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Abstract. We propose a fast inference method for Bayesian nonlinear
support vector machines that leverages stochastic variational inference
and inducing points. Our experiments show that the proposed method is
faster than competing Bayesian approaches and scales easily to millions
of data points. It provides additional features over frequentist competitors
such as accurate predictive uncertainty estimates and automatic hyperpa-
rameter search.
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1 Introduction

Statistical machine learning branches into two classic strands of research:
Bayesian and frequentist. In the classic supervised learning setting, both
paradigms aim to find, based on training data, a function fβ that predicts well
on yet unseen test data. The difference in the Bayesian and frequentist approach
lies in the treatment of the parameter vector β of this function. In the frequentist
setting, we select the parameter β that minimizes a certain loss given the train-
ing data, from a restricted set B of limited complexity. In the Bayesian school
of thinking, we express our prior belief about the parameter, in the form of a
probability distribution over the parameter vector. When we observe data, we
adapt our belief, resulting in a posterior distribution over β

Advantages of the Bayesian approach include automatic treatment of hyper-
parameters and direct quantification of the uncertainty1 of the prediction in the
1 Note that frequentist approaches can also lead to other forms of uncertainty esti-

mates, e.g. in form of confidence intervals. But since the classic SVM does not exhibit
a probabilistic formulation these uncertainty estimates cannot be directly computed.
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form of class membership probabilities which can be of tremendous importance
in practice. As examples consider the following. (1) We have collected blood
samples of cancer patients and controls. The aim is to screen individuals that
have increased likelihood of developing cancer. The knowledge of the uncertainty
in those predictions is invaluable to clinicians. (2) In the domain of physics it
is important to have a sense about the certainty level of predictions since it
is mandatory to assert the statistical confidence in any physical variable mea-
surement. (3) In the general context of decision making, it is crucial that the
uncertainty of the estimated outcome of an action can be reliably determined.

Recently, it was shown that the support vector machine (SVM) [1]—which
is a classic supervised classification algorithm— admits a Bayesian interpreta-
tion through the technique of data augmentation [2,3]. This so-called Bayesian
nonlinear SVM combines the best of both worlds: it inherits the geometric inter-
pretation, its robustness against outliers, state-of-the-art accuracy [4], and the-
oretical error guarantees [5] from the frequentist formulation of the SVM, but
like Bayesian methods it also allows for flexible feature modeling, automatic
hyperparameter tuning, and predictive uncertainty quantification.

However, existing inference methods for the Bayesian support vector machine
(such as the expectation conditional maximization method introduced in [3])
scale rather poorly with the number of samples and are limited in application
to datasets with thousands of data points [3]. Based on stochastic variational
inference [6] and inducing points [7], we develop in this paper a fast and scalable
inference method for the nonlinear Bayesian SVM.

Our experiments show superior performance of our method over competing
methods for uncertainty quantification of SVMs such as Platt’s method [8]. Fur-
thermore, we show that our approach is faster (by one to three orders of mag-
nitude) than the following competitors: expectation conditional maximization
(ECM) for nonlinear Bayesian SVM by [3], Gaussian process classification [9], and
the recently proposed scalable variational Gaussian process classification method
[10]. We apply our method to the domain of particle physics, namely on the SUSY
dataset [11] (a standard benchmark in particle physics containing 5 million data
points) where our method takes only 10 min to train on a single CPU machine.

Our experiments demonstrate that Bayesian inference techniques are mature
enough to compete with corresponding frequentist approaches (such as nonlinear
SVMs) in terms of scalability to big data, yet they offer additional benefits such
as uncertainty estimation and automated hyperparameter search.

Our paper is structured as follows. In Sect. 2 we discuss related work and
review the Bayesian nonlinear SVM model in Sect. 3. In Sect. 4 we propose our
novel scalable inference algorithm, show how to optimize hyperparameters and
obtain an approximate predictive distribution. We discuss also the special case
of the linear SVM, for which we propose a specially tailored fast inference algo-
rithm. Section 5 concludes with experimental results.

2 Related Work

There has recently been significant interest in utilizing max-margin based dis-
criminative Bayesian models for various applications. For example, [12] employs
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a max-margin based Bayesian classification to discover latent semantic struc-
tures for topic models, [13] uses a max-margin approach for efficient Bayesian
matrix factorization, and [14] develops a new max-margin approach to Hidden
Markov models.

