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Abstract. In a growing number of application domains, multiple fea-
ture representations or views are available to describe objects. Multi-view
clustering tries to find similar groups of objects across these views. This
task is complicated when the corresponding clusterings in each view show
poor agreement (conflicting views). In such cases, traditional multi-view
clustering methods will not benefit from using multi-view data. Here,
we propose to overcome this problem by combining the ideas of multi-
view spectral clustering with alternative clustering through kernel-based
dimensionality reduction. Our method automatically determines feature
transformations in each view that lead to an optimal clustering w.r.t to
a new proposed objective function for conflicting views. In our experi-
ments, our approach outperforms state-of-the-art multi-view clustering
methods by more accurately detecting the ground truth clustering sup-
ported by all views.

Keywords: Multi-view clustering · Alternative clustering
Conflicting views · Kernel dimensionality reduction

1 Introduction

In many application domains, it is commonplace that a single object can be
described by multiple feature representations or views. We will expect to obtain
a clustering of better quality if information on all views is taken into account.
Multi-view clustering tries to find similar groups of objects across different views,
with a number of methods having been proposed in the literature, including
Multi-view EM [1], Canonical Correlation Analysis for multi-view clustering [2],
Multi-view spectral clustering [3–5], Multi-view clustering with unsupervised fea-
ture selection [6,7] and Nonnegative Matrix Factorization [8]. All these methods
share the assumption of a common clustering structure across views, which is
interpreted as having the corresponding clusterings in each view in agreement
with a ground truth partitioning.
c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part II, LNAI 10535, pp. 826–842, 2017.
https://doi.org/10.1007/978-3-319-71246-8_50



Multi-view Spectral Clustering on Conflicting Views 827

However, in real-world datasets, certain views may contain subsets of features
with varying degrees of relatedness which may lead to multiple non-redundant
alternative clustering solutions in each view. For example, while clustering uni-
versity webpages by text features (words), some words such as ‘major’, ‘position’
or ‘homework’ will lead to a partitioning of webpages into categories such as
‘student’, ‘faculty’ and ‘course’. Alternatively, other words (e.g. ‘biology’, ‘cell’,
‘computer science’, ‘code’ etc.) will lead to a partitioning of webpages by their
department of affiliation, which is independent of the categories described before.
The final clustering will be closer to one of the partitionings but contaminated
by the other one.

Several methods [9–11] were proposed to tackle this alternative clustering
problem, but they only focus on single-view data. The problem exists in the
multi-view setting as well but it has received little attention. When the corre-
sponding clusterings in each view show poor agreement, we say that we have
conflicting views. The users may only be in favor of the underlying clustering
that is closer to the partitioning on one view. In such cases, traditional multi-
view clustering methods [1–3,5,6,8] will fail to be beneficial or may even be
harmful when using multi-view data.

Going back to our example of university webpages, if we consider webpages
comprised of two views: (a) text (words) and (b) hyperlinks, a clustering on
the text view will cluster webpages into a partitioning by categories (‘student’,
‘faculty’, ‘course’, etc.) since more word features are related to this partition.
Suppose users are interested in finding this partition. However, a clustering on
the hyperlink view will mainly partition webpages by their department of affili-
ation. This is due to the fact that, for example, students’ webpages may link to
the courses for which they are registered while webpages of faculty members are
linked to the pages of the courses which they teach. Therefore, the two views
conflict and their corresponding partitions are likely to disagree. In addition, as
mentioned before, the clustering on the text view is contaminated by word fea-
tures that lead to a partitioning of webpages by their department of affiliation
(partitioned on the hyperlinks view). We consider such an underlying structure
(e.g. department) which unduly influences the partitioning to be a confounder.
There might be useful information in the hyperlinks view, but this is masked
by the confounder. To unveil the desired clustering structure across conflicting
views, we need to find agreement between patterns across views and correct for
the confounder.

Our goal in this article is, therefore, to perform multi-view clustering on con-
flicting views and to correct for possible confounders. We define a novel objective
function that combines ideas of multi-view spectral clustering and alternative
clustering and propose a new algorithm MvKDR to solve it. More specifically, we
project each view onto two different subspaces where two alternative clusterings
can be found based on kernel dimensionality reduction [12,13]. With the prior
knowledge of which view is more informative, we then try to find a consensus par-
tition by maximizing the agreement between clusterings on one subspace from
each view and minimize the agreement between this consensus partition with
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the alternative clustering on the other subspaces from all views. The motivation
behind our method MvKDR is that conflicting views lead to disagreement (sta-
tistical independence) between the clusterings across different views. We aim
to maximize agreement (statistical dependence) between clusterings across all
views on the reduced subspaces and correct for possible confounders through
the process of finding an alternative clustering in each view.

