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Abstract. In the time-series classification context, the majority of the
most accurate core methods are based on the Bag-of-Words framework,
in which sets of local features are first extracted from time series. A
dictionary of words is then learned and each time series is finally repre-
sented by a histogram of word occurrences. This representation induces
a loss of information due to the quantization of features into words as
all the time series are represented using the same fixed dictionary. In
order to overcome this issue, we introduce in this paper a kernel operat-
ing directly on sets of features. Then, we extend it to a time-compliant
kernel that allows one to take into account the temporal information. We
apply this kernel in the time series classification context. Proposed kernel
has a quadratic complexity with the size of input feature sets, which is
problematic when dealing with long time series. However, we show that
kernel approximation techniques can be used to define a good trade-off
between accuracy and complexity. We experimentally demonstrate that
the proposed kernel can significantly improve the performance of time
series classification algorithms based on Bag-of-Words.
Code related to this chapter is available at:
https://github.com/rtavenar/SQFD-TimeSeries
Data related to this chapter are available at:
http://www.timeseriesclassification.com

1 Introduction

Time series classification has many real-life applications in various domains such
as biology, medicine or speech recognition [17,24,27] and has received a large
interest over the last decades within the data mining and machine learning com-
munities. Three main families of methods can be found in the literature in this
context: similarity-based methods, that make use of similarity measures between
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raw time series, shapelet-based methods aiming at extracting small subsequences
that are discriminant of class membership, and feature-based methods, that rely
on a set of feature vectors extracted from time series. The interested reader can
refer to [1] for an extensive presentation of time series classification methods.

The most used dissimilarity measures are the euclidean distance (ED) and the
dynamic time warping (DTW). The computational cost of ED is lower than the
one of DTW, but ED is not able to deal with temporal distortions. The combina-
tion of DTW and k-Nearest-Neighbors (k-NN) is one of the seminal approaches
for time series classification thanks to its good performance. Cuturi [9] introduces
the Global Alignment Kernel that takes into account all possible alignments in
order to produce a reliable similarity measure to be used at the core of standard
kernel methods such as Support Vector Machines (SVM).

Ye and Keogh [29] introduce shapelets which are sub-sequences of time series
that have a high discriminating power between the different classes. In this
framework, classification is done with respect to the presence of absence of such
shapelets in tested time series. Hills et al. [15] use shapelets to transform the
time series into feature vectors representing distances from the time series to the
extracted shapelets. Grabocka et al. [13] propose a new classification objective
function (applied to the shapelet transform) to learn the shapelets, that improves
accuracy and reduces the need to search for too many candidates.

Feature-basedmethods rely on extracting, from each time series, a set of feature
vectors that describe it locally. These feature vectors are quantized into words,
using a learned dictionary. Every time series is finally represented by a histogram
of word occurrences that then feeds a classifier. Many feature-based approaches
for time series classification can be found in the literature [2–4,19,25–27] and they
mostly differ in the features they use.

This Bag-of-Word (BoW) framework has been shown to be very efficient. How-
ever, it suffers from a major drawback: it implies a quantization step that is done
via a fixed partitioning of the feature space. Indeed, for a given dataset, words are
obtained by clustering the whole set of features and this fixed clustering might not
reflect very accurately the distribution of features for every individual time series.
This problem has been studied in the computer vision domain for image retrieval
for instance. To overcome this drawback, similarity measures operating directly
on feature sets have been considered [5,6,16]: every instance is represented by its
own raw feature sets, which models more accurately every single distribution of
features. These measures have been shown to improve accuracy in the image clas-
sification context. However, their associated computational cost is quadratic with
the size of the feature sets, which is a strong limitation for their direct use in real-
world applications. Moreover, they have never been applied to time series classi-
fication purposes to the best of our knowledge.

In this paper, we propose a novel temporal kernel that takes as input a set of
feature vectors extracted from the time series and their timestamps. Unlike stan-
dard Bag-of-Word approaches, this kernel takes feature localization into account,
which leads to significant improvement in accuracy. The distance between fea-
ture sets is computed using the signature quadratic form distance (SQFD for
short [5]) that is a very powerful tool for feature set comparison but has a high
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computing cost. We hence introduce an efficient variant of our feature set kernel
that relies on kernel approximation techniques.

