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Abstract. The scalable calculation of matrix determinants has been
a bottleneck to the widespread application of many machine learning
methods such as determinantal point processes, Gaussian processes,
generalised Markov random fields, graph models and many others. In
this work, we estimate log determinants under the framework of max-
imum entropy, given information in the form of moment constraints
from stochastic trace estimation. The estimates demonstrate a signifi-
cant improvement on state-of-the-art alternative methods, as shown on a
wide variety of matrices from the SparseSuite Matrix Collection. By tak-
ing the example of a general Markov random field, we also demonstrate
how this approach can significantly accelerate inference in large-scale
learning methods involving the log determinant.

1 Introduction

Scalability is a key concern for machine learning in the big data era, whereby
inference schemes are expected to yield optimal results within a constrained
computational budget. Underlying these algorithms, linear algebraic operations
with high computational complexity pose a significant bottleneck to scalability,
and the log determinant of a matrix [5] falls firmly within this category of opera-
tions. The canonical solution involving Cholesky decomposition [16] for a general
n × n positive definite matrix, A, entails time complexity of O(n3) and storage
requirements of O(n2), which is infeasible for large matrices. Consequently, this
term greatly hinders widespread use of the learning models where it appears,
which includes determinantal point processes [24], Gaussian processes [31], and
graph problems [36].

The application of kernel machines to vector valued input data has gained
considerable attention in recent years, enabling fast linear algebra techniques.
Examples include Gaussian Markov random fields [32] and Kronecker-based alge-
bra [33], while similar computational speed-ups may also be obtained for sparse
matrices. Nonetheless, such structure can only be expected in selected applica-
tions, thus limiting the widespread use of such techniques.

In light of this computational constraint, several approximate inference
schemes have been developed for estimating the log determinant of a matrix
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more efficiently. Generalised approximation schemes frequently build upon iter-
ative stochastic trace estimation techniques [4]. This includes polynomial approx-
imations such as Taylor and Chebyshev expansions [2,20]. Recent developments
shown to outperform the aforementioned approximations include estimating the
trace using stochastic Lanczos quadrature [35], and a probabilistic numerics
approach based on Gaussian process inference which incorporates bound infor-
mation [12]. The latter technique is particularly significant as it introduces the
possibility of quantifying the numerical uncertainty inherent to the approxima-
tion.

In this paper, we present an alternative probabilistic approximation of
log determinants rooted in information theory, which exploits the relationship
between stochastic trace estimation and the moments of a matrix’s eigenspec-
trum. These estimates are used as moment constraints on the probability distri-
bution of eigenvalues. This is achieved by maximising the entropy of the prob-
ability density p(λ) given our moment constraints. In our inference scheme, we
circumvent the issue inherent to the Gaussian process approach [12], whereby
positive probability mass may occur in the region of negative densities. In con-
trast, our proposed entropic approach implicitly encodes the constraint that den-
sities are necessarily positive. Given equivalent moment information, we achieve
competitive results on matrices obtained from the SuiteSparse Matrix Collec-
tion [11] which consistently outperform competing approximations to the log-
determinant [7,12].

The most significant contributions of this work are listed below.1

1. We develop a novel approximation to the log determinant of a matrix which
relies on the principle of maximum entropy enhanced with moment con-
straints derived from stochastic trace estimation.

2. We present the theory motivating the use of maximum entropy for solving
this problem, along with insights on why we expect particularly significant
improvements over competing techniques for large matrices.

3. We directly compare the performance of our entropic approach to other state-
of-the-art approximations to the log-determinant. This evaluation covers real
sparse matrices obtained from the SuiteSparse Matrix Collection [11].

4. Finally, to showcase how the proposed approach may be applied in a practical
scenario, we incorporate our approximation within the computation of the
log-likelihood term of a Gaussian Markov random field, where we obtain a
significant increase in speed.

