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Abstract. Representations are fundamental to artificial intelligence.
The performance of a learning system depends on how the data is
represented. Typically, these representations are hand-engineered using
domain knowledge. Recently, the trend is to learn these representations
through stochastic gradient descent in multi-layer neural networks, which
is called backprop. Learning representations directly from the incom-
ing data stream reduces human labour involved in designing a learn-
ing system. More importantly, this allows in scaling up a learning sys-
tem to difficult tasks. In this paper, we introduce a new incremental
learning algorithm called crossprop, that learns incoming weights of hid-
den units based on the meta-gradient descent approach. This meta-
gradient descent approach was previously introduced by Sutton (1992)
and Schraudolph (1999) for learning step-sizes. The final update equa-
tion introduces an additional memory parameter for each of these weights
and generalizes the backprop update equation. From our empirical exper-
iments, we show that crossprop learns and reuses its feature representa-
tion while tackling new and unseen tasks whereas backprop relearns a
new feature representation.

Keywords: Supervised learning · Learning representations
Meta-gradient descent · Continual learning

1 Introduction

The type of representation used for presenting the data to a learning sys-
tem plays a key role in artificial intelligence and machine learning. Typically,
the performance of the system, such as its speed of learning or its error rate,
directly depends on how the data is represented internally by the system. Hand-
engineering these representations using some special domain knowledge was the
norm. More recently, these representations are learned hierarchically and directly
from the data through stochastic gradient descent. Learning such representations
significantly improves the learning performance and reduces the human effort
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involved in designing the system. Importantly, this allows in scaling up systems
to handle bigger and harder problems.

Learning hierarchical representations directly from the data has recently
gained a lot of popularity. Designing deep neural networks has allowed the
learning systems to tackle incredibly hard problems: classifying or recognizing
the objects from natural scene images (Deng et al. 2009; Szegedy et al. 2017),
automatically translating text and speeches (Cho et al. 2014; Bahdanau et al.
2014; Wu et al. 2016), achieving and surpassing human-level baseline in Atari
(Mnih et al. 2015), achieving super-human performance in Poker (Moravč́ık et al.
2017) and in improving robot control from learning experiences (Levine et al.
2016). It is important to note that in many of these problems it is difficult to
hand-engineer a data representation and an inadequate representation generally
limits performance or scalability of the system.

The algorithm behind the training of such deep neural networks is called
backprop (or backpropagation), which was introduced by Rumelhart et al. (1988).
It extended stochastic gradient descent, via chain rule, for learning the weights
in the hidden layers of a neural network.

Though backprop has produced many successful results, it suffers from some
fundamental issues which makes it slow in learning a useful representation that
solves many tasks. Specifically, backprop tends to interfere with the previously
learned representations because the units that have so far been found to be
useful are the ones that are most likely to be changed (Sutton 1986). One of
the reasons for this is that the weights of each hidden layer is assumed to be
independent with each other, and because of this, the parameters of the neural
network race against each other to minimize the error for a given example.
In order to overcome this issue, the neural network needs to be trained over
multiple sweeps (epochs) with the data so that algorithm can settle down with
one representation that encompasses all the data it has seen so far.

In this paper, we introduce a meta-gradient descent approach for learning the
weights connecting the hidden units of a neural network. Previously, the meta-
gradient descent approach was introduced by Sutton (1992) and Schraudolph
(1999) for learning parameter-specific step-sizes, which is adapted here for learn-
ing incoming weights of hidden units. Our proposed method is called crossprop.

This specifically addresses the racing problem which is observed in backprop.
Furthermore, from our continual learning experiments where a learning system
experiences a sequence of related tasks, we observed that crossprop tends to
find the features that best generalize across these multiple tasks. Backprop, on
the other hand, tends to unlearn and relearn the features with each task that
it experiences. From a continual learning perspective, where a learning system
experiences a sequence of tasks that are related with each other, it is desirable
to have a learning system that can leverage its learning from its past experiences
for solving unseen and more difficult tasks that it experiences in its future.
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2 Related Methods

There are three fundamental approaches for learning representations, via a neural
network, directly from the data.

