
Non-parametric Online AUC Maximization

Balázs Szörényi1,2(B), Snir Cohen1, and Shie Mannor1

1 Technion, Haifa, Israel
szorenyi.balazs@gmail.com, snirc@cs.technion.ac.il, shie@ee.technion.ac.il

2 Research Group on AI, Hungarian Academy of Sciences, University of Szeged,

Szeged, Hungary

Abstract. We consider the problems of online and one-pass maximiza-
tion of the area under the ROC curve (AUC). AUC maximization is
hard even in the offline setting and thus solutions often make some com-
promises. Existing results for the online problem typically optimize for
some proxy defined via surrogate losses instead of maximizing the real
AUC. This approach is confirmed by results showing that the optimum
of these proxies, over the set of all (measurable) functions, maximize the
AUC. The problem is that—in order to meet the strong requirements
for per round run time complexity—online methods typically work with
restricted hypothesis classes and this, as we show, corrupts the above
compatibility and causes the methods to converge to suboptimal solu-
tions even in some simple stochastic cases. To remedy this, we propose a
different approach and show that it leads to asymptotic optimality. Our
theoretical claims and considerations are tested by experiments on real
datasets, which provide empirical justification to them.

1 Introduction

The area under the ROC curve (AUC) [16] measures how well a mapping h of
the instance space to the reals respects the partial order defined by some “ideal”
score function s; in the special case of biparite ranking, s is simply a 0–1 valued
function. As such, it has important applications in bioinformatics, information
retrieval, anomaly detection, and many other areas.

Maximizing the AUC requires an approach different from maximizing the
accuracy, even though there are some connections between the two [3,5,11]. Over
the last decade, several approaches have been proposed and analyzed, guaran-
teeing consistency [9] and even optimal learning rates in some restricted cases
[19]. Subsequently [22], followed by [13,21], considered AUC maximization in an
online setting, while [14] introduced a one-pass AUC maximization framework.

In this paper we first point out two important shortcomings of the existing
methods proposed for online and one-pass AUC optimization:

(A) None of them guarantees an optimal solution (not even asymptotically).
(B) They all need to store the whole data. The reason for this is that they

require parameter tuning, and thus also multiple passes over the data.
c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part II, LNAI 10535, pp. 575–590, 2017.
https://doi.org/10.1007/978-3-319-71246-8_35

576 B. Szörényi et al.

In contrast to (A), the k nearest neighbor method (k-NN), as we show, is guar-
anteed to converge to the optimum. This superiority of k-NN is also supported
by the results of our empirical investigations. What is more, even though it
clearly requires storing the whole data, it is not more demanding in terms of
space complexity then previous algorithms, according to (B). Finally, one could
argue that k-NN must perform poorly in terms of running time. This is not true,
however: efficient solutions exist and, in fact, our experiments suggest that k-NN
is competitive also in this regard. Additionally, dimensionality-originated issues
can be taken care of using PCA or related methods.

The rest of the paper is structured as follows. First we introduce the formal
framework and the definitions, then we show (A) formally, provide the theoretical
justification for the k-NN method, present our experimental results, sum up the
most important results from the literature, and finally we conclude with a short
discussion.

2 Formal Setup

Given a set of n samples (x1, y1), . . . , (xn, yn) ∈ X × Y, where X ⊆ R
d for some

positive integer d and Y = {−1, 1}, and given some mapping h : X → R, the
area under the ROC curve (AUC) [16] is the empirical mean

AUC(h;X+,X −) =
∑

x+∈X+

∑

x−∈X −

(
I[h(x+)>h(x−)]

T+T−
+

I[h(x+)=h(x−)]
2T+T−

)
,

where X+ = {xt : yt = 1, 1 ≤ t ≤ n}, X − = {xt : yt = −1, 1 ≤ t ≤ n},
T+ = |X+|, T− = |X −|, and where I [·] denotes the indicator function; i.e.,
I [E] = 1 when event E holds and I [E] = 0 otherwise. The regret hypothesis h
with respect to some hypothesis set H ⊆ R

X is defined as

RegretH(h;X+,X −) = sup
h′∈H

AUC(h′;X+,X −) − AUC(h;X+,X −) (1)

We also denote by AUC∗(X+,X −) the supremum of AUC(h′;X+,X −) over the
set of all measurable functions h′, and introduce the notation

Regret(h;X+,X −) = AUC∗(X+,X −) − AUC(h;X+,X −).

Maximizing the AUC is also equivalent to minimizing the empirical risk

Risk(h;X+,X −) = 1 − AUC(h;X+,X −) =
n∑

t,t′=1

�AUC(h;(xt,yt),(xt′ ,yt′))
2T+T−

(2)

of the loss function

�AUC(h; (x, y), (x′, y′)) = I [(h(x) − h(x′))(y − y′) < 0] + I [h(x) = h(x′), y �= y′] .