The rest of this paper is organized as follows. An overview of time series clas-
sification approaches based on BoW is given in Sect. 2, together with alternatives
to BoW mainly used in the image community. The Signature Quadratic Form
Distance [5] is detailed in Sect. 3. In Sect. 4, we introduce a kernel based on this
distance together with a temporal variant of the latter kernel that enables taking
temporal information into account. We also propose an approximation scheme
that allows efficient computation of both kernels. In the experimental section, we
evaluate the proposed kernel using SIFT features adapted to time series [2,7] and
show that it significantly outperforms the original algorithm (based on quantized
features) on the UCR datasets [8].

2 Related Work

In this section, we first give an overview of state-of-the-art techniques for time
series classification that are based on the BoW framework, as the approach pro-
posed in this paper aims at going beyond this framework. We focus on core clas-
sifiers, as the one proposed here. Such classifiers can be integrated into ensemble
classifiers in order to build more accurate overall classifiers. More information
about the use of ensemble classifiers in this context can be found in [1]. Then, we
give an insight about similarity measures defined on feature sets for object com-
parison purposes. Such measures have been widely used in the image community,
but never for time series classification to the best of our knowledge.

2.1 Bag-of-Words Methods for Time Series Classification

Inspired by the text mining and computer vision communities, recent works in
time series classification have considered the use of Bag-of-Words [2–4,19,25–27].
In a BoW approach, time series are first converted into a histogram of word occur-
rences and then a classifier is built upon this representation. In the following, we
focus on explaining how the conversion of time series into BoW is performed in the
literature.

Baydogan et al. [4] propose Time Series Bag-of-Features (TSBF), a BoW app-
roach for time series classification where local features such as mean, variance
and extrema are extracted on sliding windows. A codebook learned by a class
probability estimate distribution is then used to quantize the features into words.
In [27], discrete wavelet coefficients are computed on sliding windows and then
quantized into words by a k-means algorithm. A similar approach denoted BOSS
using quantized Fourier coefficients is proposed in [25]. The SAX representation
introduced in [18] can also be used to construct words. Histograms of n-grams of
SAX symbols are computed in [19] to form the Bag-of-Patterns (BoP) represen-
tation. In [26], they propose the SAX-VSM method, which combines SAX with
Vector Space Models. SMTS, a symbolic representation of Multivariate Time
Series (MTS) is designed in [3]. This method works as follows: a feature matrix
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is built from MTS and the rows of this matrix are feature vectors composed of
a time index, values and gradients of the time series on all dimensions at this
time index. A dictionary of words is computed by giving random samples of this
matrix to different decision trees. Xie and Beigi [28] extract keypoints from time
series and describe them by scale-invariant features that characterize the shapes
around the keypoints. Bailly et al. [2] compute multi-scale descriptors based on
the SIFT framework and quantize them using a k-means algorithm. Features
are either computed at regular time locations or at specific temporal locations
discovered by a saliency detector.

2.2 Alternatives to BoW Quantization for Feature Set Classification

Such BoW approaches usually include a quantization step based on a fixed par-
titioning of the whole set of features. This step might prevent from accurately
modeling the distribution of features for every single instance. To overcome this
drawback, several similarity measures defined directly on feature sets have been
designed. Huttenlocher et al. [16] propose the Hausdorff distance that measures
the maximum nearest neighbor distance among features of different instances.
The Fisher Kernel [22] relies on a parametric estimation of the feature distri-
bution using a Gaussian Mixture Model. Beecks et al. [5] propose the Signature
Quadratic Form distance (SQFD) that is based on the computation of cross-
similarities between the features of different sets called feature signatures. As we
will see later in this paper, SQFD is closely related to match kernels proposed
in [6]. Beecks et al. [5] show that SQFD is able to reach higher accuracy than
other above classical measures for image retrieval purposes. This makes SQFD a
good candidate for being an alternative to BoW quantization in the time series
classification context.

3 Signature Quadratic Form Distance

In the following, we assume that a time series S is represented as a set of n
feature vectors {xi ∈ R

d}. Any algorithm presented in Sect. 2.1 can be used to
extract such a set of feature vectors from the time series and one should note that
considered time series may have different number of features extracted. SQFD
is a distance that enables the comparison of instances (time series in our case)
represented by weighted sets of features called feature signatures. In this section,
we review the SQFD distance.

