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Abstract. We present a new approach for learning a sequence regres-
sion function, i.e., a mapping from sequential observations to a numeric
score. Our learning algorithm employs coordinate gradient descent with
Gauss-Southwell optimization in the feature space of all subsequences.
We give a tight upper bound for the coordinate wise gradients of squared
error loss which enables efficient Gauss-Southwell selection. The proposed
bound is built by separating the positive and the negative gradients of
the loss function and exploits the structure of the feature space. Exten-
sive experiments on simulated as well as real-world sequence regression
benchmarks show that the bound is effective and our proposed learning
algorithm is efficient and accurate. The resulting linear regression model
provides the user with a list of the most predictive features selected
during the learning stage, adding to the interpretability of the method.
Code and data related to this chapter are available at: https://github.
com/svgsponer/SqLoss.

1 Introduction

A wide range of applications benefit from methods that can learn a mapping from
sequential observations to categorical or numeric scores. For example, a mapping
could be learned from a set of labeled DNA sequences, to classify each sequence
into subfamilies [10], or assign to it a numeric score, such as a protein binding
affinity [18]. Methods aimed at solving such problems typically employ Hidden
Markov Models (HMM) [14,19], kernel Support Vector Machines (SVM) [11] or
more recently, Convolutional Neural Networks (CNN) [2]. While the accuracy of
such techniques is promising, their efficiency and interpretability are still critical
challenges. An alternative to the above approaches is to explicitly generate all
k-mers (i.e., subsequences of length k) up to a specified k, followed by learning
a classification or regression model using all the generated k-mers as features.
Such methods are much simpler and achieve an accuracy comparable to the more
sophisticated methods above [3,18]. Nevertheless, they are limited by the huge
computational burden of explicitly generating all k-mers, and therefore tend to
be applied to small datasets with k fixed manually, e.g., up to 6 or 8, and need
to use additional filtering to further reduce the large feature space.

In this work, we propose a regression approach that can use the entire space
of k-mers, of unlimited length, by learning a linear model using an iterative
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branch-and-bound strategy. The main idea behind this technique is to exploit
the nested structure of the feature space via greedy search, thus avoiding the
need for explicitly generating all subsequences, and instead focusing on the most
discriminative ones during learning. The resulting approach combines feature
selection and learning into a simple algorithm and, as shown in our experi-
ments, delivers accuracy similar to the state-of-the-art, with no pre-processing
or domain knowledge required. Since during learning we only need to explore a
small subset of the feature space, we can employ richer features such as gapped k-
mers to allow inexact feature matches. This enables our linear models to achieve
high accuracy. Our optimization algorithm relies on greedy coordinate-descent
with Gauss-Southwell selection. To enable efficient coordinate selection, we give
a tight upper bound for the coordinate-wise gradients of squared error loss.

We test the proposed algorithm on a simulated benchmark and on two real-
world applications. First, we compare our algorithm to other regression methods
on a synthetic sequence regression dataset, where we vary parameters such as
the true motif length and the alphabet size, to study potential gains from using
rich features such as all k-mers. Next, we apply our model to a sequence regres-
sion problem where the goal is to score the protein binding affinity of DNA
sequences. We work with a publicly available dataset of 40,000 DNA sequences
prepared by [18] for a popular data challenge1. Finally, we study our algorithm
on a large sequence classification dataset to compare the effectiveness of our
approach to existing methods designed for linear sequence classification [7,8].
In this application the aim is to score software files represented as hexadecimal
sequences, in order to categorize malicious software into known families, also
known as malware classification [1]. This dataset was released by a recent data
challenge2 organized by Microsoft.

Contribution. We propose a new method for efficient sequence regression by
learning linear models with rich subsequence features, e.g., unrestricted-length,
contiguous and gapped k-mers. Our algorithm uses an optimization strategy
based on coordinate-descent coupled with an upper bound on the coordinate-
wise gradients of squared error loss, to enable efficient Gauss-Southwell selection.
We evaluate our learning algorithm on simulated data and on two real-world
applications and show that our simple linear models are as accurate as more
complex state-of-the-art sequence regression methods, while requiring no feature
engineering or heavy parameter tuning. We release all our code for producing
synthetic sequence regression data, as well as for our learning algorithm3.