Our motivating example for solving this problem of conflicting views comes
from cancer genomics. Here, patients are described by different views which con-
sist of molecular tests performed on their tissues. These are the expression level
of (a) genes and (b) DNA methylation. The aim is to discover cancer subtypes
by clustering the patients. DNA methylation is known to be a mechanism that
the cell uses to control gene expression, and so it is reasonable to expect an
intrinsic disease-related clustering across both views. However, we found in our
experiments that independent clusterings on the gene expression view and the
DNA methylation view show little agreement. This may be due to the fact that
not all genes or DNA methylation mechanisms are disease-related. Some biolog-
ical processes that affect both gene expression and DNA methylation may act
as confounders. In our experiments, we perform a survival analysis on gene and
DNA methylation expression data of cancer patients to show the effectiveness of
our proposed method MvKDR.

In regards to related work, and as mentioned before, most of the multi-view
clustering techniques in the literature [1–8] do not consider confounding fac-
tors and conflicting views, which are the focus of this paper. Christoudias et al.
[14] studied the multi-view problem in the presence of view disagreement but
in a supervised manner. The most related work are Pareto [15] and MVUFS [16].
Pareto is a multi-objective spectral clustering method based on pareto opti-
mization. However, Pareto performs on the Laplacian matrix in the full feature
space, which may fail to detect clustering structure that can only be found in
subspaces. MVUFS tries to do feature selection on the second view when it con-
flicts with the first one. The proposed MvKDR differs from MVUFS by considering
the correction of confounding factors across views. In our experiments, we com-
pare to Pareto and MVUFS, as well as other state-of-the-art multi-view clustering
approaches on both synthetic and real-world data. Our goal is to show the advan-
tages offered by our proposed method MvKDR by more accurately detecting the
underlying ground truth clusterings.

The remainder of this paper is organized as follows: in the following section we
describe the proposed multi-view spectral clustering model and describe the algo-
rithm in detail. Section 3 contains an extensive experimental evaluation. Section 4
concludes the paper with a summary of our work and future direction.

2 Multi-view Spectral Clustering on Conflicting Views

In this section, we first review the co-regularized multi-view spectral clustering
framework. We then extend it to our new model MvKDR with confounder cor-
rection by applying the technique of kernel dimensionality reduction. We finally
provide the optimization algorithm for solving the model.
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2.1 Co-regularized Spectral Clustering

Suppose we are given an m-view dataset of {X1, · · · ,Xm}, where Xv ∈ R
n×dv ,

n and dv are the number of samples and features in view v. Suppose the number
of true clusters k is known.

The kernel matrix of Xv is denoted as Kv and Dv is the degree matrix
of Kv. The normalized graph Laplacian for view v can be written as Lv =
D

− 1
2

v KvD
− 1

2
v . Based on this definition, co-regularized spectral clustering CoReg

[3] was proposed as:

max
All Uv

m∑

v=1
tr(UT

v LvUv) + λ
∑

v �=w

R(Uv, Uw),

s.t. UT
v Uv = I

(1)

where Uv ∈ R
n×k with v ∈ 1, ...,m, R(Uv, Uw) = tr(UvU

T
v UwUT

w ) is a regularizer
that measures the agreement between the embeddings Uv and Uw and λ trades-
off the spectral clustering objective and the embedding agreement. The problem
can be solved by alternating maximization cycling over the views with all but
one Uv fixed. Since alternating maximization converges to a local maximum,
CoReg usually starts with an informative view and performs k-means on the
final embedding of that view, with the assumption that we have prior knowledge
about views.

2.2 Multi-view Spectral Clustering with Kernel Dimensionality
Reduction

In the scenario of conflicting views, the agreement of embeddings from Laplacians
obtained in the full space will not be useful, or even worse, it can be harmful.
As mentioned before, our idea is to first project each view to a low-dimensional
subspace, and then maximize the agreement of embeddings from the Laplacians
calculated in the subspaces. To this effect, we propose the following model:

max
All Uv,Wv

m∑

v=1
tr(UT

v LvUv) + λ1

∑

v �=w

R(Uv, Uw),

s.t. UT
v Uv = I,WT

v Wv = I

Lv = D
− 1

2
v KWT

v Xv
D

− 1
2

v

(2)

where Wv ∈ R
dv×k is the projection matrix, KWT

v Xv
is the kernel matrix on

the projected subspace, Dv is the degree matrix of KWT
v Xv

and Lv is the corre-
sponding normalized graph Laplacian with v = 1, . . . ,m.

The model in (2) seeks a low-dimensional subspace for each view, where
the clustering structures are strong (as described by the first term) and the
dependence between these clustering embeddings (second term) is maximized.
By integrating dimensionality reduction into multi-view clustering, we can find
useful information in the projected subspace and maximize the agreement of
clusterings there.
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However, when there are confounders in the conflicting views, only searching
for agreement of spectral clustering in the reduced subspace is not enough. In
such cases, the low-dimensional subspace will still be affected by confounders
even after the dimensionality reduction.