The feature signature of an instance is defined as follows:

F = {(xi, wi)}i=1,...,n, with
n∑

i=1

wi = 1. (1)

F can either be composed of the full set of features {xi}, in which case weights
{wi} are all set to 1/n, or by the result of a clustering of the full set of feature
vectors from the instance into n clusters. In the latter case, {xi} are the centroids
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obtained after clustering and {wi} are the weights of the corresponding clusters.
We explain here how the SQFD measure is defined (adopting the time series
point of view).

Let F1 = {(x1
i , w

1
i )}i=1,...,n and F2 = {(x2

i , w
2
i )}i=1,...,m be two feature sig-

natures associated with two time series S1 and S2. Let k : Rd × R
d → R be a

similarity function defined between feature vectors. The SQFD between F1 and
F2 is defined as:

SQFD(F1,F2) =
√

w1−2 AwT
1−2, (2)

where w1−2 = (w1
1, . . . , w

1
n,−w2

1, . . . ,−w2
m) is the concatenation of the weights

of F1 and the opposite of the weight of F2, and A is a square matrix of dimension
(n + m):

A =

⎛

⎜⎜⎝

A1 A1,2

A2,1 A2

⎞

⎟⎟⎠ , (3)

where A1 (resp. A2) is the similarity matrix (computed using k) between features
from F1 (resp. F2), A1,2 is the cross-similarity matrix between features from F1

and those from F2, and A2,1 is the transpose of A1,2. It is shown in [5] that the
RBF kernel

kRBF(xi, xj) = e−γf ‖xi−xj‖2
, (4)

where γf is called the kernel bandwidth, is a good choice for computing local
similarity between two features.

SQFD is hence the square root of a weighted sum of local similarities between
features from sets F1 and F2. When no clustering is used, pairwise local simi-
larities are all taken into account, resulting in a very fine grain estimation of the
similarity between series that we will refer to as exact SQFD in the following.
However, its calculation has a high cost, as it requires the computation of a
number of local similarities that is quadratic in the size of the sets. A reasonable
alternative presented in [5] consists in first quantizing each set using a differ-
ent k-means and then computing SQFD between feature signatures representing
the quantized version of the sets. In the following, we will refer to this latter
alternative as the k-means approximation of SQFD (SQFD-k-means for short).

4 Efficient Temporal Kernel Between Feature Sets

In this section, we first derive a kernel from the SQFD distance, considering an
RBF kernel as the local similarity, and extend it to a time-sensitive kernel. We
then propose a way to alleviate its computational burden.

4.1 Feature Set Kernel

Let us consider the equal weight case in the SQFD formulation, which is the one
considered when no pre-clustering is performed on the feature sets. By expanding
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Eq. (2) in this specific case, we get:

SQFD(F1,F2)
2

=
1
n2

n∑

i=1

n∑

j=1

kRBF(x1
i , x

1
j ) +

1
m2

m∑

i=1

m∑

j=1

kRBF(x2
i , x

2
j )

− 2
n · m

n∑

i=1

m∑

j=1

kRBF(x1
i , x

2
j ). (5)

Note that SQFD then corresponds to a biased estimator of the squared differ-
ence between the mean of the samples F1 and F2 which is classically used to test
the difference between two distributions [14]. One can also recognize in Eq. (5)
the match kernel [6] (also known as set kernel [11]). By denoting K the match
kernel associated with kRBF (in what follows, we will always denote with capital
letters kernels that operate on sets whereas kernels operating in the feature space
will be named with lowercase k), we have:

SQFD(F1,F2)
2

= K(F1,F1) + K(F2,F2) − 2K(F1,F2). (6)

In other words, SQFD is the distance between feature sets embedded in the
Reproducing Kernel Hilbert Space (RKHS) associated with K. Finally, we build
a feature set kernel, denoted KFS by embedding SQFD into an RBF kernel:

KFS(F1,F2) = e−γK SQFD(F1,F2)
2

, (7)

where γK is the bandwith of KFS. This kernel can then be used at the core of
standard kernel methods such as Support Vector Machines (SVM).