All these approaches apply the Bayesian reformulation of the classic SVM
introduced by [2]. This model is extended by [3] to the nonlinear case. The
authors show improved accuracy compared to standard methods such as (non-
Bayesian) SVMs and Gaussian process (GP) classification.

However, the inference methods proposed in [2,3] have the drawback that
they partially rely on point estimates of the latent variables and do not scale
well to large datasets. In [15] the authors apply mean field variational inference
to the linear case of the model, but their proposed technique does not lead to
substantial performance improvements and neglects the nonlinear model.

Uncertainty estimation for SVMs is usually done via Platt’s technique [8],
which consists of applying a logistic regression on the function scores produced
by the SVM. In contrast, our technique directly yields a sound predictive dis-
tribution instead of using a heuristically motivated transformation. We make
use of the idea of inducing point GPs to develop a scalable inference method
for the Bayesian nonlinear SVM. Sparse GPs using pseudo-inputs were first
introduced in [16]. Building on this idea Hensman et al. developed a stochastic
variational inference scheme for GP regression and GP classification [7,10]. We
further extend this ideas to the setting of Bayesian nonlinear SVM.

3 The Bayesian SVM Model

Let D = {xi, yi}n
i=1 be n observations where xi ∈ R

d is a feature vector with
corresponding labels yi ∈ {−1, 1}. The SVM aims to find an optimal score
function f by solving the following regularized risk minimization objective:

arg min
f

γR (f) +
n∑

i=1

max (0, 1 − yif(xi)) , (1)

where R is a regularizer function controlling the complexity of the decision func-
tion f , and γ is a hyperparameter to adjust the trade-off between training error
and the complexity of f . The loss max (0, 1 − yf(x)) is called hinge loss. The
classifier is then defined as sign(f(x)).

For the case of a linear decision function, i.e. f(x) = xT β, the SVM opti-
mization problem (1) is equivalent to estimating the mode of a pseudo-posterior

p(β|D) ∝
n∏

i=1

L(yi|xi, β)p(β).

Here p(β) denotes a prior such that log p(β) ∝ −2γR(β). In the following
we use the prior β ∼ N (0, Σ), where Σ ∈ R

d×d is a positive definite matrix.
From a frequentist SVM view, this choice generalizes the usual L2-regularization
to non-isotropic regularizers. Note that our proposed framework can be easily
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extended to other regularization techniques by adjusting the prior on β (e.g.
block �(2,p)-norm regularization which is known as multiple kernel learning [17]).
In order to obtain a Bayesian interpretation of the SVM, we need to define a
pseudolikelihood L such that the following holds,

L (y|x, f(·)) ∝ exp (−2max(1 − yif(xi), 0)) . (2)

By introducing latent variables λ := (λ1, . . . , λn)� (data augmentation) and
making use of integral identities stemming from function theory, [2] show that
the specification of L in terms of the following marginal distribution satisfies (2):

L(yi|xi, β) =
∫ ∞

0

1√
2πλi

exp

(
−1

2

(
1 + λi − yix

T
i β

)2

λi

)
dλi. (3)

Writing X ∈ R
d×n for the matrix of data points and Y = diag(y), the full

conditional distributions of this model are

β|λ,Σ,D ∼ N (
B(λ−1 + 1), B

)
,

λi|β,Di ∼ GIG (
1/2, 1, (1 − yix

�
i β)2

)
,

(4)

with Z = Y X, B−1 = ZΛ−1Z� + Σ−1, Λ = diag(λ) and where GIG denotes a
generalized inverse Gaussian distribution. The n latent variables λi of the model
scale the variance of the full posteriors locally. The model thus constitutes a
special case of a normal variance-mean mixture, where we implicitly impose the
improper prior p(λ) = 1[0,∞)(λ) on λ. This could be generalized by using a
generalized inverse Gaussian prior on λi, leading to a conjugate model for λi.
Henao et al. show that in the case of an exponential prior on λi, this leads to
a skewed Laplace full conditional for λi. Note that this, however, destroys the
equivalency to the frequentist linear SVM.