The first and the most popular approach for learning such representations
is through stochastic gradient descent over the supervised learning error func-
tion, like the mean squared or the cross-entropy error (Rumelhart et al. 1988).
This approach is proved successful in many applications, ranging from diffi-
cult problems in computer vision to patient diagnoses. Although this method
has a strong track record, it is not perfect yet. Particularly, learning repre-
sentations by backpropagating the supervised error signal often learns slowly
and poorly in many problems (Sutton 1986; Jacobs 1988). In order to address
this, many modifications to backprop are introduced, like adding momentum
(Jacobs 1988), RMSProp (Tieleman and Hinton 2012), ADADELTA (Zeiler
2012), ADAM (Kingma and Ba 2014) etc. and its not quite clear which vari-
ation of backprop will work well for a given task. However, all these variations
of backprop still tend to interfere with the previously learned representations,
thereby causing the network to unlearn and relearn representation even when
the task can be solved by leveraging the learning from previous experiences.

Another promising approach for learning representations is by the generate
and test process (Klopf and Gose 1969; Mahmood and Sutton 2013). The under-
lying principle behind these approaches is to generate many features in a random
manner and then test the usability for each of these features. Based on certain
heuristics, the features are either preserved or discarded. Furthermore, the gen-
erate and test approach can be combined with backprop to achieve a better rate
of learning in supervised learning tasks. The primary motivation behind these
generate and test approaches is to design a distributed and a computationally
inexpensive representation learning method.

Some researchers have also looked at learning representations that fulfil cer-
tain unsupervised learning objectives, like clustering, sparsity, statistic indepen-
dence or reproducibility of data, which takes us to the third fundamental app-
roach towards learning representations (Olshausen and Field 1997; Comon 1994;
Vincent et al. 2010; Coates and Ng 2012). Recently, learning such unsupervised
representations has allowed in designing an effective clinical decision making
system (Miotto et al. 2016). However, its not exactly clear on how to design a
learning system for a continual and online learning setting using representations
obtained through unsupervised learning, because we do not have access to data
prior to the beginning of a learning task.

3 Algorithm

We consider a single-hidden layer neural network with a single output unit for
presenting our algorithm. The parameters U ∈ R

m×n and W ∈ R
n are the

incoming and outgoing weights of the neural network where m is the number of
input units and n is the number of hidden units. Each element of U is denoted
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Algorithm 1. Crossprop algorithm
INPUT: α, η, m, n
1: Initialize hij to 0
2: Initialize uij and wij as desired where i = 1, 2, · · · , m; j = 1, 2, · · · , n
3: for each new example (Xt, y

∗
t ) do

4: y ← ∑n
j=1 φj,twj,t

5: δt ← y∗
t − yt

6: for j = 1, 2, · · · , n do
7: for i = 1, 2, · · · , m do

8: uij,t+1 ← uij,t + αδt

[
(1 − η)φj,thij,t + ηwj,t

∂φj,t

uij,t

]

9: hij,t+1 ← hij,t

(
1 − α(1 − η)φ2

i,t

)
+ α

(
δt − ηwj,tφj,t

)
∂φj,t

∂uij,t

10: end for
11: wj,t+1 ← wj,t + αδtφj,t

12: end for
13: end for

as uij where i refers to the corresponding input unit and j refers to the hidden
unit. Likewise, each element of W is denoted as wj .

Our proposed method is summarized as a pseudo-code in Algorithm 1 (and
the code is available on github1). A learning system (for simplicity, consider
a single-hidden layer network), at time step t, receives an example Xt ∈ R

m

where each element of this vector is denoted as xi,t. This is mapped onto the
hidden units through the incoming weight matrix U and a nonlinearity, like tanh,
sigmoid or relu, is applied over this summed-product. The activations for each
hidden unit for a given example at time step t using a tanh activation function is
expressed mathematically as, φj,t = tanh

(∑m
i=1 xi,tuij,t

)
. These hidden units

are successively mapped onto a scalar output yt ∈ R using the weights W , which
is expressed as yt =

∑n
j=1 φj,twj,t.

Let δ2t =
(
y∗

t − yt

)2 be a noisy objective function where y∗
t is the scalar

target and yt is an estimate made by an algorithm for an example at time step t.
The incoming and outgoing weights (U and W ) are incrementally learned after
processing an example one after the other.