2 Related Work

We discuss a range of approaches for sequence regression and classification, with
a focus on the two application domains studied in this paper.
1 https://www.synapse.org/#!Synapse:syn2887863/wiki/72186.
2 https://www.kaggle.com/c/malware-classification.
3 Code of our algorithms: https://github.com/svgsponer/SqLoss.
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Sequence Regression for DNA. The sequence regression benchmark provided
by the DREAM5 challenge aims to advance the state-of-the-art in recognizing
DNA-binding proteins. It consists of 40,000 DNA training sequences, each with
a numeric score describing the binding specificity of a particular protein, from
a class of proteins named Transcription Factors (TF). The task is to learn a
regression function for a given TF, then predict the TF binding affinity for unseen
sequences. There are 66 TF defining 66 different sequence regression tasks. The
interpretability of the learned model is also important as new knowledge can be
extracted from knowing the individual k-mer binding specificity. The work by [18]
presents a systematic comparison of 26 methods evaluated on this benchmark.
The winning method was a linear regression model with squared error loss and
optimization by gradient descent on sequences represented in the feature space
of all 4 to 8-mers (Team D) [3]. Among the top-5 methods were a Markov model
(Team F) [9], an HMM trained by Expectation-Maximization combined with a
linear model (Team E) [16], and a linear regression model using contiguous and
gapped 6-mers (Team G)4.

A second round of the challenge has added new competing techniques, the
most notable of which are a new HMM model for regression (RegHMM) [19]
and a deep learning method based on CNN (named DeepBind) [2]. The linear
regression method of Team D came second. RegHMM which restricts the k-mers
to k = 6, obtained results similar to Team D. DeepBind slightly outperformed
Team D regarding prediction accuracy, but used a CNN architecture designed for
this specific task and required a custom implementation for GPUs with extensive
parameter calibration over 30 sets of parameters. We test our approach on the
same TF-DNA benchmark and show that we can achieve similar accuracy to
prior techniques, with a much simpler and more efficient approach.

Sequence Classification for Malware. Microsoft released a malware classi-
fication benchmark on Kaggle in 2015, containing about 20,000 files amounting
to 500GB of data, to train and evaluate classifiers of malware files. Besides the
large number of samples, individual files are also quite large (up to 50 Mb per
file). Each file can be interpreted as a discrete sequence of bytes. Several com-
peting methods have exploited the sequence structure of the files. The winning
method [17] has explicitly generated all k-mers with k ∈ {2, 3, 4} using a machine
with 104 Gb memory, 16 CPUs, and extra 200 Gb disk space for the generated
data. They have used these features with a boosting method implemented in the
Xgboost library. The k-mer features have proven to be very useful for achieving
high classification accuracy, but generating them explicitly requires extensive
storage and computational resources. Recent work [1] has studied new feature
engineering approaches on the same benchmark. They have decided not to use k-
mer features due to the excessive computational requirements, but this has lead
to lower accuracy than the challenge winner. In [5] the authors use explicitly

4 http://www.nature.com/nbt/journal/v31/n2/extref/nbt.2486-S1.pdf.
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generated 3-mers as features, but use mutual information and random projec-
tions to select a feature subset that is manageable for learning a neural network.
Malware coders routinely use masking and other code obfuscation techniques. To
detect such manipulations, gapped k-mers that allow flexible, rather than exact
matching, could improve the classifier. To compare our regression algorithm to
prior work, we treat sequence classification as a regression with binary scores.
We learn and evaluate our linear regression function using unrestricted-length
k-mer features.

Linear Sequence Classification. Some of our key intuitions come from
the work of [7,8] which proposed the SEQL framework implementing greedy
approaches for linear sequence classification. In [8] it was shown that a branch-
and-bound approach can be used for a variety of classification loss functions. We
build on previous research [8] and propose an algorithm for efficient sequence
regression, by exploiting the structure of the feature space and separately bound-
ing the positive and negative coordinate-wise gradients for squared error loss.
This bound allows us to guarantee that we iteratively find the best (with respect
to a given loss function) k-mer feature from a very large feature space. We com-
pare our methods to the linear sequence classifiers from [7,8] on the malware
classification benchmark.

3 Method Proposed

3.1 Basic Notation

Let D = {(s1, y1), (s2, y2), . . . , (sN , yN )} be a training set of instance-label pairs,
where si = c1c2 . . . cmi

is a sequence of variable length mi, with each ci ∈ Σ a
symbol from the alphabet of possible symbols denoted by Σ. For example, in the
case of DNA sequences Σ = {A,C,G, T}. Each sequence si has an associated
score yi ∈ R. We define a subsequence as a contiguous part of a sequence, e.g.,
sj = c2c3c4 and write sj ⊆ si if sj is a subsequence of si. Given this definition we
can represent a sequence si as a binary vector in the space of all subsequences in
the training data: xi = (xi1, . . . , xij , . . . , xin)T , xij ∈ {0, 1}, i = 1, . . . , N , where
xij = 1 means that subsequence sj occurs in sequence si. We denote by n the
number of distinct subsequences in the feature space, i.e., the coordinates of the
vectors space in which we learn. Although this space is huge and in practice
infeasible to generate explicitly, we show how to work with this representation
by exploiting its nested structure to develop a lazy search procedure.