By using the ideas of Gaussian processes [9], Henao et al. develop a nonlinear
(kernelized) version of this model [3]. They assume a continuous decision function
f(x) to be drawn from a zero-mean Gaussian process GP(0, k), where k is a kernel
function. The random Gaussian vector f = (f1, . . . , fn)� corresponds to f(x)
evaluated at the data points. They substitute the linear function x�

i β by fi in
(3) and obtain the conditional posteriors

f |λ,D ∼ N (
CY (λ−1 + 1), C

)
,

λi|fi,Di ∼ GIG (
1/2, 1, (1 − yifi)2

)
,

(5)

with C−1 = Λ−1+K−1. For a test point x∗ the conditional predictive distribution
for f∗ = f(x∗) under this model is

f∗|λ, x∗,D ∼ N (
k�

∗ (K + Λ)−1Y (1 + λ), k∗∗ − k�
∗ (K + Λ)−1k∗

)
,

where K := k(X,X), kX∗ := k(X,x∗), k∗∗ := k(x∗, x∗). The conditional class
membership probability is

p(y∗ = 1|λ, x∗,D) = Φ

(
kT

∗ (K + Λ)−1Y (1 + λ)
1 + k∗∗ − k�∗ (K + Λ)−1k∗

)
,

where Φ(.) is the probit link function.



Bayesian Nonlinear SVMs for Big Data 311

Note that the conditional posteriors as well as the class membership probabil-
ity still depend on the local latent variables λi. We are interested in the marginal
predictive distributions, but unfortunately the latent variables cannot be inte-
grated out analytically. Both [2,3] propose MCMC-algorithms and stepwise infer-
ence schemes similar to EM-algorithms to overcome this problem. These methods
do not scale well to big data problems and the probability estimation still relies
on point estimates of the n-dimensional λ. We overcome these problems propos-
ing a scalable inference method and obtaining approximate marginal predictive
distributions (that are not conditioned on λ).

4 Scalable Inference and Automated Hyperparameter
Tuning

In the following we develop a fast and reliable inference method for the Bayesian
nonlinear SVM. Our method builds on the idea of using inducing points for
Gaussian Processes in a stochastic variational inference setting [7] that scales
easily to millions of data points. We proceed by first discussing a standard batch
variational scheme in Sect. 4.1 and then in Sect. 4.2 we develop our fast and
scalable inference method. We show how to automatically tune hyperparameters
in Sect. 4.3 and obtain uncertainty estimates for predictions in Sect. 4.4. Finally,
we discuss the special case of the Bayesian linear SVM in Sect. 4.5.

4.1 Batch Variational Inference

The idea of variational inference is to approximate the typically intractable pos-
terior of a probabilistic model by a variational (typically factorized) distribution.
We find the optimal approximating distribution by maximizing a lower bound
on the evidence (the so-called ELBO) with respect to the parameters of the
variational distribution, which is equivalent to minimizing the Kullback-Leibler
divergence between the variational distribution and the posterior [18,19].

In this section we first develop a batch variational inference scheme [18,19],
which uses the full dataset in every iteration. We follow the structured mean
field approach and choose the variational distributions within the same fami-
lies as the full conditional distributions q(f, λ) = q(f)

∏n
i=1 q(λi), with q(f) ≡

N (μ, ζ)andq(λi) ≡ GIG(1/2, 1, αi). The coordinate ascent updates can be com-
puted by the expected natural parameters of the corresponding full conditionals
(5) leading to

αi = Eq(f)[(1 − yifi)2] = (1 − y�
i μ)2 + y�

i ζyi,

ζ = Eq(λ)[
(
Λ−1 + K−1

)−1] =
(
A− 1

2 + K−1
)−1

,

μ = ζEq(λ)[Y (λ−1 + 1)] = ζY (α− 1
2 + 1).

This concludes the batch variational inference scheme.
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The downside of this approach is that it does not scale to big datasets. The
covariance matrix of the variational distribution q(f) has dimension n × n and
has to be updated and inverted at every inference step. This operation exhibits
the computational complexity O(n3), where n is the number of data points.
Furthermore, in this setup we cannot apply stochastic gradient descent. We
show how to overcome both problems in the next section paving the way to
perform inference on big datasets.