4.2 Time-Sensitive Feature Set Kernel

Kernel KFS as defined in Eq. (7) ignores the temporal location of the features in
the time series, only taking into account cross-similarities between the features.
In order to integrate temporal information into kRBF, let us augment the features
with the time index at which they are extracted: for all 1 ≤ i ≤ n, we denote
xt

i = (xi, ti). The time-sensitive kernel between features associated with their
time of occurrence, denoted ktRBF, is defined as:

ktRBF(xt
i, x

t
j) = e−γt (tj−ti)

2 · kRBF(xi, xj). (8)

In practice, ti and tj are relative timestamps ranging from 0 (beginning of the
considered time series) to 1 (end of the time series) so that features extracted
from time series of different lengths can easily be compared. As the product of
two positive semi-definite kernels, ktRBF is itself a positive semi-definite kernel.
It can be seen as a temporal adaptation of the convolutional kernel for images
introduced in [20]. Figure 1 illustrates the impact of the parameter γt of ktRBF on
the resulting similarity matrices A for SQFD: kRBF (γt = 0) takes all matches
into account without considering their temporal locations, whereas our time-
sensitive kernel favors diagonal matches, γt controlling the rigidity of this process.
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Denoting xi = (xi1, xi2, . . . , xid), Eq. (8) can be re-written as:

ktRBF(xt
i, x

t
j) = e

−γf

(∑d
l=1(xjl−xil)

2+
γt
γf

(tj−ti)
2
)
, (9)

where γf is the scale parameter. By defining g(xi, ti) =
(

xi1, . . . , xid,
√

γt

γf
ti

)
,

we get:
ktRBF(xt

i, x
t
j) = e−γf ‖g(xi,ti)−g(xj ,tj)‖2

. (10)

In other words, if we build time-sensitive features g(x, t) by concatenating
rescaled temporal information and the raw features, the time-sensitive kernel in
Eq. (10) can be seen as a standard RBF kernel of scale parameter γf operating on
these augmented features. Finally, replacing kRBF with ktRBF in Eq. (7) defines
a time-sensitive variant for our feature set kernel.

(a) γt = 0 (b) Medium γt value (c) Large γt value

Fig. 1. Impact of the ktRBF kernel on similarity matrices A1,2. From left to right,
growing γt values are used from γt = 0 (i.e. the kRBF kernel case) to a large γt value that
ignores almost all non-diagonal matches. Blue colors indicate low similarity whereas
red colors represent high similarity (Matrices A1,2 are shown but similar observations
hold for matrices A1, A2 and A2,1). Best viewed in color.

4.3 Temporal Kernel Normalization

As can be seen in Fig. 1, when γt grows, the number of zero entries in A increases,
hence the norm of A decreases. It is valuable to normalize the resulting match
kernel K so that, if all local kernel responses are equal to 1, the resulting match
kernel evaluation is also equal to 1. The corresponding normalization factor is:

s2 =

⎛

⎝
n∑

i=1

m∑

j=1

exp−γt( i
n − j

m )2
⎞

⎠
−1

. (11)

When γt = 0, this is equivalent to the 1
n·m normalization term in the match

kernels. When γt > 0, this can be computed either through a double for-loop or
approximated by its limit when n and m tend towards infinity:
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ŝ2 =
(∫ 1

0

∫ 1

0

e−γt(t1−t2)
2
dt1dt2

)−1

(12)

=
(√

π

γt

[
2F

(√
2γt

)
− 1

]
+

e−γt − 1
γt

)−1

(13)

where F is the cumulative distribution function of a centered-reduced Gaussian.
In practice, we observe that even for very small feature sets (n = m = 5),
the relative approximation error done when using ŝ normalization instead of s
normalization is less than 2%, which is sufficient to efficiently rescale kernels.

4.4 Efficient Computation of Feature Set Kernels

As mentioned earlier, exact SQFD computation is demanding as it requires fill-
ing the A matrix (Eq. (3)), leading to the evaluation of (n + m)2 local kernels
kRBF(xi, xj). To lower the computational cost of kernel KFS (Eq. (7)), two stan-
dard approaches can be considered. The first one, presented in Sect. 3, relies on a
k-means quantization of each feature set, leading to a time complexity of O(k2)
where k is the chosen number of centroids extracted per set. Another approach
is to build an explicit finite-dimensional approximation of the RKHS associated
with the match kernel K and approximate SQFD as the Euclidean Distance in
this space, as explained below.

