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Abstract. We present a simple generative framework for learning to
predict previously unseen classes, based on estimating class-attribute-
gated class-conditional distributions. We model each class-conditional
distribution as an exponential family distribution and the parameters
of the distribution of each seen/unseen class are defined as functions of
the respective observed class attributes. These functions can be learned
using only the seen class data and can be used to predict the parameters
of the class-conditional distribution of each unseen class. Unlike most
existing methods for zero-shot learning that represent classes as fixed
embeddings in some vector space, our generative model naturally repre-
sents each class as a probability distribution. It is simple to implement
and also allows leveraging additional unlabeled data from unseen classes
to improve the estimates of their class-conditional distributions using
transductive/semi-supervised learning. Moreover, it extends seamlessly
to few-shot learning by easily updating these distributions when provided
with a small number of additional labelled examples from unseen classes.
Through a comprehensive set of experiments on several benchmark data
sets, we demonstrate the efficacy of our framework.

1 Introduction

The problem of learning to predict unseen classes, also popularly known as
Zero-Shot Learning (ZSL), is an important learning paradigm which refers to
the problem of recognizing objects from classes that were not seen at training
time [13,26]. ZSL is especially relevant for learning “in-the-wild” scenarios, where
new concepts need to be discovered on-the-fly, without having access to labelled
data from the novel classes/concepts. This has led to a tremendous amount of
interest in developing ZSL methods that can learn in a robust and scalable man-
ner, even when the amount of supervision for the classes of interest is relatively
scarce.

A large body of existing prior work for ZSL is based on embedding the data
into a semantic vector space, where distance based methods can be applied to find
the most likely class which itself is represented as a point in the same semantic
space [20,26,33]. However, a limitation of these methods is that each class is
represented as a fixed point in the embedding space which does not adequately
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account for intra-class variability [2,18]. We provide a more detailed overview of
existing work on ZSL in the Related Work section.

Another key limitation of most of the existing methods is that they usually
lack a proper generative model of the data. Having a generative model has several
advantages [19]. For example, (1) data of different types can be modeled in a
principled way using appropriately chosen class-conditional distributions; (2)
unlabeled data can be seamlessly integrated (for both seen as well as unseen
classes) during parameter estimation, leading to a transductive/semi-supervised
estimation procedure, which may be useful when the amount of labeled data for
the seen classes is small, or if the distributions of seen and unseen classes are
different from each other [11]; and (3) a rich body of work, both frequentist and
Bayesian, on learning generative models [19] can be brought to bear during the
ZSL parameter estimation process.

Motivated by these desiderata, we present a generative framework for zero-
shot learning. Our framework is based on modelling the class-conditional distri-
butions of seen as well as unseen classes using exponential family distributions [3],
and further conditioning the parameters of these distributions on the respective
class-attribute vectors via a linear/nonlinear regression model of one’s choice.
The regression model allows us to predict the parameters of the class-conditional
distributions of unseen classes using only their class attributes, enabling us to
perform zero-shot learning.

In addition to the generality and modelling flexibility of our framework,
another of its appealing aspects is its simplicity. In contrast with various other
state-of-the-art methods, our framework is very simple to implement and easy
to extend. In particular, as we will show, parameter estimation in our frame-
work simply reduces to solving a linear/nonlinear regression problem, for which
a closed-form solution exists. Moreover, extending our framework to incorporate
unlabeled data from the unseen classes, or a small number of labelled exam-
ples from the unseen classes, i.e., performing few-shot learning [17,23] is also
remarkably easy under our framework which models class-conditional distribu-
tions using exponential family distributions with conjugate priors.

2 A Generative Framework for ZSL

In zero-shot learning (ZSL) we assume there is a total of S seen classes and U
unseen classes. Labelled training examples are only available for the seen classes.
The test data is usually assumed to come only from the unseen classes, although
in our experiments, we will also evaluate our model for the setting where the
test data could come from both seen and unseen classes, a setting known as
generalised zero-shot learning [6].

We take a generative modeling approach to the ZSL problem and model the
class-conditional distribution for an observation x from a seen/unseen class c
(c = 1, . . . , S + U) using an exponential family distribution [3] with natural
parameters θc

p(x |θc) = h(x ) exp
(
θ�

c φ(x ) − A(θc)
)

(1)
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where φ(x ) denotes the sufficient statistics and A(θc) denotes the log-partition
function. We also assume that the distribution parameters θc are given conjugate
priors

p(θc|τ 0,ν0) ∝ exp(θ�
c τ 0 − ν0A(θc)) (2)

Given a test example x ∗, its class y∗ can be predicted by finding the class
under which x ∗ is most likely (i.e., y∗ = arg maxc p(x ∗|θc)), or finding the class
that has the largest posterior probability given x ∗ (i.e., y∗ = arg maxc p(θc|x ∗)).
However, doing this requires first estimating the parameters {θc}S+U

c=S+1 of all the
unseen classes.