One notorious problem with AUC is that it is non-convex and non-
continuous, which makes it hard to work with. Especially in the online and

Non-parametric Online AUC Maximization 577

one-pass settings, where having a low (typically constant or logarithmic, but at
least sublinear) per round run time complexity is essential. To resolve this issue,
papers that aim for maximizing AUC online [13,14,21,22], choose to replace
�AUC in (2) by some surrogate loss function � : H × (X × Y) → R, and instead
of maximizing the AUC, they minimize the surrogate risk

Risk�(h;X+,X −) =
t∑

t,t′=1

�(h;(xt,yt),(xt′ ,yt′))
2T+T−

,

and derive bounds for Regret�,H(h;X+,X −), which is obtained by replacing
AUC in (1) by 1 − Risk�.

If (x,y1), (x2, y2), . . . are i.i.d. samples from some probability distribution P
over X × Y, then one can define

Risk(h) = E
[
�AUC(h; (X,Y), (X ′, Y ′))

∣∣ Y > Y ′] (3)

and AUC(h) = 1 − Risk(h). Similarly as above, replacing �AUC in (3) by some
other loss function � one obtains surrogate measures Risk�(h) and Regret�,H(h).
Along the same analogy, we also use the notation AUC∗ and Regret(h).

One-Pass and Online Setting
The one-pass and the online settings both have the same underlying protocol:
in each round t, the learner proposes some hypothesis ht : X → R based on its
previous experience, and then it observes the sample (xt, yt). The two frameworks
only differ in their objectives:

– In the online setting we are concerned with the evolution of the empirical
AUC—that is, with

AUCt = AUC(ht;X+
t ,X −

t)

for t = 1, . . . , n, where X+
t = {xi : yi = 1, 1 ≤ i ≤ t} and X −

t = {xi : yi =
−1, 1 ≤ i ≤ t}.

– In the one-pass setting the generalization ability of the learner is tested after
the whole data had been processed. More precisely, the measure of perfor-
mance is AUC(hn).

3 Surrogate Measures and Restricted Classes

Existing results for the online and one-pass AUC maximization problem optimize
for some surrogate risk, instead of working with the AUC directly. In particular,
many of them work with the square loss �2 (see Example 1). This approach is
also confirmed by results showing consistency i.e., that Regret(ht) converges to
0 whenever Regret�(ht) does for some sequence h1, h2, . . . of functions, as t goes
to infinity. (See more about this in the section about the related work.)

These important results require, however, careful interpretation. And this is
the starting point of our investigations: we claim that utilization of consistency is

578 B. Szörényi et al.

only legitimate when the hypotheses class H of our interest contains a global opti-
mizer of the surrogate loss; that is, if suph AUC�(h) = suph∈H AUC�(h). When
working with the set Hlin = {hw(x) = w�x : w ∈ R

d} of linear functions—which
is the case for all existing results for online and one-pass AUC maximization—
this criterion is not fulfilled. Indeed, even though square loss is consistent (see
[14]), in Example 1 below it holds that AUC(h′) � suph∈Hlin

AUC(h) for any
h′ ∈ argminh∈Hlin

Risk�2(h).
The hinge loss �γ(h; (x, y), (x′, y′)) = I [y �= y′] [γ − 1

2 (y − y′)(h(x) − h(x′))]+
was also used in algorithmic solutions, but that does not even satisfy consis-
tency [15].

3.1 Square Loss with Linear Hypotheses

This section presents the example that existing results can fail completely in
maximizing the real AUC even in a simple case. This is demonstrated by the
following example.

Example 1. Consider the setting when X = R
2, and P[X = (−ε,−1 + ε)|Y =

1] = 1 and P[X = (0,−1 − ε)|Y = −1] = P[X = (0, 1)|Y = −1] = P[X =
(1, 0)|Y = −1] = 1/3 for some small ε > 0.

[14] first shows that the square loss �2(h; (x, y), (x′, y′)) = (1 − y−y′

2 (h(x) −
h(x′))2 is consistent with AUC, and then use �2 as a surrogate loss to find the
best linear score function hw(x) = w�x. However, in the case above, AUC is
maximized at hw∗

where w∗ = (−1, 0), where it actually takes value 1 (one has
a very small freedom though, depending on the size of ε), and thus Risk(hw∗

) =
0 for the corresponding linear function hw∗

. On the other hand, the surrogate
measure for hw∗

is

Risk�2(hw∗
) = E[�2(hw∗

;X,X ′)|Y > Y ′]

= 1
3

(
1 + (w∗)�(ε, 2ε)

)2 + 1
3

(
1 + (w∗)�(ε, 2 − ε)

)2 + 1
3

(
1 + (w∗)�(1 + ε, 1 − ε)

)2

which evaluates approximately to 2/3. At the same time, the actual optimum w′

of this surrogate measure is around (−1/2,−1/2), where it takes the value:

Risk�2(hw′
) = E[�2(h;X,X ′)|Y > Y ′] ≈ 1/3,

whereas AUC∗(hw′
) ≈ 2/3, which is very far from the true optimum.