The goal is to learn a mapping from sequences to scores, f : S → R, from the
given training set D, so that we can predict a score y ∈ R for a new sample s ∈ S.
In our framework we want to learn a linear model, i.e., a parameter vector β that
allows us to estimate the real score y by setting ŷ = βT xi. Although linear models
are not powerful enough to capture non-linear relationships, by working in a very



Efficient Sequence Regression by Learning Linear Models 41

complex feature space (e.g., all k-mers) we can learn a powerful model, similar
to the kernel trick applied by kernel Support Vector Machines. We compute
β = (β1, . . . , βj , . . . , βn) by minimizing a loss function over the training set:

β∗ = argmin
β∈Rn

L(β). (1)

In our work L(β) is the regularized squared loss:

L(β) =
N∑

i=1

(yi − βT · xi)2 + CRα(β). (2)

C ∈ R
+
0 is the weight for the regularizer Rα(β). We use the elastic-net regularizer

Rα(β) = α
∑n

j=1 |βj | + (1 − α) 12
∑n

j=1 β2
j defined in [6] which allows trading-off

l1 and l2 penalties.

3.2 Learning via Coordinate-Descent with Gauss-Southwell
Selection

Recent work [12] has shown that for a class of loss functions, which includes the
squared loss, learning via coordinate descent is faster than random coordinate
descent optimization. Furthermore, for squared loss in particular, coordinate
descent via the Gauss-Southwell rule was proven to converge much faster than
other coordinate descent methods. In our setting, the feature space of all sub-
sequences is potentially exponential, thus it is not even possible to explicitly
compute the full gradient. We first give the generic learning algorithm and then
provide an upper bound that makes Gauss-Southwell selection feasible for this
complex feature space.

We are interested in solving the convex optimization problem in (1). The
coordinate descent method is based on the iteration step:

β(t) = β(t−1) − ηjt

∂L

∂βjt

(β(t−1))ejt (3)

To determine the descent direction we use the Gauss-Southwell rule [12]:

jt = arg max
j

∣∣∣∣
∂L

∂βj
(β(t−1))

∣∣∣∣ (4)

This formulation transforms the learning problem into a search problem since in
each iteration we have to find the best coordinate jt, i.e., the subsequence with
the largest absolute gradient value. Algorithm1 shows the basic mechanics of our
method. The crucial part of this algorithm is the search for the best coordinate
(line 5), for which we present an efficient algorithm in the next section.
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Algorithm 1. Greedy Coordinate Descent with Gauss Southwell Selection
1: Set β(0) = 0
2: while not termination condition do
3: Adjust intercept
4: Calculate objective function L(β(t))
5: Find coordinate jt with maximum gradient value
6: Find optimal step size ηjt by line search or exact optimization
7: Update β(t) = β(t−1) − ηjt

∂L
∂βjt

(β(t−1))ejt

8: Add corresponding feature to feature set
9: end while

Step Size. The parameter ηjt is called step size and acts as a scaling factor on
the gradient value, to enforce convergence. The work in [12] analyzed a variety
of options to set this parameter, from constant step size to exact optimization.
As exact optimization was shown to produce much faster convergence, and is
feasible to compute for squared loss, we also optimize ηjt exactly.

3.3 Upper Bound for Fast Gauss-Southwell Selection

Formulating a learning algorithm via coordinate descent with Gauss-Southwell
rule does not provide a solution for the problem of finding the best subsequence
in a huge feature space. Here we give an upper bound on the coordinate-wise
gradient value for the squared loss function, that enables us to efficiently search
for the best coordinate in each iteration. The theory relies on the following intu-
itions. First, the subsequence space has a structure that we can exploit to focus
the search on parts of the feature space. Namely, we can bound the frequency
of a sequence, based on the frequency of any of its subsequences, using an argu-
ment similar to that of the Apriori market basket analysis algorithm. Second,
we can separate the positive and negative terms of the gradient, to obtain an
upper bound on the gradient for squared loss. This allows us to incrementally
generate feature candidates5 and to quickly rule out parts of the feature space,
while guaranteeing to find a coordinate with maximum gradient magnitude, as
required by the Gauss-Southwell optimization strategy. In the following, sj ∈ xi

means that the corresponding vector entry xij = 1. Furthermore, we denote
sp ⊆ sj if sp is a subsequence of sj . Theorem 1 gives an upper bound on the
gradient value of any subsequence sj , using only information about its prefix sp.