Given labelled training data from any class modelled as an exponential fam-
ily distribution, it is straightforward to estimate the model parameters θc using
maximum likelihood estimation (MLE), maximum-a-posteriori (MAP) estima-
tion, or using fully Bayesian inference [19]. However, since there are no labelled
training examples from the unseen classes, we cannot estimate the parameters
{θc}S+U

c=S+1 of the class-conditional distributions of the unseen classes.
To address this issue, we learn a model that allows us to predict the param-

eters θc for any class c using the attribute vector of that class via a gating
scheme, which is basically defined as a linear/nonlinear regression model from
the attribute vector to the parameters. As is the common practice in ZSL, the
attribute vector of each class may be derived from a human-provide description
of the class or may be obtained from an external source such as Wikipedia in
form of word-embedding of each class. We assume that the class-attribute of
each class is a vector of size K. The class-attribute of all the classes are denoted
as {ac}S+U

c=1 , ac ∈ R
K .

2.1 Gating via Class-Attributes

We assume a regression model from the class-attribute vector ac to the parame-
ters θc of each class c. In particular, we assume that the class-attribute vector ac

is mapped via a function f to generate the parameters θc of the class-conditional
distribution of class c, as follows

θc = fθ(ac) (3)

Note that the function fθ itself could consist of multiple functions if θc consists
of multiple parameters. For concereteness, and also to simplify the rest of the
exposition, we will focus on the case when the class-conditional distribution is
a D dimensional Gaussian, for which θc is defined by the mean vector μc ∈ R

D

and a p.s.d. covariance matrix Σc ∈ SD×D
+ . Further, we will assume Σc to be a

diagonal matrix defined as Σc = diag(σ2
c) where σ2

c = [σ2
c1, . . . , σ

2
cD]. Note that

one can also assume a full covariance matrix but it will significantly increase the
number of parameters to be estimated. We model μc and σ2

c as functions of the
attribute vector ac

μc = fμ(ac) (4)
σ2

c = fσ2(ac) (5)
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Note that the above equations define two regression models. The first regres-
sion model defined by the function fμ has ac as the input and μc as the output.
The second regression model defined by fσ2 has ac as the input and σ2 as the
output. The goal is to learn the functions fμ and fσ2 from the available train-
ing data. Note that the form of these functions is a modelling choice and can be
chosen appropriately. We will consider both linear as well as nonlinear functions.

2.2 Learning the Regression Functions

Using the available training data from all the seen classes c = 1, . . . , S, we
can form empirical estimates of the parameters {μ̂c, σ̂

2
c}S

c=1 of respective class-
conditional distributions using MLE/MAP estimation. Note that, since our
framework is generative, both labeled as well as unlabeled data from the seen
classes can be used to form the empirical estimates {μ̂c, σ̂

2
c}S

c=1. This makes our
estimates of {μ̂c, σ̂

2
c}S

c=1 reliable even if each seen class has very small number
of labeled examples. Given these estimates for the seen classes

μ̂c = fμ(ac) c = 1, . . . , S (6)
σ̂2

c = fσ2(ac) c = 1, . . . , S (7)

We can now learn fμ using “training” data {ac, μ̂c}S
c=1 and learn fσ2 using

training data {ac, σ̂2
c}S

c=1. We consider both linear and nonlinear regression
models for learning these.

The Linear Model. For the linear model, we assume μ̂c and σ̂2
c to be linear

functions of the class-attribute vector ac, defined as

μ̂c = Wμac c = 1, . . . , S (8)
ρ̂c = log σ̂2

c = Wσ2ac c = 1, . . . , S (9)

where the regression weights Wμ ∈ R
D×K , Wσ2 ∈ R

D×K , and we have re-
parameterized σ̂2

c ∈ R
D
+ to ρ̂c ∈ R

D as ρ̂c = log σ̂2
c .

We use this re-parameterization to map the output space of the second regres-
sion model fσ2 (defined by Wσ2) to real-valued vectors, so that a standard
regression model can be applied (note that σ̂2

c is positive-valued vector).