To tackle this problem, assuming we have prior knowledge that the first view
has more discriminatory power with respect to the samples for users’ interest,
we try to find two non-redundant alternative clustering embeddings Uv and U ′

v

for each of all the other views. In addition to the regularizer that measures the
agreement between desired embeddings, we introduce another regularizer for
confounding correction. We propose our MvKDR model as:

max
All U,W

m∑

v=1
tr(UT

v LvUv) +
m∑

v=1
tr(U ′T

v L′
vU

′
v)

+λ1

∑

v �=w

R(Uv, Uw) − λ2

∑

v,w
R(Uv, U

′
w),

s.t. UTU = I,WTW = I,

L = D− 1
2 KWTXv

D− 1
2

(3)

where U ∈ {Uv, U
′
v}, W ∈ {Wv,W

′
v}, L ∈ {Lv, L

′
v}, and D ∈ {Dv,D

′
v} for

v = 1, . . . ,m. Wv, Uv and Lv are, respectively, the projection, embedding and
Laplacian matrix corresponding to the desired clustering in view v, and W ′

v, U ′
v

and L′
v are the projection, embedding and Laplacian matrix corresponding to

alternative clustering in view v, respectively.
The model in (3) corrects for confounders at the clustering stage which, as

discussed before, fits well in many real applications. It helps find strong cluster-
ing structures, through dimensionality reduction, in the consensus embedding Uv

(first term in the equation) and in the alternative embedding U ′
v (second term).

In addition, it maximizes the agreement/dependence between desired embed-
dings Uv and Uw from different views (third term), and minimizes the agree-
ment/dependence between consensus embedding Uv and alternative embedding
U ′
w in the other views to correct for confounders (fourth term).

The optimization problem in (3) can be solved by the technique of alternating
optimization and kernel dimensionality reduction, which is discussed in Sect. 2.3.

2.3 Optimization Algorithm

In this section, we propose an algorithm to solve the optimization problem in
(3). We take the alternating maximization strategy in the same way as in co-
regularized spectral clustering [3].

We first optimize for Uv by assuming all other variables fixed. For each Uv,
the optimization problem of (3) becomes that of (4):

max
Uv

tr(UT
v (Lv + λ1

∑

v �=w

UwUT
w − λ2

∑

w
U ′
wU ′T

w )Uv)

s.t. UT
v Uv = I

(4)

The objective function in (4) is the same as the one in spectral clustering with
a modified Laplacian matrix. We optimize each Uv with (4) by using eigenvalue
decomposition. U ′

v can be solved in the same way.
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We then optimize for Wv by assuming that all other variables are fixed. Note
that the optimization for each Wv and W ′

v is independent with Uv and U ′
v fixed.

Then, with all but one Wv fixed, the optimization problem becomes:

max
Wv

tr(D− 1
2

v UvU
T
v D

− 1
2

v KWT
v Xv

)

s.t. WT
v Wv = I,

(5)

This optimization problem can be solved by gradient ascent. For simplification,
we assume that Dv and D′

v are also fixed. Otherwise we can treat D
− 1

2
v KvD

− 1
2

v

as the kernel function and apply the chain rule to get the gradient. In practice,
we found that this strategy yields similar results compared to fixed Dv and D′

v.
We use the kernel dimensionality reduction (KDR) technique [12,13] to solve

the problem in (5) with an input kernel matrix G = D
− 1

2
v UvU

T
v D

− 1
2

v . Following
the scheme of gradient ascent, in each step we calculate the derivative of (5) with
a fixed kernel function, i.e. Gaussian kernel. We describe KDR in more detail
later and give an example of performing KDR with a Gaussian kernel.

Finally, we repeat these two steps alternatively until convergence. We obtain
the clustering by performing k-means on the resulting embedding of the first view
(the most informative one). Algorithm 1 provides a summary of our approach
MvKDR.

Algorithm 1: MvKDR
Data: X1, ..., Xm, k, λ1, λ2

Result: U1

// Initialization

1 for v ∈ 1, ..., m do
2 Kv, Dv, Lv, Uv = SpectralClustering(Xv);
3 Update Gv with (5);
4 Wv =KDR(Xv, Gv), W ′

v = Wv;

5 end
6 repeat

// Step 1: Given W, solve U
7 for v ∈ 1, ..., m do
8 Update Kv, Dv, Lv with WT

v Xv;

9 Update K′
v, D′

v, L′
v with W ′T

v Xv;

10 end
11 for v ∈ 1, ..., m do
12 Solve Uv, U ′

v with (4);
13 end

// Step 2: Given U, solve W
14 for v ∈ 1, ..., m do
15 Update Gv, G′

v with (5);
16 Wv =KDR(Xv, Gv), W ′

v =KDR(Xv, G
′
v);

17 end

18 until Converge;
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Kernel dimensionality reduction. We propose to use kernel dimensionality
reduction (KDR) to solve (5). KDR was first introduced by Fukumizu et al. [12]
for the purpose of regression. Given data X and response Y , KDR aims to find
the projection of X onto a subspace WTX that captures the dependency of X on
Y in the Reproducing kernel Hilbert space (RKHS) via two semidefinite kernels
KWTX and KY .