1.1 Related Work

The methodology presented in this work predominantly draws inspiration from
the recently introduced probabilistic numerics approach to estimating the log

1 Code for algorithms proposed in this paper are available at https://github.com/
OxfordML/EntropicTraceEstimation.

https://github.com/OxfordML/EntropicTraceEstimation
https://github.com/OxfordML/EntropicTraceEstimation
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determinant of a matrix [12]. In that work, the computation of the log deter-
minant is reinterpreted as a probabilistic estimation problem, whereby results
obtained from budgeted computations are used to infer accurate estimates for
the log determinant. In particular, within that proposed framework, the eigen-
values of a matrix A are modelled from noisy observations of Tr(Ak) obtained
from stochastic trace estimation [4] using the Taylor approximation method.
By modelling such noisy observations using a Gaussian process [31], Bayesian
quadrature [29] can then be invoked for making predictions on the infinite series
of the Taylor expansion, and in turn estimating the log determinant. Of partic-
ular interest is the uncertainty quantification inherent to this approach, which
is a notable step forward in the direction of measuring the complete numeri-
cal uncertainty associated with approximating large-scale inference models. The
estimates obtained using this Bayesian set-up may be further improved by con-
sidering known upper and lower bounds on the value of the log determinant [5].
In this paper, we provide an alternative to this approach by interpreting the
observed moments as being constraints on the probability distribution of eigen-
values underlying the computation of the log determinant. As we shall explore,
our novel entropic formulation makes better calibrated prior assumptions than
the previous work, and consequently yields superior performance.

More traditional approaches to approximating the log determinant build
upon iterative algorithms, and exploit the fact that the log determinant may
be rewritten as the trace of the logarithm of the matrix. This features in both
the Chebyshev expansion approximation [20], as well as the widely-used Tay-
lor series approximation upon which the aforementioned probabilistic inference
approaches are built. Recently, an approximation to the log determinant using
stochastic Lanczos quadrature [35] has been shown to outperform the aforemen-
tioned polynomial approaches, while also providing probabilistic error bounds.
Finally, given that the logarithm of a matrix often appears multiplied by a vec-
tor (for example the log likelihood term of a Gaussian process [31]), the spline
approximation proposed in [10] may be used to accelerate computation.

2 Background

In this section, we shall formally introduce the concepts underlying the proposed
maximum entropy approach to approximating the log determinant. We start by
describing stochastic trace estimation and demonstrate how this can be applied
to estimating the trace term of matrix powers. Subsequently, we illustrate how
the latter terms correspond to the raw moments of the matrix’s eigenspectrum,
and show how the log determinant may be inferred from the distribution of
eigenvalues constrained by such moments.

2.1 Stochastic Trace Estimation

Estimating the trace of implicit matrices is a central component of many
approaches to approximate the log determinant of a matrix. Stochastic trace
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estimation [4] builds a Monte Carlo estimate of the trace of a matrix A by
repeatedly multiplying it by probing vectors z,

Tr(A) ≈ 1
m

m∑

i=1

zT
i Azi,

such that the expectation of zizT
i is the identity, E[zizT

i ] = I. This can be readily
verified using the expectation of Tr(zT

i Azi) by exploiting the cyclical property
of the trace operation. As such, many choices of how to sample the probing
vectors have emerged. Possibly the most näıve choice involves sampling from
the columns of the identity matrix; however, due to poor expected sample vari-
ance this is not widely used in the literature. Sampling from vectors on the unit
hyper-sphere, and correspondingly sampling normal random vectors (Gaussian
estimator), significantly reduces the sample variance, but more random bits are
required to generate each sample. A major progression for stochastic trace esti-
mation was the introduction of Hutchinson’s method [21], which sampled each
element as a Bernoulli random variable requiring only a linear number of ran-
dom bits, while also reducing the sample variance even further. A more recent
approach involves sampling from sets of mutually unbiased bases (MUBs) [13],
requiring only a logarithmic number of bits. Table 1 (adapted from [13]) provides
a concise overview of the landscape of probing vectors.