Estimating Regression Weights of Linear Model: We will denote M =
[μ̂1, . . . , μ̂S ] ∈ R

D×S , R = [ρ̂1, . . . , ρ̂S ] ∈ R
D×S , and A = [a1, . . . ,aS ] ∈ R

K×S .
We can then write the estimation of the regression weights Wμ as the following
problem

Ŵμ = arg min
Wμ

||M − WμA||22 + λμ||Wμ||22 (10)

This is essentially a multi-output regression [7] problem Wμ : as �→ μ̂s with
least squares loss and an �2 regularizer. The solution to this problem is given by

Ŵμ = MA�(AA� + λμIK)−1 (11)
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Likewise, we can then write the estimation of the regression weights Wσ2 as
the following problem

Ŵσ2 = arg min
Wσ2

||R − Wσ2A||22 + λσ2 ||Wσ2 ||22 (12)

The solution of the above problem is given by

Ŵσ2 = RA�(AA� + λσ2IK)−1 (13)

Given Ŵμ and Ŵσ2 , parameters of the class-conditional distribution of each
unseen class c = S + 1, . . . , S + U can be easily computed as follows

μ̂c = Ŵμac (14)

σ̂2
c = exp(ρ̂c) = exp(Ŵσ2ac) (15)

The Nonlinear Model: For the nonlinear case, we assume that the inputs
{ac}S

c=1 are mapped to a kernel induced space via a kernel function k with an
associated nonlinear mapping φ. In this case, using the representer theorem [24],
the solution for the two regression models fμ and fσ2 can be written as the
spans of the inputs {φ(ac)}S

c=1. Note that mappings φ(ac) do not have to be
computed explicitly since learning the nonlinear regression model only requires
dot products φ(ac)�φ(ac′) = k(ac,ac′) between the nonlinear mappings of two
classes c and c′.

Estimating Regression Weights of Nonlinear Model: Denoting K to be
the S × S kernel matrix of the pairwise similarities of the attributes of the seen
classes, the nonlinear model fμ is obtained by

α̂μ = arg min
αμ

||M − αμK||22 + λμ||αμ||22 (16)

where α̂μ is a D×S matrix consists of the coefficients of the span of {φ(ac)}S
c=1

defining the nonlinear function fμ .
Note that the problem in Eq. 16 is essentially a multi-output kernel ridge

regression [7] problem, which has a closed form solution. The solution for α̂μ is
given by

α̂μ = M(K + λμIS)−1 (17)

Likewise, the nonlinear model fσ2 is obtained by solving

α̂σ2 = arg min
ασ2

||M − ασ2K||22 + λσ2 ||ασ2 ||22 (18)

where α̂σ2 is a D×S matrix consists of the coefficients of the span of {φ(ac)}S
c=1

defining the nonlinear function fσ2 . The solution for α̂σ2 is given by

α̂σ2 = R(K + λμIS)−1 (19)
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Given α̂μ, α̂σ2 , parameters of class-conditional distribution of each unseen
class c = S + 1, . . . , S + U will be

μ̂c = α̂μk c (20)
σ̂2

c = exp(ρ̂c) = exp(α̂σ2k c) (21)

where k c = [k(ac,a1), . . . , k(ac,aS)]� denotes an S × 1 vector of kernel-based
similarities of the class-attribute of unseen class c with the class-attributes of all
the seen classes.

Other Exponential Family Distributions: Although we illustrated our
framework taking the example of Gaussian class-conditional distributions, our
framework readily generalizes to the case when these distributions are mod-
elled using any exponential family distribution. The estimation problems can be
solved in a similar way as the Gaussian case with the basic recipe remaining
the same: Form empirical estimates of the parameters Θ = {θ̂c}S

c=1 for the seen
classes using all the available seen class data and then learn a linear/nonlinear
regression model from the class-attributes A (or their kernel representation K
in the nonlinear case) to Θ.

In additional to its modeling flexibility, an especially remarkable aspect of our
generative framework is that it is very easy to implement, since both the linear
model as well as the nonlinear model have closed-form solutions given by Eqs. 11,
13, 17 and 19, respectively (the solutions will be available in similar closed-
forms in the case of other exponential family distributions). A block-diagram
describing our framework is shown in Fig. 1. Note that another appealing aspect
of our framework is its modular architecture where each of the blocks in Fig. 1
can make use of a suitable method of one’s choice.