Kernel functions compute the inner product between two feature vectors
embedded on a feature space thanks to a feature map Φ:

k(xi, xj) = 〈Φ(xi), Φ(xj)〉 . (14)

In the case of an RBF kernel, the associated feature map ΦRBF is infinite dimen-
sional. Let us now assume that one can embed feature vectors in a space of
dimension D such that the dot product in this space is a good approximation
of the RBF kernel on features. In other words, let us assume that there exists a
finite mapping φRBF such that:

kRBF(xi, xj) ≈ 〈φRBF(xi), φRBF(xj)〉 . (15)

Then, the match kernel K becomes:

K(F1,F2) =
1

n · m

n∑

i=1

m∑

j=1

kRBF(x1
i , x

2
j ) (16)

≈ 1
n · m

n∑

i=1

m∑

j=1

〈
φRBF(x1

i ), φRBF(x2
j )

〉
(17)

≈
〈

1
n

n∑

i=1

φRBF(x1
i )

︸ ︷︷ ︸
φ(F1)

,
1
m

m∑

j=1

φRBF(x2
j )

︸ ︷︷ ︸
φ(F2)

〉
(18)
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Hence, approximating kRBF using φRBF is sufficient to approximate the
match kernel itself and the explicit feature map φ for K is the barycenter of
explicit feature maps φRBF for features in the set.

Using Eq. (6), we can derive:

SQFD(F1,F2)
2 ≈ 〈

φ(F1), φ(F1)
〉

+
〈
φ(F2), φ(F2)

〉 − 2
〈
φ(F1), φ(F2)

〉
(19)

≈ ‖φ(F1) − φ(F2)‖2 (20)

In other words, once feature sets are projected in this finite-dimensional
space, approximate SQFD computation is performed through a Euclidean dis-
tance computation in O(D) time, where D is the dimension of the feature map.

In this piece of work, we use the Random Fourier Features [23] to build a finite
mapping that approximates the local kernel kRBF. Other kernel approximation
techniques [10] could be used, but our experience showed that Random Fourier
Features reached very good performance for our problem, as showed in the next
Section. Random Fourier Features represent each datapoint as its projection on
a Fourier basis. The inverse Fourier transform of the RBF kernel is a Gaussian
distribution p(u) = N (0, σ−2I) and the Random Fourier Features are obtained
by projecting each original feature into a set of sampling Fourier components
p(u), before passing through a sinusoid:

φRBF(xi) =

√
2
D

[
cos(uT

1 xi + b1), . . . , cos(uT
Dxi + bD)

]T
(21)

where coefficients bi are drawn from a uniform distribution in [−π, π].
Overall, building on a kernelized version of SQFD, we have presented a way

to incorporate time in the representation as well as a scheme for efficient com-
putation of the kernel. In the following Section, we will show experimentally
that these improvements help reaching very competitive performance for a wide
range of time-series classification problems.

5 Experimental Results with Temporal SIFT Features

Our feature set kernel (with and without temporal information) can be imple-
mented in any algorithm in lieu of a BoW approach. To evaluate the perfor-
mances of this kernel, we use it in conjunction with time series-based Scale-
Invariant Feature Transform (SIFT) features as it has been demonstrated in [2]
that they significantly outperform most state-of-the-art local-feature-based time
series classification algorithms applied on UCR datasets. In this section, we first
recall the temporal SIFT features. We then evaluate the impact of kernel approx-
imation in terms of both efficiency and accuracy. We also analyze the impact of
integrating temporal information in the feature set kernel. Finally, we compare
our proposed approach with state-of-the-art time series classifiers.
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5.1 Dense Extraction of Temporal SIFT Features

In [2], time series-derived SIFT features are used in a BoW approach for time
series classification. We review here how these features are computed (the inter-
ested reader can refer to [2] for more details). A time series S is described by
keypoints extracted every τstep time instants. Each keypoint is composed of a
set of features that gives a description of the time series at different scales. More
formally, let L(S, σ) = S ∗ G(t, σ) be the convolution of a time series with a
Gaussian filter G(t, σ) = 1√

2π σ
e−t2/2σ2

of width σ. A keypoint at time instant
t is described at scale σ as follows. nb blocks of size a are selected around the
keypoint. At each point of these blocks, the gradient magnitudes of L(S, σ) are
computed and weighted so that points that are farther in time from the key-
point have less influence. Then, each block is described by two values: the sum
of the positive gradients and the sum of negative gradients in the block. The
feature vectors of all the keypoints computed at all scales compose the feature
set describing the time series S.