Table 1. Comparison of single shot variance V , worst case single shot variance V worst

and number of random bits R required for commonly used trace estimators and the
MUBs estimator. (∗ required for floating point precision)

V V worst R

Fixed basis estimator d
∑d

i=1 M2
ii − Tr(A)2 (d − 1)Tr(A)2 log2(d)

MUBs estimator d
d+1

Tr(A2) − 1
d+1

Tr(A)2 d−1
d+1

Tr(A2) 2 log2(d)

Hutchinson estimator 2
(
Tr(A2) − ∑d

i=1 A2
ii

)
2(d−1)

d
Tr(A2) d

Gaussian estimator 2Tr(A2) 2Tr(A2) O(d)∗

A notable application of stochastic trace estimation is the approximation of
the trace term for matrix powers, Tr(Ak). Stochastic trace estimation enables
vector-matrix multiplications to be propagated right to left, costing O(n2),
rather than the O(n3) complexity required by matrix multiplication. This sim-
ple trick has been applied in several domains such as counting the number of
triangles in graphs [3], string pattern matching [1] and of course estimating the
log determinant of matrices, as discussed in this work.

2.2 Raw Moments of the Eigenspectrum

The relation between the raw moments of the eigenvalue distribution and the
trace of matrix powers allows us to exploit stochastic trace estimation for esti-
mating the log determinant. Raw moments are defined as the mean of the random
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variables raised to integer powers. Given that the function of a matrix is implic-
itly applied to its eigenvalues, in the case of matrix powers this corresponds
to raising the eigenvalues to a given power. For example, the kth raw moment
of the distribution over the eigenvalues (a mixture of Dirac delta functions)
is

∑m
i=1 λkp(λ), where p(λ) is the distribution of eigenvalues. The first few raw

moments of the eigenvalues are trivial to compute. Denoting the kth raw moment
as E[λk], we have that E[λ0] = 1, E[λ1] = 1

nTr(A) and E[λ2] = 1
n

∑
i,j A2

i,j . More
generally, the kth raw moment can be formulated as E[λk] = 1

nTr(Ak), which
can be estimated using stochastic trace estimation. These identities can be eas-
ily derived using the definitions and well known identities of the trace term and
Frobenius norm.

2.3 Approximating the Log Determinant

In view of the relation presented in the previous subsection, we can reformulate
the log determinant of a matrix in terms of its eigenvalues using the following
derivation:

log
(
Det(A)

)
=

n∑

i=1

log(λi) := nE [log(λ)] ≈ n

∫
p(λ) log(λ)dλ, (1)

where the approximation is introduced due to our estimation of p(λ), the prob-
ability distribution of eigenvalues. If we knew the true distribution of p(λ) it
would hold with equality.

Given that we can obtain information about the moments of p(λ) through
stochastic trace estimation, we can solve this integral by employing the princi-
ple of maximum entropy, while treating the estimated moments as constraints.
While not explored in this work, it is worth noting that in the event of moment
information combined with samples of eigenvalues, we would use the method of
maximum relative entropy with data constraints, which is in turn a generalisa-
tion of Bayes’ rule [9]. This can be applied, for example, in the quantum linear
algebraic setting [28].

3 Estimating the Log Determinant Using Maximum
Entropy

The maximum entropy method (MaxEnt) [30] is a procedure for generating
the most conservatively uncertain estimate of a probability distribution possible
with the given information, which is particularly valued for being maximally non-
committal with regard to missing information [22]. In particular, to determine
a probability density p(x ), this corresponds to maximising the functional

S = −
∫

p(x ) log p(x )dx −
∑

i

αi

[ ∫
p(x )fi(x )dx − μi

]
(2)
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with respect to p(x ), where E[fi(x )] = μi are given constraints on the probabil-
ity density. In our case, each μi constraint denotes the stochastic trace estimate
of the ith raw moment of the matrix eigenvalues. The first term in the above
equation is referred to as the Boltzmann-Shannon-Gibbs (BSG) entropy, which
has been applied in multiple fields, ranging from condensed matter physics [15]
to finance [8,27]. Along with its path equivalent, maximum caliber [17], it has
been successfully used to derive statistical mechanics [18], non-relativistic quan-
tum mechanics, Newton’s laws and Bayes’ rule [9,17]. Under the axioms of
consistency, uniqueness, invariance under coordinate transformations, sub-set
and system independence, it can be proved that for constraints in the form
of expected values, drawing self-consistent inferences requires maximising the
entropy [30,34]. Crucial for our investigation are the functional forms fi(x )
of constraints for which the method of maximum entropy is appropriate. The
axioms of Johnson and Shore [34] assert that the entropy must have a unique
maximum and that the BSG entropy is convex. The entropy hence has a unique
maximum provided that the constraints are convex. This is satisfied for any
polynomial in x and hence, maximising the entropy given moment constraints
constitutes a self-consistent inference scheme [30].