Fig. 1. Block-diagram of our framework. Ds denotes the seen class data (can be labeled
(and optionally also unlabeled); As denotes seen class attributes; Au denotes unseen
class attributes; Θ̂s denotes the estimated seen class parameters; Θ̂u denotes the esti-
mated unseen class parameters. The last stage - transductive/few-shot refinement - is
optional (Sects. 2.3 and 4.2)
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2.3 Transductive/Semi-supervised Setting

The procedure described in Sect. 2.2 relies only on the seen class data (labeled
and, optionally, also unlabeled). As we saw for the Gaussian case, the seen class
data is used to form empirical estimates of the parameters {μ̂c, σ̂

2
c}S

c=1 of the
class-conditional distributions of seen classes, and then these estimates are used
to learn the linear/nonlinear regression functions fμ and fσ2 . These functions
are finally used to compute the parameters {μ̂c, σ̂

2
c}S+U

c=S+1 of class-conditionals of
unseen classes. We call this setting the inductive setting. Note that this procedure
does not make use of any data from the unseen classes. Sometimes, we may have
access to unlabeled data from the unseen classes.

Our generative framework makes it easy to leverage such unlabeled data
from the unseen classes to further improve upon the estimates {μ̂c, σ̂

2
c}S+U

c=S+1

of their class-conditional distributions. In our framework, this can be done in
two settings, transductive and semi-supervised, both of which leverage unlabeled
data from unseen classes, but in slightly different ways. If the unlabeled data
is the unseen class test data itself, we call it the transductive setting. If this
unlabeled data from the unseen classes is different from the actual unseen class
test data, we call it the semi-supervised setting.

In either setting, we can use an Expectation-Maximization (EM) based proce-
dure that alternates between inferring the labels of unlabeled examples of unseen
classes and using the inferred labels to update the estimates of the parameters
{μ̂c, σ̂

2
c}S+U

c=S+1 of the distributions of unseen classes.
For the case when each class-conditional distribution is a Gaussian, this pro-

cedure is equivalent to estimating a Gaussian Mixture Model (GMM) using the
unlabeled data {xn}Nu

n=1 from the unseen classes. The GMM is initialized using
the estimates {μ̂c, σ̂

2
c}S+U

c=S+1 obtained from the inductive procedure of Sect. 2.2.
Note that each of the U mixture components of this GMM corresonds to an
unseen class.

The EM algorithm for the Gaussian case is summarized next
1. Initialize mixing proportions π = [π1, . . . , πU ] uniformly set mixture param-

eters as Θ = {μ̂c, σ̂
2
c}S+U

c=S+1
2. E Step: Infer the probabilities for each xn belonging to each of the unseen

classes c = S + 1, . . . , S + U as

p(yn = c|xn, π,Θ) =
πcN (xn|μ̂c, σ̂

2
c)∑

c πcN (xn|μ̂c, σ̂
2
c)

3. M Step: Use to inferred class labels to re-estimate π and Θ = {μ̂c, σ̂
2
c}S+U

c=S+1.
4. Go to step 2 if not converged.

Note that the same procedure can be applied even when each class-conditional
distribution is some exponential family distribution other than Gaussian. The
E and M steps in the resulting mixture model are straightforward in that case
as well. The E step will simply require the Gausian likelihood to be replaced by
the corresponding exponential family distribution’s likelihood. The M step will
require doing MLE of the exponential family distribution’s parameters, which
has closed-form solutions.
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2.4 Extension for Few-Shot Learning

In few-shot learning, we assume that a very small number of labeled examples
may also be available for the unseen classes [17,23]. The generative aspect of our
framework, along with the fact the the data distribution is an exponential family
distribution with a conjugate prior on its parameters, makes it very convenient
for our model to be extended to this setting. The outputs {μ̂c, σ̂

2
c}S+U

c=S+1 of our
generative zero-shot learning model can naturally serve as the hyper-parameters
of a conjugate prior on parameters of class-conditional distributions of unseen
classes, which can then be updated given a small number of labeled examples
from the unseen classes. For example, in the Gaussian case, due to conjugacy,
we are able to update the estimates {μ̂c, σ̂

2
c}S+U

c=S+1 in a straightforward manner
when provided with such labeled data. In particular, given a small number of
labeled examples {xn}Nc

n=1 from an unseen class c, μ̂c and σ̂2
c can be easily

updated as

μ(FS)
c =

μ̂c +
∑Nc

n=1 xn

1 + Nc
(22)

σ2
c
(FS)

=
(

1
σ̂2

c

+
Nc

σ2

)−1

(23)

where σ2 = 1
Nc

∑Nc

n=1(xn − μ̂c)2 denotes the empirical variance of the Nc obser-
vations from the unseen class c.