The outgoing weights W are updated using the least mean squares (LMS)
learning rule after processing an example at time step t as follows:

wj,t+1 = wj,t − 1
2
α

∂δ2t
∂wj,t

= wj,t − αδt
∂δt

∂wj,t

= wj,t − αδt
∂[y∗

t − yt]
∂wj,t

1 https://github.com/ShangtongZhang/Crossprop.

https://github.com/ShangtongZhang/Crossprop
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= wj,t + αδt
∂yt

∂wj,t

wj,t+1 = wj,t + αδt
∂

∂wj,t

[ n∑
i=1

φi,twi,t

]

wj,t+1 = wj,t + αδtφj,t (1)

We diverge from the conventional way (i.e., through backprop) for learning
the incoming weights U . Specifically, for learning the weights U , we consider
the influence of all the past values of U1, U2, · · · Ut on the current error δ2t . We
would like to learn the values of uij,t+1 by making an update using the partial
derivative term ∂δ2

t

∂uij
where uij refers to all its past values.

This is interesting because most of the current research on representation
learning usually consider only the influence of the weight at the current time
step uij,t on the squared error δ2t : ∂δ2

t

∂uij,t
. This ignores the effects of the previous

possible values of these weights on the squared error at the current time step.
We now derive the update rule for the incoming weights as follows:

uij,t+1 = uij,t − 1
2
α

∂δ2t
∂uij

= uij,t − αδt
∂[y∗

t − yt]
∂uij

uij,t+1 = uij,t + αδt
∂yt

∂uij
(2)

Adapting the meta-gradient descent approach, that was introduced by Sutton
(1992) and Schraudolph (1999), we derive the update rule for the incoming
weights U as follows:

∂yt

∂uij
=

∑
k

∂yt

∂wk,t

∂wk,t

∂uij
+

∑
k

∂yt

∂φk,t

∂φk,t

∂uij

=
∑

k

∂yt

∂wk,t

∂wk,t

∂uij
+

∑
k

∂yt

∂φk,t

∂φk,t

∂uij,t

∂yt

∂uij
≈ ∂yt

∂wj,t

∂wj,t

∂uij
+

∂yt

∂φj,t

∂φj,t

∂uij,t
(3)

Any error made during estimation of yt by the learning system is attributed
to both the outgoing weights of the features and to the activations of the hidden
units. The approximations of

∑
k

∂yt

∂wk,t

∂wk,t

∂uij
≈ ∂yt

∂wj,t

∂wj,t

∂uij
and

∑
k

∂yt

∂φk,t

∂φk,t

∂uij,t
≈

∂yt

∂φj,t

∂φj,t

∂uij,t
are reasonable because the primary effect on the input weight uij will

be through the corresponding output weight wj,t and feature φj,t.
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By defining hij,t = ∂wj,t

∂uij
, we can obtain a simple form for Eq. (3):

∂yt

∂uij
≈ ∂yt

∂wj,t

∂wj,t

∂uij
+

∂yt

∂φj,t

∂φj,t

∂uij,t

=
( ∂

∂wj,t

∑
k

φk,twk,t

)
hij,t +

∂yt

∂φj,t

∂φj,t

∂uij,t

∂yt

∂uij
≈ φj,thij,t +

∂yt

∂φj,t

∂φj,t

∂uij,t
(4)

The partial derivative ∂yt

∂φj,t

∂φj,t

∂uij,t
is the conventional backprop update. How-

ever, in our proposed algorithm, we have an additional update term φj,thij,t

that captures the dependencies of all the previous values of uij on the current
estimate yt and on the current squared error δ2t .

hij,t is an additional memory parameter corresponding to the input weight
uij,t and can be written as a recursive update equation as follows:

hij,t+1 ≈ ∂wj,t+1

∂uij

=
∂

∂uij

[
wj,t + αδtφj,t

]

=
∂wj,t

∂uij
+ α

∂

∂uij

[
δtφj,t

]

= hij,t + αδt
∂φj,t

∂uij,t
+ α

∂δt

∂uij
φj,t

≈ hij,t + αδt
∂φj,t

∂uij,t
+ α

∂δt

∂yt

∂yt

∂uij,t
φj,t

≈ hij,t + αδt
∂φj,t

∂uij,t
+ α

∂δt

∂yt

∂yt

∂wj,t

∂wj,t

∂uij
φj,t + α

∂δt

∂yt

∂yt

∂φj,t

∂φj,t

∂uij,t
φj,t

= hij,t + αδt
∂φj,t

∂uij,t
− α

∂yt

∂wj,t

∂wj,t

∂uij
φj,t − α

∂yt

∂φj,t

∂φj,t

∂uij,t
φj,t

= hij,t + αδt
∂φj,t

∂uij,t
− αφ2

j,thij,t − αwj,tφj,t
∂φj,t

∂uij,t

hij,t ≈ hij,t

(
1 − αφ2

j,t

)
+ α

(
δt − wj,tφj,t

) ∂φj,t

∂uij,t
(5)