3.1 Implementation

Our implementation of the system follows straight from stochastic trace estima-
tion to estimate the raw moments of the eigenvalues, maximum entropy distri-
bution given these moments and, finally, determining the log of the geometric
mean of this distribution. The log geometric mean is an estimate of the log deter-
minant divided by the dimensionality of A ∈ R

n×n. We explicitly step through
the subtleties of the implementation in order to guide the reader through the
full procedure.

By taking the partial derivatives of S from Eq. (2), it is possible to show that
the maximum entropy distribution given moment information is of the form

p(λ) = exp(−1 +
∑

i

αiμi).

The goal is to find the set of αi which match the raw moments of p(λ) to
the observed moments {μi}. While this may be performed symbolically, this
becomes intractable for larger number of moments, and our experience with
current symbolic libraries [25,37] is that they are not extendable beyond more
than 3 moments. Instead, we turn our attention to numerical optimisation. Early
approaches to optimising maximum entropy coefficients worked well for a small
number of coefficients but became highly unstable as the number of observed
moments grew [26]. However, building on these concepts, more stable approaches
emerged [6]. Algorithm 1 outlines a stable approach to this optimisation under
the conditions that λi is strictly positive and the moments lie between zero and
one. We can satisfy these conditions by normalising our positive definite matrix
by the maximum of the Gershgorin intervals [14].
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Algorithm 1. Optimising the Coefficients of the MaxEnt Distribution

Input: Moments {μi}, Tolerance ε
Output: Coefficients {αi}
1: αi ∼ N (0, 1)
2: i ← 0
3: p(λ) ← exp(−1 − ∑

k αkλk)
4: while error < ε do
5: δ ← log

(
μi∫

λip(λ)dλ

)

6: αi ← αi + δ
7: p(λ) ← p(λ|α)
8: error ← max | ∫ λip(λ)dλ − μi|
9: i ← mod(i + 1, length(μ))

Given Algorithm 1, the pipeline of our approach can be pieced together. First,
the raw moments of the eigenvalues are estimated using stochastic trace estima-
tion. These moments are then passed to the maximum entropy optimisation algo-
rithm to produce an estimate of the distribution of eigenvalues, p(λ). Finally, p(λ)
is used to estimate the log geometric mean of the distribution,

∫
log(λ)p(λ)dλ.

This term is multiplied by the dimensionality of the matrix and if the matrix is
normalised, the log of this normalisation term is added again. These steps are
laid out more concisely in Algorithm2.

Algorithm 2. Entropic Trace Estimation for Log Determinants

Input: PD Symmetric Matrix A, Order of stochastic trace estimation k, Tolerance ε
Output: Log Determinant Approximation log |A|
1: B = A/‖A‖2

2: μ (moments)← StochasticTraceEstimation(B, k)
3: α (coefficients) ← MaxEntOpt(μ, ε)
4: p(λ) ← p(λ|α)
5: log |A| ← n

∫
log(λ)p(λ)dλ + n log(‖A‖2)

4 Insights for Large Matrices

The method of entropic trace estimation has the interesting property where we
expect the relative error to decrease as the matrix size N increases. Colloqui-
ally, we can liken maximum entropy to a maximum likelihood over distributions,
where this likelihood functional is raised to the number of eigenvalues in the
matrix. This corresponds to the number of particles in the system, in traditional
particle physics parlance. Given that there is a global maximum, as the number
of eigenvalues increases the functional tends to a delta functional around the
p(x ) of maximum entropy. This confirms that within the scope of our problem’s
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continuous distribution over eigenvalues, whenever the number of eigenvalues
(and correspondingly the dimensionality of the matrix) tends towards infinity,
we expect the maximum entropy solution to converge to the true solution. This
gives further credence to the suitability of our method when applied to large
matrices. We substantiate this claim by delving into the fundamentals of max-
imum entropy for physical systems and extending the analogy to functionals
over the space of densities. We show that in the limit of N → ∞ the maximum
entropy distribution dominates the space of solutions satisfying the constraints.
We demonstrate the practical significance of this assertion by setting up an
experiment using synthetically constructed random matrices, where this is in
fact verified.

