteristics from latent representations produced
by the hidden layer. Finally, we obtain the feature vector for each image by
obtaining the latent representation from the hidden layer.

For RKPCA, we used a Gaussian kernel with bandwidth 5 · 10−8, a cost
parameter C = 0.1, and requested 55% of the KPCA spectrum (which roughly
selects 64 principal components). The RKPCA runtime was prohibitive on the
full sample (see Sect. 5.4), so we resorted to a subsample of 1000 dogs and 50
cats.

The RCAE architecture in this experiment is same as for restaurant, con-
taining four layers of (conv-batch-normalization-elu) in the encoder part and
four layers of (conv-batch-normalization-elu) in the decoder portion of the net-
work. RCAE network parameters such as (number of filter, filter size, strides)
are chosen to be (16, 3, 1) for first and second layers and (32, 3, 1) for third and
fourth layers of both encoder and decoder.

Results. From Table 2, RCAE clearly outperforms all existing state-of-the art
methods in anomaly detection. Note that basic CAE, with no robustness (effec-
tively λ = ∞), is also outperformed by our method, indicating that it is crucial
to explicitly handle anomalies with the N term.

Figure 3 illustrates the most anomalous images for our RCAE method, com-
pared to RPCA. Owing to the latter involving learning a linear subspace, the
model is unable to effectively distinguish cats from dogs; by contrast, RCAE can
effectively determine the manifold characterising most dogs, and identifies cats
to be anomalous with respect to this.

5.2 Inductive Anomaly Detection Results

We conduct an experiment to assess the detection of inductive anomalies. Recall
that this is a capability of our RCAE model, but not e.g. RPCA. We consider
the following setup: we train our model on 5000 dog images, and then evaluate
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Table 3. Inductive anomaly detection results on cifar-10. Note that RPCA and
DRMF are inapplicable here. Highlighted cells indicate best performer.

SVD RKPCA AE CAE RCAE

AUPRC 0.1752 ± 0.0051 0.1006 ± 0.0045 0.6200 ± 0.0005 0.6423 ± 0.0005 0.6908 ± 0.0001

AUROC 0.4997 ± 0.0066 0.4988 ± 0.0125 0.5007 ± 0.0010 0.4708 ± 0.0003 0.5576 ± 0.0005

P@10 0.2150 ± 0.0310 0.0900 ± 0.0228 0.1086 ± 0.0001 0.2908 ± 0.0001 0.5986 ± 0.0001

(a) RCAE.

(b) CAE.

Fig. 4. Top inductive anomalous images, cifar-10 dataset.

it on a test set comprising 500 dogs and 50 cat images. As before, we wish all
methods to accurately determine the cats to be anomalies.

Table 3 summarises the detection performance for all the methods on this
inductive task. The lower values compared to Table 2 are indicative that the
problem here is more challenging than anomaly detection on a single dataset;
nonetheless, we see that our RCAE method manages to convincingly outperform
both the SVD and AE baselines. This is confirmed qualitatively in Fig. 4, where
we see that RCAE correctly identifies many cats in the test set as anomalous,
while the basic CAE method suffers.

5.3 Image Denoising Results

Finally, we test the ability of the model to de-noise images, which is a form
of anomaly detection on individual pixels (or more generally, features). In this
experiment, we train all models on a set of 5000 images of dog from cifar-10.
For each image, we then add salt-and-pepper noise at a rate of 10%. Our goal is
to recover the original image as accurately as possible.

Figure 5 illustrates that the most anomalous images in the presence of noise
contain images of the variations of dog class images (e.g. containing person’s
face). Further, Fig. 6 illustrates for various methods the mean square error
between the reconstructed and original images. RCAE effectively suppresses the
noise as evident from the low error. The improvement over raw CAE is modest,
but suggests that there is benefit to explicitly accounting for noise.
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(a) RCAE.

(b) RPCA.

Fig. 5. Top anomalous images in original form (first row), noisy form (second row),
image denoising task on cifar-10.

Fig. 6. Illustration of the mean square error boxplots obtained for various models on
image denoising task, cifar-10 dataset. In this setting, RCAE suppresses the noise
and detects the background and foreground images effectively.

5.4 Comparison of Training Times

We remark finally that our RCAE method is comparable in training efficiency to
existing methods. For example, on the small-scale restaurant dataset, it takes
1 min to train RPCA, and 8.5 min to train RKPCA, compared with 10 min for
our RCAE method. The ability to leverage recent advances in deep learning as
part of our optimisation (e.g. training models on a GPU) is we believe a salient
feature of our approach.

We note that while the RKPCA method is fast to train on smaller datasets,
on larger datasets it suffers from the O(n2) complexity of kernel methods; for
example, it takes over an hour to train on the cifar-10 dataset. It is plausible
that one could leverage recent advances in fast approximations of kernel meth-
ods [24], and studying these would be of interest in future work. Note that the
issue of using a fixed kernel function would remain, however.
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6 Conclusion

We have extended the robust PCA model to the nonlinear autoencoder setting.
To the best of our knowledge, ours is the first approach which is robust, nonlinear
and inductive. The robustness ensures that the model is not over-sensitive to
anomalies; the nonlinearity helps discover potentially more subtle anomalies;
and being inductive makes it possible to deploy our model in a live setting.

While autoencoders are a powerful mechansim for data representation they
suffer from their “black-box” nature. There is a growing body of research on
outlier description, i.e., explain the reason why a data point is anomalous. A
direction of future reason is to extend deep autoencoders for outlier description.
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