Wang et al. [13] extended it to the unsupervised case and employed another
kernel-based measure of independence, the Hilbert-Schmidt Independence Crite-
rion (HSIC) [17]. HSIC is the Hilbert-Schmidt norm of the cross-covariance oper-
ator on two random variables. Its empirical estimate is given by HSIC(X,Y ) =
tr(HKXHKY ), where H is a centering matrix [17]. The objective function of
the HSIC version of KDR can be written as:

max
WTW=I

tr(GKWTX), (6)

where G is the centralized input kernel matrix. This is exactly the same as our
optimization problem in (5).

Equation (6) can be solved by the steepest gradient ascent method with line
search. To fulfill the orthogonal constraints, the gradient is projected onto the
tangent space after each update.

With a Gaussian kernel, the function is defined as:

K(WTxi,W
Txj) = exp(−||WTxi − WTxj ||2

2σ2
), (7)

where xi is the ith sample of Xv. To simplify the formula, we write KWTXv
as

K. The derivative of (6) is shown in (8), where zi = WTxi is the ith sample
in the projected space. With the orthogonality constraint of W , the problem is
non-convex. But as shown in [12,13], the gradient based method works well in
practice.

∂(tr(GK))
∂W

=
n∑

i,j=1

Gi,j
∂Kij

∂W

=
n∑

i,j=1

(− 1
σ2

Gi,jKi,j(xi − xj)(xi − xj)TW )

=
n∑

i,j=1

(− 1
σ2

Gi,jKi,j(xi − xj)(zi − zj)T ),

(8)

Computational complexity. The computational runtime complexity of MvKDR
consists of two parts: O(n3) in general for eigen-decomposition of the Laplacian
matrix and O(n2dkt1t2) for the derivative calculation, where n is the number of
samples, d is the largest number of features in all views, k is the dimension of the
embedding and t1 and t2 are the numbers of iterations for the gradient ascent
in KDR and outer loops in Algorithm1 respectively. Both iterations converge
fast in our experiments. Therefore the complexity of MvKDR is empirically in the
same order as the multi-view spectral clustering method CoReg [3] when d � n.
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3 Experiments

In this section, we report our empirical clustering results by comparing the pro-
posed method MvKDR to a number of baseline methods on both synthetic and
real-world multi-view datasets. In addition, we use our method to perform a
survival analysis of cancer patients on two genomic datasets.

3.1 Baseline Algorithms and Setting

To demonstrate how clustering performance can be improved by our proposed
approach, we compared MvKDR with the following algorithms:

1. Single view (SPV1 and SPV2): Consists in running a spectral clustering on
each view separately.

2. Kernel addition (KerAdd): Adds kernels from different views and performs
spectral clustering.

3. Co-regularized spectral clustering (CoReg): Adopts the co-regularization
framework to spectral clustering, pairwise version as described in [3].

4. Multi-view unsupervised feature selection (MVUFS): Integrates sparse
unsupervised feature selection and non-negative matrix factorization into a
multi-view clustering framework [16].

5. Multi-view multi-objective spectral clustering (Pareto): Finds mul-
tiple alternative cuts across views with multi-objective Pareto optimiza-
tion [15].

6. Multiple non-redundant spectral clustering views (mSC): Finds multi-
ple non-redundant clustering solutions on a single view [11].

All the comparison methods need the number of clusters k to be predeter-
mined. We set k to be the true number of clusters when this is known as ground
truth. We choose Gaussian RBF kernel for all the methods and fix the parameter
σ using the median of pairwise distances of each view [17]. For methods using
KDR we project each view to k − 1 dimensional subspaces. For methods with a
regularization parameter, we set it to {10−2, 10−1, 100, 101, 102}, and determine
the best parameters with the smallest objective function of k-means. For all
methods, we initialize k-means with 10 random re-starts and record the average
of the objective function for parameter selection and to report the results. For
datasets with class labels, we measure the performance of the clustering methods
based on the accuracy (ACC) and the normalized mutual information (NMI),
which are widely used for evaluating clusterings. Please refer to [18] for detailed
definitions. The source code for Pareto and MVUFS was provided by the authors
[15,16]. We implemented all the rest of the methods. The source code of MvKDR
can be found online1.

1 https://github.com/BorgwardtLab/MvKDR.

https://github.com/BorgwardtLab/MvKDR
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3.2 Datasets

We evaluate the performance of all the above mentioned methods on three syn-
thetic datasets and on two real datasets: UCI and WebKB.

– Synthetic datasets: We generated three synthetic datasets containing views
with varying degrees of confounders to compare the performance of the meth-
ods listed in Sect. 3.1. The data generation process was as following. We ran-
domly drew 300 samples in 2D Euclidean space with three clusters in order,
each with 100 samples. Suppose the samples are represented by two 300-
dimensional column vectors [a1 a2], where ai = [aT

i,1 aT
i,2 aT

i,3]
T and ai,j ∈ R

100

for feature i = 1, 2, and cluster j = 1, 2, 3. We generated [a1,j a2,j ] from three
Gaussian distributions to get three clusters. These three clusters form the
main clustering of these 300 samples. We randomly drew two more vectors a3

and a4 in the same way but with random order of the samples, such that the
alternative clusterings by a3 and a4 are independent of the main clustering.
For these 300 samples with four features, we constructed View1 with a1 and
αa3 and, View2 with a2 and βa4. Three synthetic datasets were generated
with different α and β representing different amount of conflicting between
views.