4.2 Stochastic Variational Inference Using Inducing Points

We aim to develop a stochastic variational inference (SVI) scheme using only
minibatches of the data in each iteration. The Bayesian nonlinear SVM model
does not exhibit a set of global variables. Both the number of latent variables
λ and the observations of the latent GP f grow with number of data points
(c.f. Eq. 5), i.e. they are local variables. This hinders us from directly developing
a SVI scheme. We make use of the concept of inducing points [7] imposing a
sparse GP acting as global variable. This allows us to apply SVI and reduces
the complexity to O(m3), where m is the number of inducing points, which is
independent of the number of data points.

We augment our original model (5) with m < n inducing points. Let u ∈ R
m

be pseudo observations at inducing locations {x̂1, . . . , x̂m}. We employ a prior
on the inducing points, p(u) = N (0,Kmm) and connect f and u setting

p(f |u) = N (KnmK−1
mmu, K̃) (6)

where Kmm is the kernel matrix resulting from evaluating the kernel func-
tion between all inducing points locations, Knm is the cross-covariance between
the data points and the inducing points and K̃ is given by K̃ = Knn −
KnmK−1

mmKmn. The augmented model exhibits the joint distribution

p(y, u, f, λ) = p(y, λ|f)p(f |u)p(u).

Note that we can recover the original joint distribution by marginalizing
over u. We now aim to apply the methodology of variational inference to the
marginal joint distribution p(y, u, λ) =

∫
p(y, u, f, λ)df . We impose a variational

distribution q(u) = N (u|μ, ζ) on the inducing points u. We follow [7] and apply
Jensen’s inequality to obtain a lower bond on the following intractable condi-
tional probability,

log p(y, λ|u) = logEp(f |u) [p(y, λ|f)]
≥ Ep(f |u) [log p(y, λ|f)]

=
n∑

i=1

Ep(fi|u) [log p(yi, λi|fi)]

=
n∑

i=1

Ep(fi|u)

[
log

(
(2πλi)− 1

2 exp
(

−1
2

(1 + λi − yifi)2

λi

))]
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c= −1
2

n∑

i=1

Ep(fi|u)

[
log λi +

(1 + λi − yifi)2

λi

]

= −1
2

n∑

i=1

(
log λi +

1
λi

Ep(fi|u)
[
(1 + λi − yifi)2

])

= −1
2

n∑

i=1

(
log λi +

1
λi

(
K̃ii +

(
1 + λi − yiKimK−1

mmu
)2)

)

= : L1.

Plugging the lower bound L1 into the standard evidence lower bound (ELBO)
[18] leads to the new variational objective

log p(y) ≥ Eq [log p(y, λ, u)] − Eq [log q(λ, u)]
= Eq [log p(y, λ|u)] + Eq [log p(u)] − Eq [log q(λ, u)]
≥ Eq [L1] + Eq [log p(u)] − Eq [log q(λ, u)] (7)

= −1
2

n∑

i=1

Eq

[
log λi +

1
λi

(
K̃ii +

(
1 + λi − yiKimK−1

mmu
)2)

]

−KL (q(u)||p(u)) − Eq(λ) [log q(λ)]
= : L.

The expectations can be computed analytically (details are given in the
appendix) and we obtain L in closed form,

L c=
1
2

log |ζ| − 1
2
tr(K−1

mmζ) − 1
2
μ�K−1

mmμ + y�κμ

+
n∑

i=1

{
log(B 1

4
(
√

αi)) +
1
2

log(αi)
}

(8)

−
n∑

i=1

1
2
α

− 1
2

i

(
1 − αi − 2yiκi.μ +

(
κ(μμ� + ζ)κ� + K̃

)

ii

)
,

where κ = KnmK−1
mm and B 1

2
(.) is the modified Bessel function with parameter 1

2

[20]. This objective is amenable to stochastic optimization where we subsample
from the sum to obtain a noisy gradient estimate. We develop a stochastic vari-
ational inference scheme by following noisy natural gradients of the variational
objective L. Using the natural gradient over the standard euclidean gradient
is often favorable since natural gradients are invariant to reparameterization of
the variational family [21,22] and provide effective second-order optimization
updates [6,23]. The natural gradients of L w.r.t. the Gaussian natural parame-
ters η1 = ζ−1μ, η2 = − 1