That is, when H consists of the linear hypotheses (as is the case in [13,14]),
then

Regret�2,H(hw′
) = 0 ,

implying that

RegretH(hw′
) = Regret(h(−1/2,−1/2)) ≈ 1/3 .

Furthermore, adding a term ‖w‖2 to regularize the surrogate measure does not
change on this.

Non-parametric Online AUC Maximization 579

Note that this does not contradict the consistency of the square loss. The
reason is that consistency requires Regret to vanish as Regret� approaches 0,
but as Regret� is huge for all linear hypotheses, this sets no restrictions on how
Regret should behave in this example.

4 Conditional Probability as Rank Function

In this section we start the investigation of finding alternative algorithmic solu-
tions. With that in mind, we reach back to the fundamentals of AUC, and show
that good estimates of the conditional probability function η(x) = P[Y = 1|X =
x] perform well at AUC maximization too.

The particular estimates that we consider here are of the form η̂ : X ×
Z → R for some domain Z. Here Z is the domain of a variable that is used
to encode prior information (e.g., random samples) and internal randomization
(used e.g., for tie breaking) of the learner. (In accordance with that, in some
cases it will be more convenient to use the notation η̂z for η̂(· , z).) For example,
given some series {kn}n of stepsizes, the kn−NN estimate of [12] makes use of
some i.i.d. samples U1, . . . , Un, U drawn from the uniform distribution over [0, 1].
Putting Zn = (X1, Y1, . . . , Xn, Yn, U1, . . . , Un, U), their kn−NN estimate maps
an instance x to

η̂DGKL
Zn

(x) =
1
kn

kn∑

i=1

Yσ(Zn,x,i), (4)

where σ(Zn, x, ·) is the permutation for which (‖Xσ(Zn,x,1) − x‖, ‖Uσ(Zn,x,1) −
U‖), . . . , (‖Xσ(Zn,x,n) − x‖, ‖Uσ(Zn,x,n) − U‖) is in lexicographic order.

Given such an estimate, we show the following result (for the proof see
AppendixA).

Theorem 2. Let Z be some random variable over some domain Z, and let
η̂ : X × Z → R be an estimate of the conditional distribution function η(x) :=
E[Y |X = x] as described above. Then EZ [Regret(η̂Z)] ≤ 3

√
ε

P[Y =1]P[Y =0] , where
ε = EX,Z [|η̂(X,Z) − η(X)|].

Similar result has also appeared in [1,10,19]. However, this particular esti-
mator requires some small but essential differences in the analysis. Most impor-
tantly, kernel estimators are completely determined by the samples, whereas
kn−NN needs tie breaking. This requires additional randomness and compli-
cates the analysis slightly.

5 AUC Maximization Using k-NN

In the previous section we have shown guarantees for the AUC performance of
estimators of the conditional probability function η. In this section we review
some of the results on estimating η using kn−NN, and show what they give
combined with Theorem 2.

580 B. Szörényi et al.

First of all, Devroye et al. [12] have shown that the kn−NN version pre-
sented as Algorithm 1 converges under any distribution, assuming some standard
restrictions on kn.1

Theorem 3 (Theorem 1 in [12]). If stepsize kn satisfies limn→∞ kn = ∞ and
limn→∞ kn/n = 0, then E

[∣∣η̂DGKL
Zn

(X) − η(X)
∣∣] → 0, where η̂DGKL

Zn
is defined

as in (4).

Plugging this into Theorem2 we immediately obtain the following result on
AUC(η̂DGKL

Zn
).

Corollary 4. Let η̂DGKL
Zn

be defined as in (4). Then EZn

[
Regret(η̂DGKL

Zn
)
] → 0

if limn→∞ kn = ∞ and limn→∞ kn/n = 0, where η̂DGKL
Zn

is defined as in (4).

KNNOAM is thus guaranteed to converge in case of i.i.d. samples.
One can, in fact, derive results also for the rate of convergence based on the

work by Chaudhuri and Dasgupta [8]. This would not hold uniformly though,
only for some restricted distributions.

Algorithm 1. KNNOAM({kt}t)
1: Draw a random sample U1 uniformly at random from (0, 1)
2: for round t = 1, . . . , n do
3: Observe sample (xt, yt)
4: Draw a random sample Ut+1 uniformly at random from (0, 1)
5: Zt = (x1, y1, x2, y2, . . . , xt, yt, U1, . . . , Ut, Ut+1)
6: Construct hypotheses ht : X → R, mapping x to ht(x) = η̂DGKL

Zt
(x) {As in (4)}

7: end for

Efficient Implementation
An important feature of k-NN-methods is that it can be implemented efficiently.
For example, the Cover Tree structure [6] makes it possible to insert a new
instance into an existing cover tree or to remove an old one from it in time
O(log t), and also to find the kn nearest neighbor of some arbitrary point in time
O(kn log t).