5.2 Experimental Setting

For the sake of reproducibility, all presented experiments are conducted on public
datasets from the UCR archive [8] and the Python source code used to produce
the results (which heavily relies on sklearn [21] package) is made available for
download1. All experiments are run on dense temporal SIFT features extracted
using the publicly available software presented in [2]. For SIFT feature extrac-
tion, we choose to use fixed parameters for all datasets. Features are extracted
at every time instant (τstep = 1), at all scales, with the block size a = 4 and the
number of blocks per feature nb = 12, resulting in 24-dimensional feature vectors.
By using such a parameter set that achieves robust performance across datasets,
we restrict the numbers of parameters to be tuned during cross-validation, with-
out severely degrading performance. Finally, all experiments presented here are
repeated 5 times and medians over all runs are reported.

5.3 Impact of Kernel Approximation

We analyze here the impact of the kernel approximation (in terms of trade-off
between complexity and accuracy) on the proposed kernels. Timings are reported
for execution on a laptop with 2.9 GHz dual core CPU and 8 GB RAM.

Effectiveness. Figure 2 presents the trade-off between accuracy and execution
time obtained for the ECG200 dataset of the UCR archive. Two methods are
considered: SQFD-k-means is the approximation scheme that was proposed in [5]
and SQFD-Fourier is the one used in this paper. First, this figure confirms that
the assumption made in Eq. (15) is safe: one can obtain good approximation
1 https://github.com/rtavenar/SQFD-TimeSeries: contains code and supplementary

material.

https://github.com/rtavenar/SQFD-TimeSeries
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Fig. 2. Mean Squared Error (MSE) vs timings of the approximated kernel matrix
(ECG200 ). Timings are reported in seconds per matrix element. As a reference, exact
computation of feature set kernel takes 0.082 s per matrix element.

of an RBF kernel using finite dimension mapping. Then, for our approach, we
observe that the use of larger dimensions leads to better kernel matrix estimation
at the cost of larger execution time. The same applies for SQFD-k-means when
varying the k parameter. In order to compare approximation methods, Fig. 2 can
be read as follows: for a given MSE level (on the y-axis), the lower the timing, the
better. This comparison leads to the conclusion that our proposed approximation
scheme reaches better trade-offs for a wide range of MSE values. Note that this
behaviour is observed on most of the datasets we have experimented on.

Sensitivity to the Amount of Training Data. In this section, we study
the evolution of both training and testing times as a function of the amount
of training time series. To do so, we compare both efficient approximations of
KFS listed above with a standard RBF kernel operating on BoW representations
of the feature sets. In Fig. 3, all considered methods exhibit linear dependency
between the training set size and the computation time for training. For BoW,
this dependency comes from the k-means computation that has O(nkd) time
complexity, where n is the number of features used for quantization, k is the

Fig. 3. Training and testing times as a function of the amount of training data
(ECG200 ). Training timings correspond to full training of the method for a given
parameter set whereas test timings are reported per test time series.
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number of clusters and d is the feature dimension. The same argument holds for
SQFD-k-means, and this explains the observed difference in slope, as lower val-
ues of k are typically used in this context. SQFD-Fourier present an even lower
slope, which correspond to the computation of projected features (one per time
series). Concerning testing times, BoW as well as SQFD-Fourier have almost
constant computation needs, whereas SQFD-k-means computation time is lin-
early dependent in the number of training time series. Note that this comparison
is done on ECG200 dataset for which the number of training time series is small.
In this context, computation of the feature set representation (k-means quan-
tization or feature map) dominates the processing time for both training and
testing. In other settings where the number of training time series is large, pro-
cessing time will be dominated by the computation of pairwise similarities which
is, as stated above, linear in k for BoW, quadratic in k for SQFD-k-means, and
linear in D for SQFD-Fourier. Once again, our proposed approximation scheme
tends to better approximate the exact kernel matrix with lower timings (both
in the training and the testing phase) than its competitor.