– UCI datasets2: We chose six UCI benchmark datasets [19] for evaluation
as in [15], namely Hepatitis, Iris, Wine, Glass, Ionosphere, and Wdbc.
To construct the two views, we divided the features into two disjoint subsets
where the first view contains the first half of the features and the second view
the contains the remaining features. The divisions are performed on the data
after standardization.

– WebKB datasets3: This dataset contains information of webpages from
four universities in the US. We obtained a preprocessed dataset from a pre-
vious work [20]. Webpages from each university are document-samples, rep-
resented as 0/1-valued word vectors (View 1) and hyperlinks between docu-
ments (View 2). These webpages are classified into one of five classes: course,
faculty, student, project and staff. We performed clustering of samples from
each university as well as on all the samples. Similarly to the processing of
documents described in [3], we first reduced the dimensionality of both views
to 100 by Latent Semantic Analysis.

3.3 Results

Synthetic datasets. The clustering results of NMI/ACC on synthetic datasets
are reported in Table 1. The numbers in parentheses indicate the differences
between the obtained result and the best single-view clustering (SPV1). The
result is highlighted in bold if the improvement is at least 0.01.

From Table 1 we can see that the clusterings of View 1 and View 2 have
little agreement. Our proposed method MvKDR improves significantly over SPV1

2 https://archive.ics.uci.edu/ml/datasets.html.
3 http://linqs.umiacs.umd.edu/projects/projects/lbc/.

https://archive.ics.uci.edu/ml/datasets.html
http://linqs.umiacs.umd.edu/projects/projects/lbc/
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Table 1. NMI/ACC in % for synthetic data and difference to that of SPV1 in paren-
theses, the result is highlighted in bold if the improvement to SPV1 is more than 1%.

SPV1 SPV2 KerAdd CoReg mSC Pareto MVUFS MvKDR

NMI Syn1 71.5 0.80 40.6 (−30) 75.8 (+4.3) 71.3 (−0.2) 46.1 (−25) 57.9 (−13) 80.1 (+8.6)

Syn2 71.5 0.70 33.3 (−38) 71.8 (+0.3) 71.3 (−0.2) 52.7 (−18) 57.9 (−13) 74.6 (+3.1)

Syn3 53.9 0.70 5.60 (−48) 15.5 (−38) 54.2 (+0.3) 49.0 (−4.9) 45.5 (−8.4) 71.5 (+17)

ACC Syn1 91.9 38.2 62.9 (−29) 93.2 (+1.3) 91.7 (−0.2) 72.9 (−19) 82.8 (−9.1) 94.7 (+2.8)

Syn2 91.9 37.8 60.1 (−31) 91.9 (+0.0) 91.7 (−0.2) 76.6 (−15) 82.8 (−9.1) 93.0 (+1.1)

Syn3 81.5 37.8 44.2 (−37) 52.1 (−29) 81.8 (+0.4) 74.6 (−6.9) 74.3 (−7.2) 91.3 (+9.8)

and provides the best results in all scenarios with an average improvement in
NMI/ACC of +9.7%/4.6%. KerAdd, Pareto and MVUFS severely degrade the
clustering performance compared to SPV1 in all three datasets, with a reduc-
tion of NMI/ACC of −39.1%/32.7% for KerAdd, −18.7%/15.8% for Pareto and
−11.6%/8.4% for MVUFS. mSC performs almost the same as SPV1. CoReg can
improve the clustering quality on Syn1, but shows no benefit in Syn2, and its
performance degrades severely on Syn3 (−38.4%/29.4%).

UCI dataset. Table 2 shows the clustering results on the UCI datasets and,
in parentheses, the difference of NMI/ACC to the result of the best single-view
clustering (SPV1). As before, the result is highlighted in bold if the improve-
ment is at least 0.01. The Hepa and Iono datasets stand for Hepatitis and
Ionosphere respectively.

From Table 2 we can see that the clusterings on the two constructed views
for Hepatitis, Iris and Wdbc are not in agreement as the results of spectral
clustering on View 1 are much closer to the ground truth than those on View
2. For Wine and Glass we see the opposite behavior: the clusterings on each
view partly reflect the ground truth. For Ionosphere it is hard to draw any
conclusion because clustering on each view performs badly.

MvKDR improves the best single-view clustering on all six datasets, whether
there are conflicting views or not, with an average improvement in NMI/ACC of
+6.5%/2.7%. In addition, MvKDR provides the best results on one dataset, second
best results on two datasets, and third best results on the other three datasets.