4.1 Law of Large Numbers for Maximum Entropy in Matrix
Methods

In order to demonstrate our result, we consider the quantity W , which represents
the number of ways in which our candidate probability distribution can recre-
ate the observed moment information. In order to make this quantity finite we
consider the discrete distribution characterised by machine precision ε. We show
that W = exp(NS), where S is the entropy. Hence maximising the entropy is
equivalent to maximising W , as N is fixed. In the continuous limit, we consider
the ratio of two such terms Fi = Wi/

∑
j Wj , which is also finite. We consider

this quantity Fi to represent the probability of a candidate solution i occurring,
given the space of all possible solutions. We further show in the discrete and con-
tinuous space that for large N , the candidate distribution maximising S occurs
with probability 1.

Consider the analogy of having a physical system made up of particles. The
different ways, W , in which we can organise this system of N particles with
T distinguishable groups each containing nt particles, can be expressed as the
combinatorial

W =
N !

∏T
t=1 nt!

, (3)

where
∑

t nt = N . If we consider the logarithm of the above term, we can invoke
Stirling’s approximation that log(n!) ≈ n log(n) − n, which is exact in the limits
N → ∞ and ni → ∞. Using this relation, we obtain

log W = N

(
−

T∑

t=1

nt

N
log

[
nt

N

])
= NS, (4)

where S is the Boltzmann-Shannon-Gibbs entropy and in the continuous case
we identify p(t) = nt/N , where p(t) represents the probability of being in group
t. Hence, W = exp(NS).

The number of formulations, Wmaxent, in which the maximum entropy real-
isation is more probable than any other realisation can be succinctly expressed
as
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Wmaxent

Wother
= exp

(
N(Smaxent − Sother)

)
, (5)

which exposes that in the limit of large N , the maximum entropy solution dom-
inates other solutions satisfying the same constraints. More significantly, we can
also show that it dominates the space of all solutions. Let

∑
i Wi denote the

total number of ways in which the system can be configured for all possible
underlying densities satisfying the constraints.

If we consider the ratio between this term and the number of ways the max-
imum entropy distribution can be configured, we observe that

Wmaxent∑
i Wi

=
exp(NS(Pmaxent))∑

i exp(NSi)
=

1∑
i exp (N(S(Pi(x ))−S(Pmaxent(x ))))

N→∞−−−−→1,

(6)
with S (P (x )) denoting the entropy of the probability of a probability distri-
bution P (x ) and where we have exploited the fact that one of the Si is Smax

and that Si�=j < Smax. More formally, we consider the probability mass about
maxima in the functional describing all possible configurations, which is charac-
terised via their entropy, S:

Wtotal =
∫

exp(NS)[DP ] =
∫

· · ·
∫ ∞

−∞
exp(NS)

∏

x

dP (x ). (7)

When N → ∞, the maximum value of S accounts for the majority of the inte-
gral’s mass. To see this consider the ratio of functional integrals,

Wmaxent

Wtotal
=

∫
exp (NS(Pmaxent(x ))) dPmaxent(x )∫ ∞

−∞ exp (NS(P (x )))
∏

x dP (x )
, (8)

which tends to 1 as N → ∞. The argument is the continuous version of that
which is displayed in Eq. (6), while the convergence to 1 as N approaches infinity
follows directly from Laplace’s method in the multivariate case, as well as the
definition of a probability density and the functional integral.

Laplace’s method gives a theoretical basis for the canonical distributions
in statistical mechanics. Its equivalent in the complex space, the method of
steepest descent, in Feynman’s path integral formulation, shows that points in
the vicinity of the extrema of the action functional (the classical mechanical
solution), contribute maximally to the path integral. This is the corresponding
result for the matrix eigenvalue distributions.