2ζ−1 are

∇̃η1L = κ�Y (α− 1
2 + 1) − η1 (9)

∇̃η2L = −1
2
(K−1

mm + κ�A− 1
2 κ) − η2, (10)
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with A = diag(α). Details can be found in the appendix. The natural gradi-
ent updates always lead to a positive definite covariance matrix2 and in our
implementation ζ has not to be parametrized in any way to ensure positive-
definiteness. The derivative of L w.r.t. αi is

∇αL = (1−yiκiμ)
2+yi(κiζκ�

i + ˜Kii)yi

4
√

αi
3 − 1

4
√

αi
. (11)

Setting it to zero gives the coordinate ascent update for αi,

αi = (1 − yiκiμ)2 + yi(κiζκ�
i + K̃ii)yi.

Details can be found in the appendix. The inducing point locations can be
either treated as hyperparameters and optimized while training [24] or can be
fixed before optimizing the variational objective. We follow the first approach
which is often preferred in a stochastic variational inference setup [7,10]. The
inducing point locations can be either randomly chosen as subset of the training
set or via a density estimator. In our experiments we have observed that the
k-means clustering algorithm (kMeans) [25] yields the best results. Combining
our results, we obtain a fast stochastic variational inference algorithm for the
Bayesian nonlinear SVM which is outlined in Algorithm1. We apply the adaptive
learning rate method described in [26].

Algorithm 1. Inducing point SVI
1: set the learning rate schedule ρt appropriately
2: initialize η1, η2

3: select m inducing points locations (e.g. via kMeans)

4: compute kernel matrices K−1
mm and ˜K = Knn − KnmK−1

mmKmn

5: while not converged do
6: get S = minibatch index set of size s
7: update αi = (1 − yiκiμ)2 + yi(κiζκ�

i + ˜Kii)yi

8: compute AS = diag(αi, i ∈ S)

9: compute η̂1 = κ�Y (α− 1
2 + 1)

10: compute η̂2 = − 1
2
(K−1

mm + κ�A− 1
2 κ)

11: update η1 = (1 − ρt)η1 + ρtη̂1

12: update η2 = (1 − ρt)η2 + ρtη̂2

13: compute ζ = − 1
2
η−1
2

14: compute μ = ζη1

15: return α1, . . . , αn, μ, ζ

4.3 Auto Tuning of Hyperparameters

The probabilistic formulation of the SVM lets us directly learn the hyperparam-
eters while training. To this end we maximize the marginal likelihood p(y|X,h),

2 This follows directly since Kmm and A− 1
2 are positive definite.
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where h denotes the set of hyperparameters (this approach is called empirical
Bayes [27]). We follow an approximate approach and optimize the fitted varia-
tional lower bound L(h) over h by alternating between optimization steps w.r.t.
the variational parameters and the hyperparameters [28]. We include a gradient
ascent step w.r.t. h after multiple variational updates in the SVI scheme, this is
commonly known as Type II maximum likelihood (ML-II) [9]

h(t) = h(t−1) + ρ̃t∇hL(α(t−1), μ(t−1), ζ(t−1), h). (12)

Since the standard SVM does not exhibit a probabilistic formulation, the
hyperparameters have to be tuned via computationally very expensive methods
as grid search and cross validation. Our approach allows us to estimate the
hyperparameters during training time and lets us follow gradients instead of
only evaluating single hyperparameters.

In the appendix we provide the gradient of the variational objective L w.r.t.
to a general kernel and show how to optimize arbitrary differentiable hyper-
parameters. Our experiments exemplify our automated hyperparameter tuning
approach by optimizing the hyper parameter of an RBF kernel.