CoReg can improve the clustering quality on four out of six datasets since
many of them have clusterings that agree across views, with an average improve-
ment in NMI/ACC of +4.8%/2.3%, which is inferior to the one obtained with
MvKDR. In addition, it cannot gain from the second view on Iris and its perfor-
mance degrades on Hepatitis.

The clustering performance of KerAdd is also degraded on datasets with
conflicting views such as Hepatitis, Iris and Wdbc, with an average degradation
of NMI/ACC of −27.8%/6.3%.

Pareto provides the best results on the Iris dataset, but its performance
degrades severely on the other five datasets with an average degradation in
NMI/ACC of −20.0%/11.1%. The reason might be that Pareto only considers
binary alternative cuts. It is not clear how to merge these binary cuts into higher
number of clusters.
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Table 2. NMI/ACC in % for UCI data and difference to that of SPV1 in parentheses,
the result is highlighted in bold if the improvement to SPV1 is more than 1%.

SPV1 SPV2 KerAdd CoReg mSC Pareto MVUFS MvKDR

NMI Hepa 25.9 7.40 19.3 (−6.6) 25.0 (−0.9) 21.8 (−4.1) 5.70 (−20) 25.1 (−0.8) 26.6 (+0.7)

Iris 67.3 10.7 32.9 (−34) 67.3 (+0.0) 67.7 (+0.4) 80.8 (+13) 3.80 (−63) 75.8 (+8.5)

Wine 75.7 54.7 88.4 (+12) 91.1 (+15) 60.6 (−15) 42.4 (−33) 9.40 (−66) 88.5 (+12)

Glass 37.9 25.2 43.1 (+5.2) 43.4 (+5.5) 44.0 (+6.1) 11.0 (−26) 24.1 (−13) 43.7 (+5.8)

Iono 9.50 9.60 12.0 (+2.5) 11.7 (+2.2) 10.0 (+0.5) 4.60 (−4.9) 16.8 (+7.3) 11.7 (+2.2)

Wdbc 51.3 3.50 49.9 (−1.4) 57.9 (+6.6) 58.6 (+7.3) 2.80 (−48) 46.5 (−4.8) 57.3 (+6.0)

ACC Hepa 77.4 61.9 72.9 (−4.5) 76.6 (−0.8) 71.0 (−6.4) 58.9 (−18) 76.9 (−0.5) 78.1 (+0.7)

Iris 94.0 69.0 82.0 (−12) 94.0 (+0.0) 94.0 (+0.0) 97.0 (+3.0) 51.0 (−43) 96.0 (+2.0)

Wine 92.1 84.3 97.2 (+4.9) 97.8 (+5.7) 83.4 (−8.7) 70.8 (−21) 49.7 (−42) 96.9 (+4.7)

Glass 71.5 56.5 76.2 (+4.7) 76.6 (+5.5) 78.5 (+7.0) 71.5 (+0.0) 59.3 (−12) 75.7 (+4.2)

Iono 68.4 69.2 70.1 (+0.9) 69.8 (+0.6) 69.5 (+1.5) 65.0 (−3.4) 75.1 (+6.7) 69.8 (+0.6)

Wdbc 89.6 63.3 87.2 (−2.4) 91.7 (+2.1) 92.1 (+2.5) 63.1 (−26) 87.9 (−1.7) 91.7 (+2.1)

MVUFS also provides the best results on Ionosphere, but is not effective on
the rest of datasets with an average degradation in NMI/ACC of −27.8%/15.3%.
This may be due to the fact that the dimensionality of the UCI datasets is rather
small, and this affects the method as it is based on feature selection.

As mentioned before, mSC tries to find multiple clustering solutions of a single
view. It is clear from the table that mSC improves over SPV1 on Glass and
Wdbc by only correcting possible confounders in a single view. This is a sign
that correction of confounders may indeed improve the clustering. However, mSC
performs much worse on the rest of the datasets because it only uses single view
information.

Figure 1 depicts the mean difference of NMI values of different methods with
regard to the best-performing technique on each dataset (i.e. the largest NMI
value obtained in any run). Similar observations can be seen for the ACC value,
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Fig. 1. The mean difference of NMI of different methods with respect to the best-
performing technique on each dataset, grouped by two cases: UCI and WebKB datasets.
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Table 3. NMI/ACC in % for Webkb data and difference to that of SPV1 in parentheses,
the result is highlighted in bold if the improvement to SPV1 is more than 1%.