4.2 Validation on Synthetic Data

We generate random, diagonally dominant positive semi-definitive matrices, M ,
which are constructed as

M =
A�A

||A�A||2 + IN , (9)
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Fig. 1. The absolute relative error with respect to matrix dimensionality. Plotted is
the median error, with the 30–70 and 10–90 percentile regions shaded in dark and light
blue respectively. (Color figure online)

where A ∈ R
N×N is an N × N matrix filled with Gaussian random variables

and I is the identity. In order to test the hypothesis that the maximum entropy
solution dominates the space of possible solutions with increasing matrix size,
we investigate the relative error of the log determinant L, for 100 ≤ N ≤ 1000.
As can be seen in Fig. 1, there is a clear decrease in relative error for all plotted
percentiles with increasing matrix size N .

5 Experiments

So far, we have supplemented the theoretic foundations of our proposal by
devising experiments on synthetically constructed matrices. In this section, we
extend our evaluation to include real matrices obtained from a variety of problem
domains, and demonstrate how the results obtained using our approach consis-
tently outperform competing state-of-the-art approximations. Moreover, in order
to demonstrate the applicability of our method within a practical domain, we
highlight the benefits of replacing the exact computation of the log determinant
term appearing in the log likelihood of a Gaussian Markov random field with
our maximum entropy approximation.

5.1 SparseSuite Matrix Collection

While the ultimate goal of this work is to accelerate inference of large-scale
machine learning algorithms burdened by the computation of the log determi-
nant, this is a general approach which can be applied to a wide variety of appli-
cation domains. The SuiteSparse Matrix Collection [11] (commonly referred to
as the set of UFL datasets) is a collection of sparse matrices obtained from
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Fig. 2. Comparison of competing approaches over four UFL datasets. Results are also
shown for increasing computational budgets, i.e. 5, 10, 15, 20, 25 and 30 moments
respectively. Our method obtains substantially lower error rates across 3 out of 4
datasets, and still performs very well on ‘bonesS01’.

various real problem domains. In this section, we shall consider a selection of
these matrices as ‘matrices in the wild’ for comparing our proposed algorithm
against established approaches. In this experiment we compare against Taylor [2]
and Chebyshev [20] approximations, stochastic lanczos quadrature (SLQ) [35]
and Bayesian inference of log determinants (BILD) [12]. In Fig. 2, we report the
absolute relative error of the approximated log determinant for each of the com-
peting approaches over four different UFL datasets. Following [12], we assess the
performance of each method for an increasing computational budget, in terms
of matrix vector multiplications, which in this case corresponds to the number
of moments considered. It can be immediately observed that our entropic app-
roach vastly outperforms the competing techniques across all datasets, and for
any given computational budget. The overall accuracy also appears to consis-
tently improve when more moments are considered.

Complementing the previous experiment, Table 2 provides a further compari-
son on a range of other sample matrices which are large, yet whose determinants
can be computed by standard machines in reasonable time (by virtue of being
sparse). For this experiment, we consider 10 estimated moments using 30 probing
vectors, and their results are reported for the aforementioned techniques. The
results presented in Table 2 are the relative error of the log determinants after
they have been normalised using Gershgorin intervals [14]. We note, however,
that the methods improve at different rates as more raw moments are taken.

5.2 Computation of GMRF Likelihoods

Gaussian Markov random fields (GMRFs) [32] specify spatial dependence
between nodes of a graph with Markov properties, where each node denotes a



334 J. Fitzsimons et al.

Table 2. Comparison of competing approximations to the log determinant over addi-
tional sparse UFL datasets. The technique yielding the lowest relative error is high-
lighted in bold, and our approach is consistently superior to the alternatives. Approx-
imations are computed using 10 moments estimated with 30 probing vectors.