Choosing k
Choosing the right k for k-NN is a hard question. k > log log n is recommended
for pointwise convergence (see Remark 1 in 4), but the common practice is to use
logn < k < n1/2. One can also think about using k that changes with context;
i.e., depends on the particular instance that is queried. See [4] for further details.

For a given dataset, one can also use cross validation or some Bayesian app-
roach to find the best k. This was used by all the linear methods mentioned in
the Introduction, but in a real online setting this is not applicable.

1 They actually show an even stronger equivalence result.

Non-parametric Online AUC Maximization 581

6 Dimensionality Reduction

In general, any learning method can be applied that approximates η with arbi-
trary accuracy. Note, however, that all these methods suffer from dimensionality
issues; including k-NN. One way to deal with it is to apply first dimensionality
reduction methods. More specifically, the idea is to first feed the obtained sample
into some online PCA algorithm (like SGA or CCIPCA—see [7] for a thorough
discussion), and then use its output as input for k-NN, Parzen-Rosenblatt ker-
nels, etc. This way one maintains the good AUC performance guaranteed by
the learning algorithms but prevents dimensionality-originated run-time issues
thanks to the guarantees of the PCA methods.

The property this task requires from the aforementioned techniques to pre-
serve the good AUC performance guarantees of k-NN is a kind of stability. More
precisely, denoting by Φt the mapping they induce from the data from the first
t rounds, it should fulfill the property

‖Φt(xt) − ΦT (xt)‖ ≤ ε(t) ∀ T ≥ t

for some ε(t) converging to 0 as t goes to infinity. Maintaining the convergence
of k-NN does not seem possible otherwise.

7 Experimental Results

In this section, we evaluate the empirical performance of the proposed KNN
Online AUC Maximization (KNNOAM) algorithm on benchmark datasets.

Compared Algorithms
We compare the proposed KNNOAM algorithm with state-of-the-art online AUC
optimization algorithms. Specifically, the compared algorithms in our experi-
ments include:

– OAMseq: the OAM algorithm with reservoir sampling and sequential updat-
ing [22];

– OAMgra: the OAM algorithm with reservoir sampling and online gradient
updating method [22];

– OPAUC: the one-pass algorithm AUC optimization algorithm proposed in
[14];

– AdaOAM: the adaptive gradient AUC optimization algorithm proposed in
[13];

– KNNOAM: our proposed KNN based algorithm.

General Experimental Setup
We conduct our experiments on sixteen benchmark datasets that have been
used in previous studies on AUC optimization. The details of the datasets are
summarized in Table 1. All these datasets can be downloaded from LIBSVM2

2 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

582 B. Szörényi et al.

and UCI Machine Learning Repository3. Note that half of the datasets (seg-
ment, satimage, vowel, letter, poker, usps, connect-4, acoustic and vehicle) are
originally multi-class. These multi-class datasets have been converted into class-
imbalanced binary datasets by choosing one class, setting its label to +1 and
the rest to −1. This class has been chosen so that the ratio T−/T+ is below 50
and its cardinality has been minimized. (The ratio is kept below 50 to obtain
conclusive results.) In case two or more classes have the same size, one has been
chosen randomly. Previous studies use similar conversion methods. In addition,
the features have been rescaled linearly to [−1, 1] for all datasets. All exper-
iments are performed with Matlab on a computer workstation with 3.40 GHz
CPU and 32 GB memory.

Table 1. Details of the benchmark datasets used in the experiments. T+ = |X+| and
T− = |X −|.

Datasets # instances # features T−/T+ Datasets # instances # features T−/T+

fourclass 862 2 1.8078 segment 2310 19 6.0000

svmguide1 3089 4 1.8365 ijcnn1 141691 22 9.4453

magic04 19020 10 1.8439 connect-4 67557 126 9.4756

german 1000 24 2.3333 satimage 4435 36 9.6867

a9a 32561 123 3.1527 vowel 528 10 10.0000

svmguide3 1243 22 3.1993 usps 9298 256 12.1328

vehicle 846 18 3.2513 letter 20000 16 25.7380

acoustic 78823 50 3.3028 poker 25010 10 47.7524

Experimental Setup of the Online Setting
Our main goal is to compare the performance of the above algorithms in the
online setting. In this setting, each algorithm receives a random sample from the
dataset, suffers loss and updates its classifier according to this sample. Note that
our proposed KNNOAM does not require any parameter tuning, as opposed to
the other four existing algorithms. Clearly, parameter tuning requires multiple
passes over the data, which is inconsistent with this setting. Although KNNOAM
must store at time t all the samples up to time t − 1, the rest of the algorithms
must store all of the samples in advance for the parameter tuning. Despite the
fact that it gives the rest of the algorithms an unfair advantage, we follow the
parameter tuning procedures for each algorithm suggested in [13,14,22] and use
the best obtained parameters for each dataset and algorithm. We apply five-fold
cross-validation on the training set to find the best learning rate η ∈ 2[−10,10] and
the regularization parameter λ ∈ 2[−10,2] for both OPAUC and AdaOAM. For
OAMseq and OAMgra, we apply five-fold cross-validation to tune the penalty
parameter C ∈ 2[−10:10], and fix the buffer at 100 as suggested in [22]. For