5.4 Impact of the Temporal Information

Let us now turn our focus to the impact of temporal information on the clas-
sification performance. To do so, we use KFS in an SVM classifier. In order to
have a fair comparison of the performances, all parameters (except the dimen-
sion D of the feature map) are set through cross-validation on the training set.
The same applies for experiments presented in the following subsections and the
range of tested parameter values are provided in the Supplementary Material.
As a reference, BoW performance with RBF kernel (using the same temporal
SIFT features) is also reported. To compute this baseline, the number k of code-
words is also cross-validated. Figure 4 shows the error rates for dataset ECG200
as a function of the dimension D of the feature map, considering (i) our feature
set kernel without temporal information, (ii) its equivalent with temporal infor-
mation and finally (iii) the normalized temporal kernel. One should first notice
that in all cases, a higher dimension D tends to lead to better performance.
This figure also illustrates the importance of the temporal kernel normalization:

Fig. 4. Error rates as a function of the feature map dimension (ECG200 ).
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the normalized temporal kernel reaches better performance than the feature set
kernel with no time information, whereas the performance of the non-normalized
one is worse. Indeed, when γt increases, the non-normalized version suffers from
a bad scaling of kernel responses that impairs the learning process of the SVM.2

In the following, we use the same parameter ranges as above, and we cross-
validate the parameter related to the time (γt ∈ {0}∪{

100 − 106
}
). By doing so,

we offer the possibility for our method to learn (during training) whether time
information is of interest or not for a given dataset. We present experiments run
on the 85 datasets from the UCR Time Series Classification archive and observe
that in more than 3/4 of our experiments, the temporal variant of our kernel
is selected by cross-validation (i.e. γt > 0), which confirms the superiority of
temporal kernels for such applications. Corresponding datasets are marked with
a star in the full result table provided as Supplementary material.

5.5 Pairwise Comparisons on UCR Datasets

Pairwise comparisons of methods are presented in Fig. 5, in which green dots
(data points lying below the diagonal) correspond to cases where the x-axis
method has higher classification error rates, black ones represent cases where
both methods share the same performance and red dots stand for cases for which
the y-axis method has higher error rates. In these plots, Win/Tie/Lose scores are

Fig. 5. Pairwise performance comparisons. Reported values are error rates. (Color
figure online)

2 See Supplementary material for experiments on more datasets.
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also reported where “Win” indicates the number of times the y-axis method out-
performs the x-axis one. Finally, p-values corresponding to one-sided Wilcoxon
signed rank tests are provided to assess statistical significance of observed dif-
ferences and our significance level is set to 5%.

First, Fig. 5a confirms our observation made for ECG200 dataset: incorpo-
rating temporal information allows, for many datasets, to improve the classifica-
tion performances. We then compare the efficient version of our temporal kernel
on feature sets with standard BoW approach running on the same feature sets
(Fig. 5b). This figure shows improvement for a wide range of datasets: when test-
ing the statistical differences between both methods, one can observe that our
feature set kernel significantly outperforms the BoW approach. Finally, when
considering other state-of-the-art competitors3, our feature set kernel for time
series show state-of-the-art performance, significantly outperforming BOSS [25],
DTDC [12], LearningShapelets (LS) [13] and TSBF [4]. This high accuracy is
achieved with reasonable classification time (e.g. 300 ms per test time series on
NonInvasiveFetalECG1 dataset, one of the largest UCR datasets).

6 Conclusion

Many local features have been designed for time-series representations and used
in a BoW framework for classification purposes. To improve these approaches,
we introduce in this paper a new temporal kernel between feature sets that gets
rid of quantized representations. More precisely, we propose to kernelize SQFD
for time-series classification purposes. We also derive a temporal feature set ker-
nel, allowing one to take into account the time instant at which the features are
extracted. In order to alleviate the high computational burden of this kernel and
make it tractable for large datasets, we propose an approximation technique
that allows fast computation of the kernel. Extensive experiments show that
the temporal information helps improving classification accuracy. The temporal
information is taken into account thanks to a simple RBF kernel, and we believe
that the performance could be further improved by exploring other ways to incor-
porate time information into the local kernels. This is the main direction for our
future work. Finally, our temporal feature set kernel significantly outperforms the
initial BoW-based method and leads to competitive results w.r.t state-of-the-art
time series classification algorithms. This kernel is likely to improve performance
of any time series classification approach based on BoW.

Acknowledgments. Supported by the Millennium Nucleus Center for Semantic Web
Research under Grant NC120004, the ANR through the ASTERIX project (ANR-13-
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3 For the sake of brevity, we focus on standalone classifiers that are shown in [1] to
outperform competitors in their categories.
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