4.4 Uncertainty Predictions

Besides the advantage of automated hyperparameter tuning, the probabilistic
formulation of the SVM leads directly to uncertainty estimates of the predictions.
The standard SVM lacks this capability, and only heuristic approaches as e.g.
Platt [8] exist. Using the approximate posterior q(u|D) = N (u|μ, ζ) obtained by
our stochastic variational inference method (Algorithm1) we compute the class
membership probability for a test point x∗,

p(f∗|x∗,D) =
∫

p(y∗|u, x∗)p(u|D)du

≈
∫

p(y∗|u, x∗)q(u|D)du

= N (
y∗|K∗mK−1

mmm, K∗∗ − K∗mK−1
mm(Km∗ + ζK−1

mmKm∗)
)

=: q(f∗|x∗,D),

where K∗m denotes the kernel matrix between test and inducing points and
K∗∗ the kernel matrix between test points. This leads to the approximate class
membership distribution

q(y∗|x∗,D) = Φ
(

K∗mK−1
mmm

K∗∗−K∗mK−1
mm(Km∗+ζK−1

mmKm∗)+1

)
(13)

where Φ(.) is the probit link function. Note that we already computed inverse
K−1

mm for the training procedure leading to a computational overhead stemming
only from simple matrix multiplication. Our experiments show that (13) leads
to reasonable uncertainty estimates.
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4.5 Special Case of Linear Bayesian SVM

We now consider the special case of using a linear kernel. If we are interested in
this case we may consider the Bayesian model for the linear SVM proposed by
Polson et al. (c.f. Eq. 4). This can be favorable over using the nonlinear version
since this model is formulated in primal space and, therefore, the computational
complexity depends on the dimension d and not on the number of data points
n. Furthermore, focusing directly on the linear model allows us to optimize the
true ELBO, Eq [log p(y, λ, β)] − Eq [log q(λ, β)], without the need of relying on a
lower bound (as in Eq. 7). This typically leads to a better approximate posterior.

We again follow the structured mean field approach and chose our variational
distributions to be in the same families as the full conditionals (4),

q(λi) ≡ GIG( 12 , 1, αi) and q(β) ≡ N (μ, ζ).

We use again the fact that the coordinate updates of the variational param-
eters can be obtained by computing the expected natural parameters of the
corresponding full conditionals (4) and obtain

αi = (1 − zT
i μ)2 + zT

i ζzi

ζ = (ZA− 1
2 ZT + Σ−1)−1 (14)

μ = ζZ(α− 1
2 + 1),

where α = (αi)1≤i≤n, A = diag(α) and Z = Y X. Since the Bayesian Linear
SVM model exhibits global and local variables we can directly employ stochastic
variational inference by subsampling the data and only updating minibatches
of α. Note that for the linear case the covariance matrices have size d × d, i.e.
being independent of the number of data points. Therefore, the SVI Algorithm
(14) for the Bayesian Linear SVM exhibits the computational complexity O(d3).
Luts et al. develop a batch variational inference scheme for the Bayesian linear
SVM but do not scale to big datasets.

The hyperparameter can be tuned analogously to (12). The class membership
probabilities are

p(y∗ = 1|x∗,D) ≈
∫

Φ(f∗)p(f∗|f, x∗)q(f |D)dfdf∗ = Φ

(
x�

∗ μ

x�∗ ζx∗ + 1

)
,

where x∗ are the test points and q(f |D) = N (f |μ, ζ) the approximate posterior
obtained by the above described SVI scheme.

5 Experiments

We compare our approach against the expectation conditional maximization
(ECM) method proposed by Henao et al. [3], Gaussian process classification
(GPC) [9], its recently proposed scalable stochastic variational inference version
(S-GPC) [10], and libSVM with Platt scaling [8,29] (SVM + Platt). For all
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experiments we use an RBF kernel3 with length-scale parameter θ. We perform
all experiments using only one CPU core with 2.9 GHz and 386 GB RAM.
Code is available at github.com/theogf/BayesianSVM.

5.1 Prediction Performance and Uncertainty Estimation

We experiment on seven real-world datasets and compare the prediction perfor-
mance, the quality of the uncertainty estimates and run time of the methods. The
results are presented in Table 1. We show that our method (S-BSVM) is up to
22 times faster than the direct competitor ECM and up to 700 times faster than
Gaussian process classification4 while outperforming the competitors in terms
of prediction performance and quality of uncertainty estimates in most cases.
The non-probabilistic SVM is naturally the fastest method. Combined with the
heuristic Platt scaling approach it leads to class membership probabilities but,

Table 1. Average prediction error and Brier score with one standard deviation.