A particularly appealing aspect of our few-shot learning model outlined above
is that it can also be updated in an online manner as more and more labelled
examples become available from the unseen classes, without having to re-train
the model from scratch using all the data.

3 Related Work

Some of the earliest works on ZSL are based on predicting attributes for each
example [13]. This was followed by a related line of work based on models that
assume that the data from each class can be mapped to the class-attribute space
(a shared semantic space) in which each seen/unseen class is also represented
as a point [1,26,33]. The mapping can be learned using various ways, such as
linear models or feed forward neural networks or convolutional neural networks.
Predicting the label for a novel unseen class example then involves mapping
it to this space and finding the “closest” unseen class. Some of the work on
ZSL is aimed at improving the semantic embeddings of concepts/classes. For
example, [29] proposed a ZSL model to incorporate relational information about
concepts. In another recent work, [4] proposed a model to improve the seman-
tic embeddings using a metric learning formulation. A complementary line of
work to the semantic embedding methods is based on a “reverse” mapping, i.e.,
mapping the class-attribute to the observed feature space [32,37].
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In contrast to such semantic embedding methods that assume that the classes
are collapsed onto a single point, our framework offers considerably more flexi-
bility by modelling each class using its own distribution. This makes our model
more suitable for capturing the intra-class variability, which the simple point-
based embedding models are incapable of handling.

Another popular approach for ZSL is based on modelling each unseen class
as a linear/convex combination of seen classes [20] or of a set of “abstract” or
“basis” classes [5,22]. The latter class of methods, in particular, can be seen
as a special case of our framework since, for our linear model, we can view the
columns of the D×K regression weights as representing a set of K basis classes.
Note however that our model has such regression weights for each parameter of
the class-conditional distribution, allowing it to be considerably more flexible.
Moreover, our framework is also significantly different in other ways due to its
fully generative framework, due to its ability to incorporate unlabeled data,
performing few-shot learning, and its ability to model different types of data
using an appropriate exponential family distribution.

A very important issue in ZSL is the domain shift problem which may arise if
the seen and unseen class come from very different domains. In these situations,
standard ZSL models tend to perform badly. This can be somewhat alleviated
using some additional unlabeled data from the unseen classes. To this end, [11]
provide a dictionary learning based approach for learning unseen class classifiers
in which the dictionary is adapted to the unseen class domain. The dictionary
adaptation is facilitated using unlabeled data from the unseen classes. In another
related work, [8] leverage unlabeled data in a transductive ZSL framework to
handle the domain shift problem. Note that our framework is robust to the
domain shift problem due to its ability to incorporate unlabeled data from the
unseen classes (the transductive setting). Our experimental results corroborate
this.

Semi-supervised learning for ZSL can also be used to improve the semantic
embedding based methods. [16] provide a semi-supervised method that lever-
ages prior knowledge for improving the learned embeddings. In another recent
work, [37] present a model to incorporate unlabeled unseen class data in a setting
where each unseen class is represented as a linear combination of seen classes. [34]
provide another approach, motivated by applications in computer vision, that
jointly facilitates the domain adaptation of attribute space and the visual space.
Another semi-supervised approach presented in [15] combines a semisupervised
classification model over the observed classes with an unsupervised clustering
model over unseen classes together to address the zero-shot multi-class classifi-
cation.

In contrast to these models for which the mechanism for incorporating unla-
beled data is model-specific, our framework offers a general approach for doing
this, while also being simple to implement. Moreover, for large-scale problems,
it can also leverage more efficient solvers (e.g., gradient methods) for estimating
the regression coefficients associated with class-conditional distributions.
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4 Experiments

We evaluate our generative framework for zero-shot learning (hereafter referred
to as GFZSL) on several benchmark data sets and compare it with a num-
ber of state-of-the-art baselines. We conduct our experiments on various prob-
lem settings, including standard inductive zero-shot learning (only using seen
class labeled examples), transductive zero-shot learning (using seen class labeled
examples and unseen class unlabeled examples), and few-shot learning (using
seen class labeled examples and a very small number of unseen class labeled
examples). We report our experimental results on the following benchmark data
sets:

– Animal with Attribute (AwA): The AwA data set contains 30475 images
with 40 seen classes (training set) and 10 unseen classes (test set). Each
class has a human-provided binary/continuous 85-dimensional class-attribute
vector [12]. We use continuous class-attributes since prior works have found
these to have more discriminative power.