SPV1 SPV2 KerAdd CoReg mSC Pareto MVUFS MvKDR

NMI Cor 41.4 6.60 27.0 (−14) 41.7 (+0.3) 40.0 (−1.) 14.1 (−27) 11.8 (−29) 45.1 (+3.7)

Tex 36.7 16.0 24.2 (−12) 25.6 (−11) 38.2 (+1.5) 11.5 (−25) 27.7 (−9.0) 37.9 (+1.2)

Was 34.9 7.80 33.4 (−1.5) 35.0 (+0.1) 32.9 (−2.0) 27.7 (−7.2) 20.7 (−14) 34.6 (−0.3)

Wis 33.0 6.50 40.2 (+7.2) 33.0 (+0.0) 34.4 (+1.4) 20.1 (−12) 6.30 (−26) 33.8 (+0.8)

All 16.5 5.70 10.7 (−5.8) 16.8 (+0.3) 15.9 (−0.6) 2.70 (−13) 11.6 (−4.9) 17.9 (+1.4)

ACC Cor 55.9 38.5 46.0 (−9.9) 54.4 (−1.5) 53.8 (−2.1) 38.5 (−17) 37.9 (−18) 57.2 (+1.3)

Tex 46.6 49.9 49.5 (−0.4) 47.1 (−2.8) 48.3 (−1.6) 35.9 (−10) 53.4 (+3.5) 48.0 (−1.9)

Was 50.5 39.1 48.8 (−0.7) 50.6 (+0.1) 49.3 (−1.2) 27.7 (−22) 42.3 (−8.2) 50.5 (+0.0)

Wis 50.9 37.4 59.9 (+9.9) 50.9 (+0.0) 52.0 (+1.1) 41.0 (−9.9) 40.1 (−10) 53.3 (+2.4)

All 41.9 28.3 34.7 (−7.9) 41.7 (−0.2) 41.3 (−0.6) 29.5 (−12) 38.9 (−3.0) 43.2 (+1.3)

which is not shown due to the space limitations. From the figure it is clear that
MvKDR outperforms all other methods on the UCI datasets.

WebKB dataset. Table 3 depicts the clustering results on the WebKB datasets.
Cor, Tex, Was and Wis stand for the dataset from University of Cornell, Texas,
Washington and Wisconsin. As it was the case for the UCI datasets, the improve-
ment/degradation compared to SPV1 is shown in parentheses, numbers are high-
lighted in bold if the improvement is at least 0.01.

In Table 3 we see that the clustering on the link view (View 2) hardly agrees
with the ground truth labels (on average, NMI of only 8.5%). The proposed
method MvKDR improves the best single-view clustering on all but one dataset
and provides the best results on two datasets and second best on the other two,
with an average improvement in NMI/ACC of +1.4%/0.6%. KerAdd performs
poorly on four out of five datasets compared to the best single view, with an
average of degradation in NMI/ACC of −5.4%/1.8%. CoReg outputs nearly the
same results as the best single view clustering on four datasets and has worse
performance on the other one. The clustering performance of Pareto degrades
on all five datasets (average degradation in NMI/ACC of −17.3%/12.2%), again
the reason is probably that it only considers alternative binary cuts and there
are five clusters in WebKB datasets. The performance of MVUFS also degrades
significantly on four out of five WebKB datasets (degradation in NMI/ACC
of −17.3%/12.2%). The reason might be the existence of confounders in the
conflicting views.

The overall NMI performance of different methods with regard to the best-
performing technique on WebKB datasets is also shown in Fig. 1. MvKDR outper-
forms all other methods and is the only method to improve the clustering only
on View 1. These experiments show the effectiveness of our proposed method
MvKDR when clustering with conflicting views.
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3.4 Cancer Patients Survival Analysis

We conducted additional analyses of cancer genomics data from The Cancer
Genome Atlas (TCGA) Research Network [21]. The data were preprocessed and
provided by Wang et al. [22] and it includes five cancer types: glioblastoma
multiforme (GBM), breast invasive carcinoma (BRCA), kidney renal clear cell
carcinoma (KIRC), colon adenocarcinoma (COAD) and lung squamous cell car-
cinoma (LUSC). For each type of cancer, we used gene expression and DNA
methylation expression data as two separate views for clustering. Our goal is to
identify clusters in which patients can be considered to have a specific cancer
subtype. This is a discovery process as there are no ground truth labels. Yet, we
have information about certain drugs that some patients took. We performed a
survival analysis on the stratified clusters from MvKDR and from the other meth-
ods and investigated if patients within a cluster had the same response to the
drug treatment (here response is measured as survival time). We expect to find
clusters of patients that respond the same to a drug treatment. We performed
a two-sample t-test within each cluster to compare whether the survival time is
significantly different between the patients that received the drug versus those
that did not.

Patients without drug treatment (or with missing drug information) were
removed from the analysis. We end up with 141 samples for GBM cancer, 76
samples for BRCA and 0, 20, 27 samples for COAD, KIRC and LUSC respec-
tively. Due to small sample sizes of other three cancer types, we perform the
survival analysis only on GBM and BRCA. We select the drug that is used by
most of patients in each cancer type, Temozolomide for GBM and Cytoxan for
BRCA. Of the 141 GBM patients, 95 were treated with Temozolomide and 52
out of the 76 BRCA patients were treated with Cytoxan.

To verify our assumption of conflicting views on this dataset, we first con-
ducted a spectral clustering on each view and measured the NMI value between
them. The NMI between clustering results from gene expression and DNA methy-
lation is only 0.021 and 0.051 for number of clusters k = 2 and k = 3, respectively.
This experiment shows that the gene expression view and DNA methylation view
conflict with each other.