Dataset n dim S-BSVM ECM GPC SVM+Platt

Breast cancer 263 9 Error .26 ± .07 .27± .10 .27± .07 .27± .09

Brier score .18 ± .03 .19± .05 .18 ± .03 .19± .04

Time [s] 0.32 1.4 6.7 0.04

Diabetes 768 8 Error .22 ± .06 .25± .07 .23± .07 .24± .07

Brier score .16± .04 .17± .04 .15 ± .04 .16± .04

Time [s] 3.9 33 67 0.11

Flare 144 9 Error .36 ± .12 .36 ± .12 .36 ± .11 .36 ± .12

Brier score .22 ± .05 .25± .07 .24± .03 .24± .04

Time [s] 0.08 0.26 1.8 0.01

German 1000 20 Error .24 ± .11 .25± .12 .25± .13 .27± .10

Brier score .17 ± .06 .17 ± .05 .17 ± .06 .18± .05

Time [s] 12 80 115 0.15

Heart 270 13 Error .16 ± .06 .19± .09 .16 ± .06 .17± .07

Brier score .13± .04 .14± .04 .12 ± .03 .12 ± .04

Time [s] 0.34 2.2 6 0.04

Splice 2991 60 Error .13± .03 .11 ± .03 .32± .14 .14± .01

Brier score .17± .01 .18± .01 .40± .14 .11 ± .01

Time [s] 18 406 419 1.3

Waveform 5000 21 Error .09 ± .02 .10± .02 .10± .02 .10± .02

Brier score .06 ± .01 .15± .01 .06 ± .01 .06 ± .01

Time [s] 12.5 264 8691 2.3

3 The RBF kernel is defined as k(x1, x2, θ) = exp
(

− ||x1−x2||
θ2

)

, where θ is the length

scale parameter.
4 For a comparison with the stochastic variational inference version of GPC, see

Sect. 5.3.

https://github.com/theogf/BayesianSVM
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however, still lacks the advantages of a probabilistic model (as e.g. uncertainty
quantification of the learned parameters and automatic hyperparameter tuning).

To evaluate the quality of the uncertainty estimates we compute the Brier
score which is considered as a good performance measure for probabilistic pre-
dictions [30] being defined as BS = 1

n

∑N
i=1 (yi − q(xi))

2, where yi ∈ {0, 1} is the
observed output and q(xi) ∈ [0, 1] is the predicted class membership probability.
Note that smaller Brier score indicates better performance.

The datasets are all from the Rätsch benchmark datasets [31] commonly
used to test the accuracy of binary nonlinear classifiers. We perform a 10-fold
cross-validation and use an RBF kernel with fixed parameters for all methods.
For S-BSVM we choose the number of inducing points as 20% of the training set
size, except for the datasets Splice, German and Waveform where we use 100
inducing points. For each dataset minibatches of 10 samples are used.

5.2 Big Data Experiments

We demonstrate the scalability of our method on the SUSY dataset [11] con-
taining 5 million points with 17 features. This dataset size is very common in
particle physics due to the simplicity of artificially generating new events as well
as the quantity of data coming from particle detectors. Since it is important to
have a sense of the confidence of the predictions for such datasets the Bayesian
SVM is an appropriate choice. We use an RBF kernel5, 64 inducing points and
minibatches of 100 points. The training of our model takes only 10 min without
any parallelization. We use the area under the receiver operating characteristic
(ROC) curve (AUC) as performance measure since it is a standard evaluation
measure on this dataset [11].

Our method achieves an AUC of 0.84 and a Brier score of 0.22, whereby the
state-of-the-art obtains an AUC of 0.88 using a deep neural network (5 layers,
300 hidden units each) [11]. Note that this approach takes much longer to train
and does not include uncertainty estimates.

5.3 Run Time

We examine the run time of our methods and the competitors. We include both
the batch variational inference method (B-BSVM) described in Sect. 4.1 and our
fast and scalable inference method (S-BSVM) described in Sect. 4.2 in the exper-
iments. For each method we iteratively evaluate the prediction performance on
a held-out dataset given a certain training time budget. The prediction error as
function of the training time is shown in Fig. 1. We experiment on the Waveform
dataset from the Rätsch benchmark dataset (N = 5000, d = 21). We use an
RBF kernel with fixed length-scale parameter θ = 5.0 and for the stochastic
variational inference methods, S-BSVM and S-GPC, we use a batch size of 10
and 100 inducing points.