– Caltech-UCSD Birds-200-2011 (CUB-200): The CUB-200 data set con-
tains 11788 images with 150 seen classes (training set) and 50 unseen class
(test set). Each image has a binary 312-dimensional class-attribute vector,
specifying the presence or absence of various attribute of that image [28].
The attribute vectors for all images in a class are averaged to construct its
continuous class-attribute vector [2]. We use the same train/test split for this
data set as used in [2].

– SUN attribute (SUN): The SUN data set contains 14340 images with 707
seen classes (training set) and 10 unseen classes (test set). Each image is
described by a 102-dimensional binary class-attribute vector. Just like the
CUB-200 data set, we average the attribute vectors of all images in each class
to get its continuous attribute vector [10]. We use the same train/test split
for this data set as used in [10].

For image features, we considered both GoogleNet features [27] and VGG-
19(4096) fc7 features [25] and found that our approach works better with VGG-
19. All of the state-of-the-art baselines we compare with in our experiments
use VGG-19 fc7 features or GoogleNet features [27]. For the nonlinear (kernel)
variant of our model, we use a quadratic kernel. Our set of experiments include:

– Zero-Shot Learning: We consider both inductive ZSL as well as transduc-
tive ZSL.

• Inductive ZSL: This is the standard ZSL setting where the unseen class
parameters are learned using only seen class data.

• Transductive ZSL: In this setting [34], we also use the unlabeled test
data while learning the unseen class parameters. Note that this setting
has access to more information about the unseen class; however, it is only
through unlabeled data.

– Few-Shot Learning: In this setting [17,23], we also use a small number of
labelled examples from each unseen class.
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– Generalized ZSL: Whereas standard ZSL (as well as few-shot learning)
assumes that the test data can only be from the unseen classes, generalized
ZSL assumes that the test data can be from unseen as well as seen classes.
This is usually a more challenging setting [6] and most of the existing methods
are known to be biased towards predicting the seen classes.

We use the standard train/test split as given in the data description section.
For selecting the hyperparameters, we further divide the train set further into
train and validation set. In our model, we have two hyper-parameter λμ and λσ2 ,
which we tune using the validation dataset. For AwA, from the 40 seen classes,
a random selection of 30 classes are used for the training set and 10 classes are
used for the validation set. For CUB-200, from the 150 seen classes, 100 are used
for the training set and rest 50 are used for the validation set. Similarly, for the
SUN dataset from the 707 seen classes, 697 are used for the training set and rest
10 is used for the validation set. We use cross-validation on the validation set to
choose the best hyperparameter [λμ, λσ2 ] for the each data set and use these for
testing on the unseen classes.

4.1 Zero-Shot Learning

In our first set of experiments, we evaluate our model for zero-shot learning and
compare with a number of state-of-the-art methods, for the inductive setting
(which uses only the seen class labelled data) as well as the transductive setting
(which uses the seen class data and the unseen class unlabeled data).

Inductive ZSL: Table 1 shows our results for the inductive ZSL setting. The
results of the various baselines are taken from the corresponding papers. As
shown in the Table 1, on CUB-200 and SUN, both of our models (linear and
nonlinear) perform better than all of the other state-of-the-art methods. On
AwA, our model has only a marginally lower test accuracy as compared to the
best performing baseline [34]. However, we also have an average improvement
5.67% on all the 3 data sets as compared to the overall best baseline [34]. Among
baselines using VGG-19 features (bottom half of Table 1), our model achieves a
21.05% relative improvement over the best baseline on the CUB-200 data, which
is considered to be a difficult data set with many fine-grained classes.

In contrast to other models that embed the test examples in the semantic
space and then find the most similar class by doing a Euclidean distance based
nearest neighbor search, or models that are based on computing the similarity
scores between seen and unseen classes [33], for our models, finding the “most
probable class” corresponds to computing the distance of each test example
from a distribution. This naturally takes into account the shape and spread of
the class-conditional distribution. This explains the favourable performance of
our model as compared to the other methods.
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Table 1. Accuracy (%) of different type of images features. Top: Deep features like
AlexNet, GoogleNet, etc. Bottom: Deep VGG-19 features. The ‘-’ indicates that this
result was not reported.