Dataset Dimension Taylor Chebyshev SLQ BILD MaxEnt

Shallow water1 81,920 0.0023 0.7255 0.0058 0.0163 0.0030

Shallow water2 81,920 0.5853 0.9846 0.9385 1.1054 0.0051

Apache1 80,800 0.4335 0.0196 0.4200 0.1117 0.0057

Finan512 74,752 0.1806 0.1158 0.0142 0.0005 0.0171

Obstclae 40,000 0.0503 0.5269 0.0423 0.0733 0.0026

Jnlbrng1 40,000 0.1084 0.2079 0.0465 0.0805 0.0158

random variable belonging to a multivariate joint Gaussian distribution defined
over the graph. These models appear in a wide variety of applications, ranging
from interpolation of spatio-temporal data to computer vision and information
retrieval. While we refer the reader to [32] for a more comprehensive review of
GMRFs, we highlight the fact that the model relies on a positive-definite pre-
cision matrix Qθ parameterised by θ, which defines the relationship between
connected nodes; given that not all nodes in the graph are connected, we can
generally expect this matrix to be sparse. Nonetheless, parameter optimisation
of a GMRF requires maximising the following equation:

log p(x | θ) =
1
2

log
(
Det(Qθ)

) − 1
2
x�Qθx − n

2
log(2π),

where computing the log determinant poses a computational bottleneck, even
where Qθ is sparse. This arises because it is possible for the Cholesky decompo-
sition of a sparse matrix with zeros outside a band of size k to be nonetheless
dense within that bound. Thus, the Cholesky decomposition is still expensive to
compute.

Following the experimental set-up and code provided in [19], in this experi-
ment we evaluate how incorporating our approximation into the log likelihood
term of a GMRF improves scalability when dealing with large matrices, while still
maintaining precision. In particular, we construct lattices of increasing dimen-
sionality and in each case measure the time taken to compute the log likelihood
term using both approaches. The precision kernel is parameterised by κ and τ
[23], and is explicitly linked to the spectral density of the Matérn covariance
function for a given smoothness parameter. We repeat this evaluation for the
case where a nugget term, which denotes the variance of the non-spatial error,
in included in the constructed GMRF model. Note that for the maximum entropy
approach we employ 30 sample vectors in the stochastic trace estimation proce-
dure, and consider 10 moments. As illustrated in Fig. 3, the computation of the
log likelihood is orders of magnitude faster when computing the log determinant
using our proposed maximum entropy approach. In line with our expectations,
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Fig. 3. Time in seconds for computing the log likelihood of a GMRF via Cholesky
decomposition or using our proposed MaxEnt approach for estimating the log determi-
nant term. Results are shown for GMRFs constructed on square lattices with increasing
dimensionality, with and without a nugget term.

Fig. 4. The above plots indicate the difference of log likelihood between exact com-
putation of the likelihood and the maximum entropy approach for a range of hyper-
parameters of the model. We note that the extrema of both exact and approximate
inference align and it is difficult to distinguish the two lines.

this speed-up is particularly significant for larger matrices. Similar improvements
are observed when a nugget term is included. Note that we set κ = 0.1 and τ = 1
for this experiment.

Needless to say, improvements in computation time mean little if the quality
of inference degrades. Figure 4 illustrates the comparable quality of the log like-
lihood for various settings of κ and τ , and the results confirm that our method
enables faster inference without compromising on performance.
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6 Conclusion

Inspired by the probabilistic interpretation introduced in [12], in this work we
have developed a novel approximation to the log determinant which is rooted in
information theory. While lacking the uncertainty quantification inherent to the
aforementioned technique, this formulation is appealing because it uses a com-
paratively less informative prior on the distribution of eigenvalues, and we have
also demonstrated that the method is theoretically expected to yield superior
approximations for matrices of very large dimensionality. This is especially sig-
nificant given that the primary scope for undertaking this work was to accelerate
the log determinant computation in large-scale inference problems. As illustrated
in the experimental section, the proposed approach consistently outperforms all
other state-of-the-art approximations by a sizeable margin.

Future work will include incorporating the empirical Monte Carlo variance of
the stochastic trace estimates into the inference scheme, extending the method
of maximum entropy to include noisy constraints, and explicitly evaluating the
ratio of the functional integrals for large matrices to obtain uncertainty estimates
similar to those in [12]. We hope that the combination of these advancements
will allow for an apt active sampling procedure given pre-specified computational
budgets.
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