3 www.ics.uci.edu/∼mlearn/MLRepository.html.

www.ics.uci.edu/~mlearn/MLRepository.html

Non-parametric Online AUC Maximization 583

KNNOAM we only had to choose kn that goes to infinity and is of order o(n).
We choose kn = 2 log2 n.4 For every dataset, we average over 20 runs and plot a
graph showing the experimental AUC loss as a function of the number of samples.
This gives us an opportunity to examine the evolution of the performance of the
algorithms. The results of this experiment are presented in AppendixB. The
code is available at https://bitbucket.org/snir/auc2017.

Experimental Setup of the One-Pass Setting
We also compare the performance of the algorithm in the one-pass setting. We
follow the experimental setup suggested in previous studies [13,14,22]. The per-
formance of the compared algorithms is evaluated by four trials of five-fold
cross-validation using the parameters received by the parameter tuning pro-
cedure explained in the previous section about the online experimental setup.
The AUC values are the average of these 20 runs. The results are summarized
in Fig. 1.

7.1 Evaluation on Benchmark Datasets

In the online setting, KNNOAM outperforms the four other, state-of-the-art
online AUC algorithms considered in our experiments in 12 out 16 datasets.
What is more, in 10 out of those 12 datasets, the improvement by KNNOAM is
significant. For example, in ijcnn1 and acoustic datasets, KNNOAM converges
to a much lower empirical AUC loss than the rest of the algorithms. These
are outstanding results for this setting, especially when recalling that the com-
pared algorithms have been tuned before running the experiments. Our graphs
demonstrate that KNNOAM has a much smoother convergence. The rest of the
algorithms’ performance is unstable: after receiving new samples it may improve
but might also significantly deteriorate. This is a highly undesirable property.

In the german, svmguide3 and vehicle datasets, KNNOAM does not outper-
form all the compared algorithms. However, these datasets are very small and
therefore the results are inconclusive.

In the a9a dataset, OPAUC and AdaOAM outperform KNNOAM. Although
this dataset cannot be considered small, KNNOAM still behaves as if it were,
because the samples are sparse and the dimensionality is relatively big. To
strengthen this claim, we can examine the performance of KNNOAM on connect-
4 dataset. This dataset has roughly the same dimensionality as the a9a dataset
and the samples are as sparse, but has more than twice the samples, and
KNNOAM outperforms the rest of the algorithms significantly.

Many of the graphs show that OAMseq, OAMgra are not guaranteed to con-
verge at all.5 Some of them also show that OPAUC and AdaOAM does not con-
verge smoothly. This behavior is observed when the learning rate η is too high
and a single sample could change the classifier drastically and cause a significant
4 This choice guarantees low time complexity and also turned out to result in a com-

petitive method. (We did try other choices; the results were similar.).
5 It should be mentioned that the theoretical gurantees of OAM is also doubtful,

according to [17].

https://bitbucket.org/snir/auc2017

584 B. Szörényi et al.

Fig. 1. Experimental results comparing the one-pass AUC performance summary

local deterioration of the performance as can be seen from the performance of
OPAUC on svmguide1 dataset for example. On the other hand, if the chosen
learning rate η is too small, the performance might be poor, as can be seen from
the performance of AdaOAM on the same dataset.

The results for the one-pass setting are similar to the ones for the online
setting: KNNOAM is better, or at least competitive in comparison with its com-
petitors. For this setting we also present the running times (see AppendixC)
KNNOAM is usually the fastest algorithm and is never the slowest among the
compared algorithms.

8 Related Work

Reducing Ranking to Binary Classification
[3,5] considers the problem of ranking a finite random sample, and reduced this
to a related binary classification problem. In particular, they bound the risk of
the ranking (which is closely related to AUC of the ranker over this sample) in
terms of the classification performance. However, the risk and the classification
performance they use is only representative to that particular sample, and they
do not consider prediction or generalization bounds. ([5] comment on the case
when the rankings are drawn from some distribution, but does not imply any
result in our setting.)

Offline Algorithmic Solutions
[9] aims to minimize (3), and actually obtain asymptotic optimality. Their algo-
rithm constructs a tree in an iterative fashion by solving subsequent challenging
optimization problems.

[19] uses kernel estimates of the conditional probability function η(x) =
E[Y |X = x] based on the Parzen-Rosenblatt kernel, and have shown fast and

Non-parametric Online AUC Maximization 585

superfast convergence rates assuming Tsybakov-style noise. They also comple-
ment their results by showing lower bounds on the best convergence rate in some
situations.

Consistency of Surrogate Measures
The investigation of consistency with respect to AUC was initiated by [18] show-
ing consistency of a balanced version of the exponential and the logistic loss.
Later on [1,14,15,20] investigated the consistency of other loss functions like the
exponential, logistic, squared, and q-normed hinge loss, and variants of them.
Finally, [15] shows that hinge loss is not consistent.