Method AwA CUB-200 SUN Average

Akata et al. [2] 66.70 50.1 – –

Qiao et al. [21] 66.46 ± 0.42 29 ± 0.28 – –

Xian et al. [31] 71.9 45.5 – –

Changpimyo et al. [5] 72.9 54.7 62.7 63.43

Wang et al. [29] 75.99 33.48 – –

Lampert et al. [14] 57.23 – 72.00 –

Romera and Torr [22] 75.32 ± 2.28 – 82.10 ± 0.32 –

Bucher et al. [4] 77.32 ± 1.03 43.29 ± 0.38 84.41 ± 0.71 68.34

Zhang and Saligrama [35] 79.12 ± 0.53 41.78 ± 0.52 83.83 ± .29 68.24

Wang and Chen [30] 79.2 ± 0.0 46.7 ± 0.0 – –

Zhang and Saligrama [34] 81.03± 0.88 46.48 ± 1.67 84.10 ± 1.51 70.53

GFZSL: Linear 79.90 52.09 86.50 72.23

GFZSL: Nonlinear 80.83 56.53 86.50 74.59

Transductive Setting: For transductive ZSL setting [9,35,36], we follow the
procedure described in Sect. 2.3 to estimate parameters of the class-conditional
distribution of each unseen class. After learning the parameters, we find the most
probable class for each test example by evaluating its probability under each
unseen class distribution and assign it to the class under which it has the largest
probability. Tables 2 and 3 compare our results from the transductive setting with
other state-of-the-art baselines designed for the transductive setting. In addition
to accuracy, we also report precision and recall results of our model and the other
baselines (wherever available). As we can see from Tables 2 and 3, both of our mod-
els (linear and kernel) outperform the other baselines on all the 3 data sets. Also
comparing with the inductive setting results presented in Table 1, we observe that
our generative framework is able to very effectively leverage unlabeled data and
significantly improve upon the results of a purely inductive setting.

4.2 Few-Shot Learning (FSL)

We next perform an experiment with the few-shot learning setting [17,23] where
we provide each model with a small number of labelled examples from each
of the unseen classes. For this experiment, we follow the procedure described
in Sect. 4.2 to learn the parameters of the class-conditional distributions of the
unseen classes. In particular, we train the inductive ZSL model (using only the
seen class training data) and the refine the learned model further using a very
small number of labelled examples from the unseen classes (i.e., the few-shot
learning setting).
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Table 2. ZSL accuracy (%) obtained in the transductive setting: results reported using
the VGG-19 feature. Average Precision and recall for the all dataset with its standard
deviation over the 100 iteration. The ‘-’ indicates that this result was not reported in
the original paper.

Method AwA CUB-200 SUN Average

Guo et al. [9] 78.47 – 82.00 –

Romera and Torr [22]+Zhang and Saligrama [36] 84.30 – 37.50 –

Zhang and Saligrama [35]+Zhang and Saligrama [36] 92.08 ± 0.14 55.34 ± 0.77 86.12 ± 0.99 77.85

Zhang and Saligrama [34]+Zhang and Saligrama [36] 88.04 ± 0.69 55.81 ± 1.37 85.35 ± 1.56 76.40

GFZSL: Linear 94.20 57.14 87.00 79.45

GFZSL: Kernel 94.25 63.66 87.00 80.63

Table 3. ZSL precision and recall scores obtained in the transductive setting: results
reported using the VGG-19 features. Average precision and recall for the all dataset
with its standard deviation over the 100 iteration. Note: Precision and recall scores not
available for Guo et al. [9] and Romera et al. [22] + Zhang et al. [36]

Average Precision Average Recall
Method AwA CUB-200 SUN AwA CUB-200 SUN

Zhang et al.[35]+Zhang et al. [36] 91.37±14.75 57.09±27.91 85.96±10.15 90.28±8.08 55.73±31.80 86.00±13.19
Zhang et al.[34]+Zhang et al. [36] 89.19±15.09 57.20±25.96 86.06± 12.36 86.04±9.82 55.77±26.54 85.50±13.68
GFZSL: Linear 93.70 57.90 87.40 92.20 57.40 87.00
GFZSL: Kernel 93.80 64.09 87.40 92.30 63.96 0.87

To see the effect of knowledge transfer from the seen classes, we use a mul-
ticlass SVM as a baseline that is provided with the same number of labelled
examples from each unseen class. In this experiment, we vary the number of
labelled examples of unseen classes from 2 to 20 (for SUN we only use 2, 5, and
10 due to the small number of labelled examples). In Fig. 2, we also compare with
standard (inductive) ZSL which does not have access to the labelled examples
from the unseen classes. Our results are shown Table 4 and Fig. 2.