By substituting Eq. (4) in Eq. (2), we define a recursive update equation for
the weights uij,t and thereby summarize the complete algorithm as follows:

uij,t+1 = uij,t + αδt

[
φj,thij,t + wj,t

∂φj,t

∂uij,t

]

hij,t+1 = hij,t

(
1 − αφ2

j,t

)
+ α

(
δt − wj,tφj,t

) ∂φj,t

∂uij,t

wi,t+1 = wi,t + αδtφi,t

(6)
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Depending on the nonlinearity used for the hidden units, ∂φj,t

∂uij,t
can be reduced

to a closed-form equation.
For instance, if a logistic function is used, then φj,t = σ

(∑m
i=1 xi,tuij,t

)
,

∂φj,t

∂uij,t
=

∂φj,t

∂uij,t

=
∂

∂uij,t
σ
( m∑

i=1

xi,tuij,t

)

∂φj,t

∂uij,t
= φj,t

(
1 − φj,t

)
xi,t

Another frequently used activation function is tanh, which implies that φj,t =

tanh
( ∑m

i=1 xi,tuij,t

)
,

∂φj,t

∂uij,t
=

∂φj,t

∂uij,t

=
∂

∂uij,t
tanh

( m∑
i=1

xi,tuij,t

)

∂φj,t

∂uij,t
=

(
1 − φ2

j,t

)
xi,t

We could also introduce a weighting factor η ∈ [0, 1] in Eq. (4), which allows
in smoothly mixing backprop and meta-gradient updates,

∂yt

∂uij
≈ (1 − η)φj,thij,t + η

∂yt

∂φj,t

∂φj,t

∂uij,t

which results in the following update equations for learning the weights U and
W of the neural network:

uij,t+1 = uij,t + αδt

[
(1 − η)φj,thij,t + ηwj,t

∂φj,t

∂uij,t

]

hij,t+1 = hij,t

(
1 − α(1 − η)φ2

j,t

)
+ α

(
δt − ηwj,tφj,t

) ∂φj,t

∂uij,t

wi,t+1 = wi,t + αδtφi,t

(7)

The algorithm that was derived and presented in Eqs. (7) and (6) are com-
putationally expensive when there are more number of outgoing weights per
hidden unit. Specifically, when there are k output units, then δt becomes a
k-dimensional vector with dimensions equal to that of the output units. This
leads to a large computational cost involved in computing hij,t, which can be
avoided by approximating the hij,t parameter. The approximation involves in
accumulating the error assigned to each of the hidden units through its out-
going weights and using this to compute the update term. This approximated
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algorithm is referred to as crossprop-approx. in our experiments and has the
following update equations:

uij,t+1 = uij,t + α
∑

k

δk,t

[
(1 − η)φj,thjk,t + ηwjk,t

] ∂φj,t

∂uij,t

hjk,t+1 = hjk,t

(
1 − α(1 − η)φ2

j,t

)
+ α

(
δk,t − ηwjk,tφj,t

)

wjk,t+1 = wjk,t + αδk,tφj,t

(8)

4 Experiments and Results

Here we empirically investigate whether crossprop is effective in finding useful
representations for continual learning tasks and compare them with backprop
and its many (such as adding momentum, RMSProp and ADAM). By contin-
ual learning tasks, we refer to an experiment setting where supervised training
examples are generated and presented to a learning system from a sequence of
related tasks. The learning system does not know when the task is switched.

4.1 GEOFF Tasks

The GEneric Online Feature Finding (GEOFF) problem was first introduced
by Sutton (2014) as a generic, synthetic, feature-finding test bed for evaluating
different representation learning algorithms. The primary advantage of this test
bed is that infinitely many supervised-learning tasks can be generated without
any experimenter bias.