One-Pass and Online Solutions
As mentioned, [22] was the first to analyze online AUC maximization. They
have defined the setup, presented algorithmic solutions optimizing for the hinge
loss, and provided regret bounds. [21] also uses the hinge loss with a perceptron-
like algorithm which, in round t, achieves regret O(1/

√
t). [17] works with the

same setting as [21], and achieves several improvements in terms of different
parameters.

[14] uses square loss in the one-pass setting, and obtains a convergence rate
of order O(1/t) for the linearly separable case and O(

√
1/t) for the general one.

[13] obtains similar results, but using the Adaptive Gradient method.
All these papers work with the set of linear hypothesis.

Uniform Convergence Bounds
Uniform convergence bounds like the ones in [2] show how fast the empirical
AUC-risk converges to the actual AUC over a given class of hypothesis. Conse-
quently, they do not provide any practical guidance on how one could acquire
some hypothesis with small risk.

9 Concluding Remarks

We have shown that existing methodology for maximizing AUC in an online or
one-pass setting can fail already in very simple situations. To remedy this, we
have proposed to reach back to the fundamentals of AUC, and suggested an
algorithmic solution based on the celebrated k-NN-estimate of the conditional
probability function. This has guarantees in the stochastic setting, has efficient
implementations, and outperforms previous methods on several real datasets.
The latter is even more surprising in view of the fact that, unlike its competitors,
it requires no parameter tuning.

Nevertheless, we feel that this should not be considered as an ultimate solu-
tion, but rather as an encouragement for future research to explore further alter-
native solutions. To mention a few:

– Combining KNNOAM with metric learning arises naturally, and could extend
its applicability to more exotic domains.

– Maximizing the objective function AUCn in the adversarial setting is another
important question, which existing results do not tell anything about.

586 B. Szörényi et al.

Acknowledgements. This research was supported in part by the European Commu-
nities Seventh Framework Programme (FP7/2007-2013) under grant agreement 306638
(SUPREL).

A Proof of Theorem2

Let us first introduce the notation Xz = {x : |η̂(x, z) − η(x)| <
√

ε} for z ∈ X
and define for h : X → R measurable and x, x′ ∈ X
a(h, x, x′) = 1

2 I [h(x) = h(x′)] [η(x)(1 − η(x′)] + I [h(x) > h(x′)] [η(x)(1 − η(x′)]

and its symmetrization

b(h, x, x′) = 1
2a(h, x, x′) + 1

2a(h, x′, x).

It then holds that

E(X,Y)E(X′,Y ′)

[
1
2 I [h(X) > h(X ′)] I [Y = 1, Y ′ = 0]

+ I [h(X) > h(X ′)] I [Y = 1, Y ′ = 0]]
]

= EX,X′

[
1
2 I [h(X) = h(X ′)]EY,Y ′ [I [Y = 1, Y ′ = 0]]

+ I [h(X) > h(X ′)]EY,Y ′ [I [Y = 1, Y ′ = 0]]
]

= EX,X′ [a(h,X,X ′)]
= EX,X′ [b(h,X,X ′)] ,

where the last equation follows because X and X ′ are i.i.d. This then gives

AUC(h) =
EX,X′ [b(h,X,X ′)]
P[Y = 1]P[Y = 0]

. (5)

Now, note that x, x′ ∈ Xz implies |η(x)(1 − η(x′)) − η(x′)(1 − η(x))| ≤ 2
√

ε
because of the αβ − α′β′ = (α − α′)β + α′(β − β′) equality. Combining this
with the fact that I [h(x) = h(x′)] + I [h(x) < h(x′)] + I [h(x) > h(x′)] = 1 for
any h : X → R and any x, x′ ∈ X , it follows that

b(η, x, x′) − b(η̂z, x, x′)) ≤ √
ε, z ∈ Z, x, x′ ∈ Xz.

Accordingly,

EX,X′ [b(η,X,X ′)] − EX,X′,Z [b(η̂Z ,X,X ′)]

≤ √
ε + PX,X′,Z [X �∈ XZ or X ′ �∈ XZ]

≤ 3
√

ε, (6)

where the last inequality is true because X and X ′ are i.i.d. and because
PX,Z [X �∈ XZ] = PX,Z [|η̂(X,Z) − η(X)| ≥ √

ε] ≤ √
ε by the definition of ε.

Finally, according to [10], AUC(h) is maximized when h = η. The theorem
thus follows by combining (5) and (6).

Non-parametric Online AUC Maximization 587

B Figures for Benchmark Datasets

588 B. Szörényi et al.

Non-parametric Online AUC Maximization 589

C Experimental Results for the One-Pass AUC Setup

See Table 2.