As shown in Table 4 (all data sets) and Fig. 2, the classification accuracy on
the unseen classes shows a significant improvement over the standard inductive
ZSL, even with as few as 2 or 5 additional labelled examples per class. We also
observe that the few-shot learning method outperform multiclass SVM which
only relies on the labelled data from the unseen classes. This demonstrates the
advantage of the knowledge transfer from the seen class data.

Table 4. Accuracy (%) in the few-shot learning setting: For each data set, the accu-
racies are reported using 2, 5, 10, 15, 20 labeled examples for each unseen class

Dataset Method 2 5 10 15 20

AwA GFZSL 87.96 ± 1.47 91.64 ± 0.81 93.31 ± 0.50 94.01 ± .36 94.30 ± 0.33

SVM 74.81 83.19 90.44 91.22 92.04

CUB-200 GFZSL 60.84 ± 1.39 64.81 ± 1.14 68.44 ± 1.21 70.11 ± 0.93 71.23 ± 0.87

SVM 46.19 59.33 68.75 73.87 75.42

SUN GFZSL 75.57 ± 4.79 83.05 ± 3.60 82.09 ± 3.30 – –

SVM 56.00 77.00 78.00 – –
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Fig. 2. (On AwA data): a comparison on classification accuracies of the few-shot learn-
ing variant of our model with multi-class SVM (training on labeled examples from seen
classes) and the inductive ZSL

4.3 Generalized Few-Shot Learning (GFSL)

We finally perform an experiment on the more challenging generalized few-shot
learning setting [6]. This setting assumes that test examples can come from
seen as well as unseen classes. This setting is known to be notoriously hard [6].
In this setting, although the ZSL models tend to do well on predicting test
examples from seen classes, the performance on correctly predicting the unseen
class example is poor [6] since the trained models are heavily biased towards
predicting the seen classes.

One way to mitigate this issue could be to use some labelled examples from
the unseen classes (akin to what is done in few-shot learning). We, therefore,
perform a similar experiment as in Sect. 4.2. In Table 5, we show the results of
our model on classifying the unseen class test examples in this setting.

As shown in Table 5, our model’s accuracies on the generalized FSL task
improve as it gets to see labelled examples from unseen classes. However, it is
still outperformed by a standard multiclass SVM. The better performance of
SVM can be attributed to the fact that it is not biased towards the seen classes
since the classifier for each class (seen/unseen) is learned independently.

Table 5. Accuracies (%) in the generalized few-shot learning setting.

Dataset Method 2 5 10 15 20

AwA GFZSL 25.32 ± 2.43 37.42 ± 1.60 43.20 ± 1.39 45.09 ± 1.17 45.96 ± 1.09

SVM 40.84 60.81 75.36 77.00 77.10

CUB-200 GFZSL 6.64 ± 0.87 15.12 ± 1.17 22.02 ± 0.76 25.03 ± 0.71 26.47 ± 0.83

SVM 25.97 37.98 47.10 53.87 54.42

SUN GFZSL 1.17 ± 1.16 4.20 ± 1.77 9.48 ± 2.22 – –

SVM 9.94 20.00 27.00 – –
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Our findings are also corroborated by other recent work on generalized
FSL [6] and suggest the need of finding more robust ways to handle this set-
ting. We leave this direction of investigation as a possible future work.

5 Conclusion

We have presented a flexible generative framework for zero-shot learning, which
is based on modelling each seen/unseen class using an exponential family class-
conditional distribution. In contrast to the semantic embedding based methods
for zero-shot learning which model each class as a point in a latent space, our
approach models each class as a distribution, where the parameters of each
class-conditional distribution are functions of the respective class-attribute vec-
tors. Our generative framework allows learning these functions easily using seen
class training data (and optionally leveraging additional unlabeled data from
seen/unseen classes).

An especially appealing aspect of our framework is its simplicity and modu-
lar architecture (cf., Fig. 1) which allows using a variety of algorithms for each
of its building blocks. As we showed, our generative framework admits natural
extensions to other related problems, such as transductive zero-shot learning
and few-shot learning. It is particularly easy to implement and scale to a large
number of classes, using advances in large-scale regression. Our generative frame-
work can also be extended to jointly learn the class attributes from an external
source of data (e.g., by learning an additional embedding model with our original
model). This can be an interesting direction of future work. Finally, although
we considered a point estimation of the parameters of class-conditional distri-
butions, it is also possible to take a fully Bayesian approach for learning these
distributions. We leave this possibility as a direction for future work.
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