The test bed consists of a single hidden layer neural network, called the target
network, with a real-valued scalar output. Each input example, Xt ∈ {0, 1}m,
is a m-dimensional binary input vector where each element in the vector can
take a value of 0 or 1. The hidden layer consists of n Linear Threshold Units
(LTUs), φ∗

t ∈ {0, 1}n, with a threshold parameter of β. The β parameter controls
the sparsity in the hidden layer. The weights U∗ ∈ {−1,+1}m×n maps the
input vector to the hidden units and the weights W ∗ ∈ {−1, 0,+1}n linearly
combine the LTUs (features) to produce a scalar target output y∗. The weights
U∗ and W ∗ are generated using a uniform probability distribution and remain
fixed throughout a task, representing a stationary function mapping a given
input vector Xt to a scalar target output y∗

t . The input vector Xt is generated
randomly using a uniform probability distribution. For each input vector, this
target network is used to produce a scalar target output y∗

t =
∑n

i=1 φ∗
i,tw

∗
i +

N (0, 1). For our experiments, we fix m = 20, n = 1000 and β = 0.6 (the
parameters of the target network).

Experiment setup. For our experiments, we create an instance of the GEOFF
task. This is called Task A and use this to generate a set of 5000 examples.
These examples are then used for training the learning systems in an online
manner, where each example is processed once and then discarded. After pro-
cessing the examples from Task A, we generate a Task B by randomly choosing
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and regenerating 50% of the outgoing target weights W ∗. Another set of 5000
training examples is generated for training using this modified task. Similarly,
after processing the examples from Task B, Task C is produced which is used for
generating another 5000 training examples. The learning systems learn online
from training examples produced by a sequence of related tasks (Tasks A, B &
C) where the representations learned from one can be used for solving the other
tasks. It is important to point out here that all these tasks share the same feature
representation (i.e. the weights U∗ remain fixed throughout) and the system can
leverage from its previous learning experiences.

This experiment was designed from a continual learning perspective where a
learning system will experience examples generated from a sequence of related
tasks and learning from one task can help in learning other similar tasks. The
step-size for all the algorithms was fixed at a constant value (α = 0.0005) as the
objective here is to show how the features are learned by different algorithms for
a sequence of related learning tasks. The learning network consisted of a single
hidden layer neural network with a single output unit. It had 20 input units and
500 hidden units using tanh activation function. The squared error function was
used for learning the parameters of this network. These were the parameters of
the learning network used for evaluating multiple algorithms.

Results. We compare the behavior of crossprop with backprop and its variations
on a sequence of related tasks generated using the GEOFF testbed. Fig. 1 Left
shows the learning curve for different algorithms. After every 5000 examples, the
task switches to a new and related task as previously described. It is important
to note here that the learning system does not know that the task has changed.

The learning curves show that crossprop reaches a similar asymptotic value
to that of backprop, implying that the introduced algorithm produces a similar
solution as backprop. In terms of asymptotic values, backprop achieves a signif-
icantly better asymptotic value compared to crossprop and the other variations
of backprop. However, it is interesting to note that these learning algorithms
approach the solution differently.

Figure 2 Left shows the euclidean norm (l2 norm) between the weights U
after processing the nth training example and the initialized value of the same
weights. Though all the algorithms reach similar asymptotic values, the way
backprop achieves this is clearly different from that of crossprop. Backprop tends
to frequently modify the features even though it has seen examples that are
generated using a previously learned function. Specifically, backprop fails to
leverage from its previous learning experiences in solving new tasks even when
it is possible. Because of this, backprop tends to take a lot of time in finding a
feature representation which can sufficiently solve this continual problem. This
is clearly not the case with crossprop. Our proposed algorithm tends to find a
feature representation much quicker than backprop that can sufficiently solve
the sequence of continual problems and reuses this for solving new tasks that it
encounters in the future.