Table 2. Experimental results comparing the one-pass AUC performance (i.e.,
AUC(hn)) of OAMseq, OAMgra, OPAUC, ADAOM and KNNOAM

Algorithm fourclass Algorithm segment

AUC Time (s) AUC Time (s)

OAMseq 0.8253 ± 0.0290 0.5125 OAMseq 0.9010 ± 0.0205 1.4031

OAMgra 0.7694 ± 0.0518 0.1797 OAMgra 0.8811 ± 0.0262 0.4719

OPAUC 0.8281 ± 0.0308 0.0422 OPAUC 0.8808 ± 0.0237 0.1289

AdaOAM 0.8278 ± 0.0269 0.0641 AdaOAM 0.8629 ± 0.0337 0.1922

KNNOAM 1.0000 ± 0.0000 0.0070 KNNOAM 0.9891 ± 0.0087 0.0227

Algorithm svmguide1 Algorithm ijcnn1

AUC Time (s) AUC Time (s)

OAMseq 0.9885 ± 0.0026 2.0953 OAMseq 0.8733 ± 0.0253 101.9695

OAMgra 0.9884 ± 0.0039 0.6922 OAMgra 0.8862 ± 0.0345 34.1859

OPAUC 0.9440 ± 0.0175 0.1516 OPAUC 0.9201 ± 0.0080 10.3078

AdaOAM 0.9229 ± 0.0338 0.2336 AdaOAM 0.9237 ± 0.0036 14.2531

KNNOAM 0.9900 ± 0.0041 0.0156 KNNOAM 0.9945 ± 0.0005 66.9656

Algorithm magic04 Algorithm connect-4

AUC Time (s) AUC Time (s)

OAMseq 0.7370 ± 0.0910 13.4914 OAMseq 0.5817 ± 0.0205 50.7984

OAMgra 0.7875 ± 0.0530 4.6008 OAMgra 0.5948 ± 0.0232 17.4992

OPAUC 0.8372 ± 0.0063 1.1969 OPAUC 0.6918 ± 0.0077 117.2625

AdaOAM 0.8240 ± 0.0085 1.7000 AdaOAM 0.6824 ± 0.0166 144.8133

KNNOAM 0.9003 ± 0.0061 0.3875 KNNOAM 0.7977 ± 0.0053 77.9141

Algorithm german Algorithm satimage

AUC Time (s) AUC Time (s)

OAMseq 0.7603 ± 0.0395 0.6086 OAMseq 0.7520 ± 0.0250 2.9531

OAMgra 0.7704 ± 0.0368 0.2172 OAMgra 0.7504 ± 0.0262 1.1398

OPAUC 0.7890 ± 0.0274 0.0578 OPAUC 0.7380 ± 0.0166 0.4508

AdaOAM 0.7238 ± 0.0691 0.0859 AdaOAM 0.7328 ± 0.0267 0.5719

KNNOAM 0.7454 ± 0.0268 0.0086 KNNOAM 0.9466 ± 0.0108 0.1172

Algorithm a9a Algorithm vowel

AUC Time (s) AUC Time (s)

OAMseq 0.8368 ± 0.0199 25.3867 OAMseq 0.9503 ± 0.0329 0.1195

OAMgra 0.8611 ± 0.0108 8.3141 OAMgra 0.9654 ± 0.0157 0.0547

OPAUC 0.8989 ± 0.0036 54.7289 OPAUC 0.9592 ± 0.0245 0.0273

AdaOAM 0.8967 ± 0.0036 67.2898 AdaOAM 0.9410 ± 0.0290 0.0422

KNNOAM 0.8879 ± 0.0040 17.4187 KNNOAM 0.9895 ± 0.0092 0.0047

Algorithm svmguide3 Algorithm usps

AUC Time (s) AUC Time (s)

OAMseq 0.7453 ± 0.0410 0.7477 OAMseq 0.9634 ± 0.0121 7.3531

OAMgra 0.7217 ± 0.0428 0.2703 OAMgra 0.9650 ± 0.0097 2.3188

OPAUC 0.7433 ± 0.0384 0.0703 OPAUC 0.9759 ± 0.0066 35.9055

AdaOAM 0.7519 ± 0.0442 0.1047 AdaOAM 0.9752 ± 0.0081 43.8656

NNOAM 0.7112 ± 0.0339 0.0102 KNNOAM 0.9957 ± 0.0029 3.0055

Algorithm vehicle Algorithm letter

AUC Time (s) AUC Time (s)

OAMseq 0.9898 ± 0.0067 0.4680 OAMseq 0.9200 ± 0.0088 13.1813

OAMgra 0.9872 ± 0.0084 0.1617 OAMgra 0.8548 ± 0.0554 4.3805

OPAUC 0.9886 ± 0.0060 0.0469 OPAUC 0.9267 ± 0.0062 1.2367

AdaOAM 0.9838 ± 0.0101 0.0711 AdaOAM 0.9120 ± 0.0315 1.7828

KNNOAM 0.9745 ± 0.0074 0.0063 KNNOAM 0.9993 ± 0.0003 1.0063

Algorithm acoustic Algorithm poker

AUC Time (s) AUC Time (s)