5 The length scale parameter tuning is not included in the training time. We found
θ = 5.0 by our proposed automatic tuning approach.
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Our scalable method (S-BSVM) is around 10 times faster than the direct
competitor ECM while having slightly better prediction performance. The batch
variational inference version (B-BSVM) is the slowest of the Bayesian SVM infer-
ence methods. The related probabilistic model, Gaussian process classification,
is around 5000 times slower than S-BSVM. Its stochastic inducing point version
(S-GPC) has comparable run time to S-BSVM but is very unstable leading to
bad prediction performance. S-GPC showed these instabilities for multiple set-
tings of the hyperparameters. The classic SVM (libSVM) has a similar run time
as our method. The speed and prediction performance of S-BSVM depend on
the number of inducing points. See Sect. 5.5 for an empirical study. Note that
the run time in Table 1 is determined after the methods have converged.

Fig. 1. Prediction error on held-out dataset vs. training time.

5.4 Auto Tuning of Hyperparameters

In Sect. 4.3 we show that our inference method possesses the ability of automatic
hyperparameter tunning. In this experiment we demonstrate that our method,
indeed, finds the optimal length-scale hyperparameter of the RBF kernel. We
use the optimizing scheme (12) and alternate between 10 variational parameter
updates and one hyperparameter update. We compute the true validation loss of
the length-scale parameter θ by a grid search approach which consists of training
our model (S-BSVM) for each θ and measuring the prediction performance using
10-fold cross validation. In Fig. 2 we plot the validation loss and the length-scale
parameter found by our method. We find the true optimum by only using 5
hyperparameter optimization steps. Training and hyperparameter optimization
takes only 0.3 s for our method, whereas grid search takes 188 s (with a grid size
of 1000 points).
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Fig. 2. Average validation loss as function of the RBF kernel length-scale parameter θ,
computed by grid search and 10-fold cross validation. The red circle represents the
hyperparameter found by our proposed automatic tuning approach. (Color figure
online)

5.5 Inducing Points Selection

The sparse GP model used in our inference scheme builds on a set of inducing
points where both the number and the locations of the inducing points are
free parameters. We investigate three different inducing point selection methods:
random subset selection from the training set, the Gaussian Mixture Model
(GMM), and the k-means clustering algorithm with an improved k-means++
seeding (kMeans) [32]. Furthermore we show how the number of inducing points
affects the prediction accuracy and the run time. We test the three inducing
point selection methods on the USPS dataset [33] which we reduced to a binary
problem using only the digits 3 and 5 (N = 1350 and d = 256). For all methods we
progressively increase the number of inducing points and compute the prediction
error by 10-fold cross validation. We present our results in Fig. 3.

Fig. 3. Average prediction error and training time as functions of the number of induc-
ing points selected by two different methods with one standard deviation (using 10-fold
cross validation).
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The GMM is unable to fit large numbers of samples and dimensions and fails
to converge for almost all datasets tried, therefore, we do not include it in the
plot. Using the k-means selection algorithm leads for small numbers of inducing
points to much better prediction performance than random subset selection.
Furthermore, we show that using only a small fraction of inducing points (around
1% of the original dataset) leads to a nearly optimal prediction performance by
simultaneously significantly decreasing the run time. We observe similar results
on all datasets we considered.

6 Conclusion

We presented a fast, scalable and reliable approximate inference method for the
Bayesian nonlinear SVM. While previous methods were restricted to rather small
datasets our method enables the application of the Bayesian nonlinear SVM to
large real world datasets containing millions of samples. Our experiments showed
that our method is orders of magnitudes faster than the state-of-the-art while
still yielding comparable prediction accuracies. We showed how to automatically
tune the hyperparameters and obtain prediction uncertainties which is important
in many real world scenarios.

In future work we plan to further extend the Bayesian nonlinear SVM model
to deal with missing data and account for correlations between data points build-
ing on ideas from [34]. Furthermore, we want to develop Bayesian formulations
of important variants of the SVM as for instance one-class SVMs [35].
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