Figure 3 Left shows the euclidean norm between the weights W after pro-
cessing the nth example and the initialized value of the same weights. Because
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Examples

RMSE

Task A Task B Task C Task A Task B Task C

Examples

Cross-entropy 
error

Task A Task B Task C Task A Task B Task C

Fig. 1. The learning curves of crossprop (i.e., crossprop, crossprop-approx with η =
0, 0.5) are colored blue and backprop (backprop, momentum, RMSProp, ADAM) are
colored red. The learning systems do not know that the task has changed. Left: The
learning curves on a series of GEOFF tasks, averaged from 30 independent runs where
each run used a different target network. Right: The learning curves on a series of
MNIST tasks, obtained from a single run where the MNIST training set was used.
Also, in the MNIST experiments, only crossprop-approx. was evaluated. (Color figure
online)

Examples

Crossprop
eta=0

Crossprop-approx.
eta=0

Crossprop
eta=0.5

Crossprop-approx.
eta=0.5
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RMSProp
Momentum

L2 norm 
(between  
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weights)

Task A Task B Task C Task A Task B Task C

Examples

Crossprop-approx.
eta=0

Crossprop-approx.
eta=0.5

Backprop

ADAM

RMSProp

Momentum

Task A Task B Task C Task A Task B Task C

L2 norm 
(between  
current  
& initial  

incoming  
weights)

Fig. 2. Left: generated from GEOFF tasks. Right: generated from MNIST tasks. The
plots shows the change in the incoming weights U after processing each example. Specif-
ically, the plots shows l2 norm between the incoming weights U after processing the nth

example and its initialized value for different learning algorithms. From the plots, it can
be observed that crossprop tends to change the incoming weights the least even when
the task is significantly changed, implying that crossprop tends to find a reusable fea-
ture representation that can sufficiently solve the sequence of tasks that it experiences.
On the other hand, backprop tends to significantly relearn the feature representation
throughout the experiment even when the task can be solved by leveraging from pre-
vious learning experiences.

crossprop tends to find the set of features much quicker than backprop and reuses
these features while solving a new task, it reduces the error by moving the out-
going weights rather than modifying its feature representation. Furthermore, all
the tasks presented to the learning system can be solved by using a single fea-
ture representation and from our plots, it can be clearly seen that crossprop
recognizes this.
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Fig. 3. Left: generated from GEOFF tasks. Right: generated from MNIST tasks. The
plots shows the change in the outgoing weights W after processing each example. It
shows the l2 norm between the outgoing weights W after processing the nth example
and its initialized value for different learning algorithms. From the plots, it can be
observed that crossprop tends to change the outgoing weights the most as it is needed
to map the feature representation to an estimate yt. In backprop, each parameter
independently minimizes the error and because of this, each parameter race with each
other in reducing the error without coordinating their efforts. So, it tends to change
its feature representation for accommodating a new example.

4.2 MNIST Tasks

The MNIST dataset of handwritten digits was introduced by LeCun et al. (1988).
Though the MNIST dataset is old, it is still viewed as a standard supervised
learning benchmark task for testing out new learning algorithms (Sironi et al.
2015; Papernot et al. 2016).

The dataset consists of grayscale images each with 28×28 dimensions. These
images are obtained from handwritten digits and their corresponding labels
denote the supervised learning target for a given image. The objective of a
learning system in a MNIST task would be to learn a mapping function that
maps each of these images to a label.

Experiment setup. We adapt the MNIST dataset to a continual learning set-
ting, where in each task the label for the training images is shifted by one. For
example, Task A uses the standard MNIST training images and their labels, Task
B uses the same training examples as Task A, but now the labels get shifted by
one. Similarly, for Task C the label for the training examples get further shifted
by one. As in our previous experiment, we fix the step-size (α = 0.0005) for the
different algorithms as our objective here is to study how the representations
are learned between these algorithms for a continual learning setting, where
the learning system experiences examples from a sequence of related tasks. The
learning system consisted of a single hidden layer neural network with 784 input
units, 1024 hidden units and 10 output units. The hidden units used a tanh acti-
vation function and the output units used a softmax activation function. The
cross-entropy error function was used for training the network.
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Results. Figure 1 Right shows the learning curves for all the methods evaluated
on the MNIST tasks. As observed in the GEOFF tasks, the learning curves for
the different algorithms converge to almost similar points which means that all
the methods reach similar solutions. However, ADAM and RMSProp achieves
a significantly better asymptotic error value compared to the other learning
algorithms.

Figures 2 Right and 3 Right show the euclidean norm of the change in weights
U and W respectively. As seen in our previous experiments, crossprop tends to
find the features much quicker than backprop and its variations. Also, crossprop
tends to reuse these features in solving the new tasks that it faces. It is inter-
esting to observe that backprop does not seem to settle down on a good feature
representation for solving a sequence of continual learning problems. It tends
to näıvely unlearn and relearn its feature representation even when the tasks
are similar to each other and can be solved by using the feature representation
learned from the first task. Specifically, backprop does not seem to leverage its
previous learning experiences while encountering a new task.