OAMseq 0.7421 ± 0.0587 58.3867 OAMseq 0.4916 ± 0.0266 15.6133

OAMgra 0.8379 ± 0.0277 19.5711 OAMgra 0.5099 ± 0.0318 5.6508

OPAUC 0.8729 ± 0.0036 8.0313 OPAUC 0.4982 ± 0.0368 1.4664

AdaOAM 0.8653 ± 0.0120 10.4055 AdaOAM 0.5001 ± 0.0321 2.1391

KNNOAM 0.9166 ± 0.0023 42.7477 KNNOAM 0.6299 ± 0.0309 1.1422

590 B. Szörényi et al.

References

1. Agarwal, S.: Surrogate regret bounds for bipartite ranking via strongly proper
losses. J. Mach. Learn. Res. 15(1), 1653–1674 (2014)

2. Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Generalization
bounds for the area under the ROC curve. JMLR 6, 393–425 (2005)

3. Ailon, N., Mohri, M.: An efficient reduction of ranking to classification. In: COLT
2008, Helsinki, Finland, 9–12 July 2008, pp. 87–98 (2008)

4. Anava, O., Levy, K.: k∗-nearest neighbors: from global to local. In: Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 29, pp. 4916–4924. Curran Associates Inc.,
Red Hook (2016)

5. Balcan, M.F., Bansal, N., Beygelzimer, A., Coppersmith, D., Langford, J., Sorkin,
G.B.: Robust reductions from ranking to classification. Mach. Learn. 72(1), 139–
153 (2008)

6. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
ICML, pp. 97–104. ACM, New York (2006)

7. Cardot, H., Degras, D.: Online principal component analysis in high dimension:
which algorithm to choose? CoRR abs/1511.03688 (2015). http://arxiv.org/abs/
1511.03688

8. Chaudhuri, K., Dasgupta, S.: Rates of convergence for nearest neighbor classifica-
tion. In: NIPS 2014, pp. 3437–3445 (2014)

9. Clémençon, S., Vayatis, N.: Tree-based ranking methods. IEEE Trans. Inf. Theory
55(9), 4316–4336 (2009)

10. Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and empirical minimization of
U-statistics. Ann. Stat. 36(2), 844–874 (2008)

11. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Thrun,
S., Saul, L., Schölkopf, B. (eds.) NIPS, pp. 313–320. MIT Press, Cambridge (2004)

12. Devroye, L., Győrfi, L., Krżyzak, A., Lugosi, G.: On the strong universal consis-
tency of nearest neighbor regression function estimates. Ann. Stat. 22(3), 1371–
1385 (1994)

13. Ding, Y., Zhao, P., Hoi, S.C.H., Ong, Y.: An adaptive gradient method for online
AUC maximization. In: AAAI, pp. 2568–2574 (2015)

14. Gao, W., Jin, R., Zhu, S., Zhou, Z.: One-pass AUC optimization. In: ICML 2013,
pp. 906–914 (2013)

15. Gao, W., Zhou, Z.: On the consistency of AUC pairwise optimization. In: IJCAI
2015, pp. 939–945 (2015)

16. Hanley, J.A., Mcneil, B.J.: The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

17. Kar, P., Sriperumbudur, B.K., Jain, P., Karnick, H.: On the generalization ability
of online learning algorithms for pairwise loss functions. In: 30th ICML 2013, 16–21
June 2013, Atlanta, GA, USA, pp. 441–449 (2013)

18. Kotlowski, W., Dembczynski, K., Hüllermeier, E.: Bipartite ranking through min-
imization of univariate loss. In: ICML, pp. 1113–1120. Omnipress (2011)

19. Robbiano, S., Clémençon, S.: Minimax learning rates for bipartite ranking and
plug-in rules. ICML 2011, pp. 441–448 (2011)

20. Uematsu, K., Lee, Y.: On theoretically optimal ranking functions in bipartite rank-
ing. Technical report 863, Department of Statistics, The Ohio State University,
December 2011

21. Wang, Y., Khardon, R., Pechyony, D., Jones, R.: Generalization bounds for online
learning algorithms with pairwise loss functions. In: COLT, pp. 13.1-13.22 (2012)

22. Zhao, P., Hoi, S.C.H., Jin, R., Yang, T.: Online AUC maximization. In: ICML, pp.
233–240 (2011)

http://arxiv.org/abs/1511.03688
http://arxiv.org/abs/1511.03688

	Non-parametric Online AUC Maximization
	1 Introduction
	2 Formal Setup
	3 Surrogate Measures and Restricted Classes
	3.1 Square Loss with Linear Hypotheses

	4 Conditional Probability as Rank Function
	5 AUC Maximization Using k-NN
	6 Dimensionality Reduction
	7 Experimental Results
	7.1 Evaluation on Benchmark Datasets

	8 Related Work
	9 Concluding Remarks
	A Proof of Theorem2
	B Figures for Benchmark Datasets
	C Experimental Results for the One-Pass AUC Setup
	References