Next we compare the our method MvKDR to the baseline method of Single
View spectral clustering SPV1 and SPV2 and state-of-the-art multi-view spectral
clustering method CoReg. Gene expression profiles are more often used to define
cancer subtypes, therefore we used this view as the more informative one for
CoReg and MvKDR. Similarly to the analyses on the UCI and WebKB datasets,
the parameters of CoReg and MvKDR were determined by the objective function of
k-means. We performed clustering with increasing number of clusters k, starting
from k = 2. For each cluster we conducted a two-sample t-test with different
variance of survival time for patients with and without the drug treatment. In
our analysis we found that when k > 6 the number of samples in a cluster is too
small and the clustering tends to be more correlated to the previous one with
smaller k.
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(b) k = 2, Cluster 1
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Fig. 2. Survival analysis of GBM patients for treatment with Temozolomide in the
whole dataset and two significant clusters found by MvKDR. The numbers in parenthe-
ses denote the number of patients in the group; the p-values are corrected for multiple
testing using the Bonferroni method.

MvKDR detects two significant clusters in regards to the survival analysis of
patients treated with the drug Temozolomide versus those not treated with it.
Figure 2 depicts the comparison of survival time for all patients and of patients
in the two discovered clusters. In cluster 0 with k = 6, patients with the drug
treatment had a significantly increased survival time with a p-value < 0.01 after
Bonferroni correction. In cluster 1 with k = 2 we make a similar observation
that treated patients live longer than untreated ones with a p-value < 0.05
after Bonferroni correction. For patients in the whole GBM dataset and in other
clusters found by MvKDR, we did not observe significant differences of survival time
between treated and untreated patients. This experiment shows that MvKDR can
discover meaningful subgroups of patients based on their genomic profiles, where
the drug treatment of Temozolomide can significantly increase the survival time.
These findings will be useful for recommendations of Temozolomide treatment
to patients with genomic profiles similar to those found by our model.

We further performed spectral clustering on each data view and CoReg on
both views, where SPV1 corresponds to the gene expression view and SPV2 to
the DNA methylation view. Both SPV1 and CoReg found one significant cluster
regarding survival time of treated and untreated patients of the drug after Bon-
ferroni corection. Figure 3 depicts the number of overlapping patients of all four
significant clusters found by SPV1, CoReg and MvKDR. From the figure we can see
that Cluster 2 found by MvKDR, Cluster 3 found by SPV1 and Cluster 4 found
by CoReg are essentially identical, with the majority of the patients overlapping.
Further, Cluster 2 found by MvKDR achieves the smallest p-value compared to the
other two. Cluster 1 found by MvKDR overlaps with the other three in only four
patients. This analysis shows that MvKDR is able to find useful clusters that can
be also detected by state-of-the-art methods. In addition, MvKDR discovers a novel
cluster that was missed by the comparison methods. One possible reason for this
could be that MvKDR unveils the masked information in the DNA methylation
view by using kernel dimensionality reduction and confounding correction.
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Cluster1 (MvKDR)
Corr. Pvalue: 0.023

Cluster2 (MvKDR)
Corr. Pvalue: 0.008

Cluster3 (SPView1)
Corr. Pvalue: 0.011

Cluster4 (CoReg)
Corr. Pvalue: 0.012

Fig. 3. Overlapping comparison of all four significant clusters of survival analysis on
GBM data from different methods. MvKDR detects Cluster 2 that is almost the same as
Cluster 3 (SPV1) and Cluster 4 (CoReg) with a smaller P-value of 0.008. In addition,
MvKDR finds a novel significant cluster (Cluster 1) missed by other methods.

We performed survival analysis on the BRCA dataset as well, where we
have similar observations as on GBM dataset. Specifically, MvKDR detects one
significant cluster of 51 patients regarding survival analysis of the drug Cytoxan
with a p-value of 0.036 after Bonferroni correction. SPV2 finds one significant
cluster of 50 patients with p-value of 0.005. The number of overlap of patients
between two groups is 33. This shows again that MvKDR can detect meaningful
and novel cluster compared to the baseline algorithms.

4 Conclusion

Most existing multi-view learning approaches suffer on conflicting views and con-
founders. In this work, we propose a new approach named MvKDR to find the desired
consensus clustering across different views, which is normally hidden or masked by
confounders in conflicting views. With prior knowledge about the most informa-
tive view, our main idea is to extract two kinds of independent information from
each of all the other views: the first is consistent with the desired consensus struc-
ture and the second is independent of it. The consensus clustering can be obtained
by the consistent information across all the views. Our experiments on synthetic
and real datasets show that the MvKDR significantly improves the clustering. In our
model, we assume that we have prior knowledge about the most informative view,
which in certain cases may be difficult to obtain in practice. If so, it is challenging
to distinguish which clustering is more interesting. The problem may be solved
in a semi-supervised manner with a few user inputs as constraints that guide the
direction of the dimensionality reduction. Extending our approach in this direc-
tion may be a topic of future work.
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