5 Visualizing the Learned Features

We visualize the features that are obtained while training the learning sys-
tems using crossprop and backprop. These visualization are obtained using the
t-SNE approach, which was developed by Maaten and Hinton (2008) for visu-
alizing high-dimensional data by giving each datapoint a location in a two or
three-dimensional map. Here, we show only the two-dimensional map generated
using the features learned by the different learning algorithms.

Fig. 4. Backprop (Left) and crossprop (Right) seem to learn similar feature represen-
tations, by clustering together similar examples. The plot shows the visualizations of
the features (i.e. activations of the hidden units) learned by backprop and crossprop
on the standard MNIST task. Both the learning algorithms were trained online on
the MNIST dataset and the parameters learned by these algorithms were used for
generating these visualizations. The η was set to 0 for crossprop in order to draw out
differences between the conventional and the meta-gradient descent approach for learn-
ing the features. The plot was generated by using 2500 training examples, uniformly
sampled from the MNIST dataset.
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The features learned by backprop and crossprop (with η set to 0) on a
standard MNIST task are plotted in Fig. 4. From the visualizations, it can be
observed that both these algorithms produce similar feature representations on
the task. Both these algorithms learn a feature representation that clusters exam-
ples according to their labels. There does not seem to be much of a difference
between them by looking at their features.

6 Discussions

Neural networks and backprop form a powerful, hierarchical feature learning
paradigm. Designing deep neural network architectures has allowed many learn-
ing systems to achieve levels of performance comparable to that of humans in
many domains. Many of the recent research works, however, fail to notice or
ignore the fundamental issues that are present with backprop, even though it is
important to address them.

Some research works even tend to provide ad-hoc solutions to overcome these
fundamental problems posed by backprop, but these are usually not scalable to
general domains. Over time, many modifications were introduced to backprop,
but they still fail to address the fundamental issue with backprop, which is that
backprop tends to interfere with its previously learned representations in order
to accommodate a new example. This prevents in directly applying backprop to
continual learning domains, which is critical for achieving Artificial Intelligence
(Ring 1997; Kirkpatrick et al. 2017).

In a continual learning setting, a learning system needs to progressively learn
and hierarchically accumulate knowledge from its experiences, using them to
solve many difficult, unseen tasks. In such a setting, it is not desirable to have
a learning system that näıvely unlearns and relearns even when it sees a task
that can be solved by reusing its learning from its past experiences. Particularly,
for a continual learning setting, it is necessary to have a learning system that
can hierarchically build knowledge from its previous experiences and use them
in solving a completely new and unseen task.

In this paper, we present two continual learning tasks that were adapted from
standard supervised learning domains: the GEOFF testbed and MNIST dataset.
On these tasks, we evaluate backprop and its variations (momentum, RMSProp
and ADAM). We also evaluate our proposed meta-gradient descent approach
for learning the features in a neural network, called crossprop. We show that
backprop (and its variations) tends to relearn its feature representations for every
task, even when these tasks can be solved by reusing the feature representation
learned from previous experiences. Crossprop, on the other hand, tends to reuse
its previously learned representations in tackling new and unseen tasks. The
process of consistently failing to leverage from previous learning experiences
is not particularly desirable in a continual learning setting which prevents in
directly applying backprop to such settings. Addressing this particular issue is
the primary motivation for our work.

As an immediate future work, we would like to study the performances of this
meta-gradient descent approach on deep neural networks and comprehensively
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evaluate them on more difficult benchmarks, like IMAGENET (Deng et al. 2009)
and the Arcade Learning Environment (Bellemare et al. 2013).

7 Conclusions

In this paper, we introduced a meta-gradient descent approach, called crossprop,
for learning the incoming weights of hidden units in a neural network and showed
that such approaches are complementary to backprop, which is the popular algo-
rithm for training neural networks. We also show that by using crossprop, a
learning system can learn to reuse the learned features for solving new and
unseen tasks. However, we see this as the first general work towards compre-
hensively addressing and overcoming the fundamental issues posed by backprop,
particularly for continual learning domains.
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