Theorem 1 (Bounding the search for the best coordinate). Let L(β) be
the squared loss function and yi ∈ R. For any subsequence sp ⊆ sj, it holds that

∣∣∣∣
∂L

∂βj
(β)

∣∣∣∣ ≤ μ(sp), where

5 To generate candidate features we start from 1-mers and use breadth-first-expansion
to generate k-mers with k ≥ 1.
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μ(sp) = max

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

∑

{i|xip=1,yi−βT xi≥0}
−2xip(yi − βT xi) + C(αsign(βj) + (1 − α)βj)

∣
∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣
∣

∑

{i|xip=1,yi−βT xi≤0}
−2xip(yi − βT xi) + C(αsign(βj) + (1 − α)βj)

∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

Proof. We first focus on bounding the positive terms of the coordinate-wise
gradients:

∂L

∂βj
(β) =

N∑

i=1

−2xij(yi − βT xi) + CR′
α(βj) (5)

=
∑

{i|xij=1}
−2xij(yi − βT xi) + CR′

α(βj) (6)

≤
∑

{i|xij=1,

yi−βT xi≤0}

−2xij(yi − βT xi) + CR′
α(βj) (7)

≤
∑

{i|xip=1,

yi−βT xi≤0}

−2xip(yi − βT xi) + CR′
α(βj) (8)

≤
∑

{i|xip=1,

yi−βT xi≤0}

−2xip(yi − βT xi) + C(αsign(βj) + (1 − α)βj) (9)

The step from (7) to (8) moves from coordinate j to coordinate p. The
inequality holds since {i|xij = 1, yi − βT xi ≤ 0} ⊆ {i|xip = 1, yi − βT xi ≤ 0} as
every sequence which contains sj also contains its subsequence sp. Similarly, by
separating the negative terms, we get a second bound:

∂L

∂βj
(β) =

N∑

i=1

−2xij(yi − βT xi) + CR′
α(βj) (10)

≥
∑

{i|xip=1,

yi−βT xi≥0}

−2xip(yi − βT xi) + C(αsign(βj) + (1 − α)βj) (11)

The two bounds provide an upper bound on the absolute value of the gradient at
coordinate j, using only information about coordinate p:

∑

{i|sp∈xi,yi−βT xi≥0}
−2xip(yi − βT xi) + CR′

α(βj) ≤ ∂L

∂βj
(β) (12)

≤
∑

{i|sp∈xi,yi−βT xi≤0}
−2xip(yi − βT xi) + CR′

α(βj)

With the regularization term CR′
α(βj) included, the bound depends on the

prefix sp as well as on the weight βj of the subsequence sj . Since in the beginning
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all βj are set to zero this does not represent a problem, as the regularizer is zero
in this case. The bounds of features that were already selected in a previous
iteration are the only ones that have to be adjusted by adding this term.

The bound allows us to efficiently search for the coordinate with the largest
gradient. Algorithm 2 shows the search procedure. We start the search by
expanding from 1-mers. Throughout the search we keep track of the current
best feature (best feature) and in τ we save its absolute gradient value. Before
the expansion of any subsequence, we check if its upper bound μ is smaller than
τ . If this is the case, we can prune the subtree starting at this node, as no further
expansion can improve the current gradient.

Algorithm 2. Fast Gauss-Southwell Coordinate Selection
1: τ ← 0
2: best feature ← NIL
3: for all s′ ∈ ⋃N

i=1{s|s ∈ si, |s| = 1} do � For each 1-mer
4: grow sequence(s′)
5: end for
6: return best feature
7:

1: function grow sequence(s)
2: if μ(s) ≤ τ then return � μ(s) like in Theorem 1
3: else if abs(gradient(s)) > τ then
4: best feature = s � Suboptimal solution
5: τ = abs(gradient(s))
6: end if
7: for all s′′ ∈ {s′|s′ ⊇ s, s′ ∈ ⋃N

i=1 si, |s′| = |s| + 1} do
8: grow sequence(s′′)
9: end for

10: end function

Proposition 1 (Tightness of upper bound). The upper bound given in The-
orem1 is tight.

Proof. It suffices to show one example in which the upper bound (12) is reached.
The inequality becomes an equality when, e.g., yi − βT xi = 0,∀i = 1, . . . , N
or whenever all yi − βT xi ≤ 0,∀i = 1, . . . , N and the set of occurrences of a
subsequence sj is the same as that of its subsequences sp ⊆ sj, i.e., {i|xij =
1} = {i|xip = 1}.
Proposition 2 (Convergence rate). The proposed learning algorithm for
sequence regression by optimizing the squared loss, converges to the global opti-
mum of the objective function with a convergence rate of

L(β(t)) − L(β∗) ≤
[

t∏

r=1

(
1 − μ

ljr

)]
[L(β(0)) − L(β∗)].
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Proof. We use recent convergence results for coordinate-descent optimization of
functions that are μ-strongly convex, with coordinate-wise ljr -Lipschitz continu-
ous gradient (e.g., squared loss). In particular, we use coordinate descent with
Gauss-Southwell selection for squared loss and exact step size optimization. For
a detailed proof see [12].

Algorithm Complexity. The time complexity of the proposed algorithm is
O(fN) per iteration, where f is the number of features that need to be investi-
gated for Gauss-Southwell selection and N is the number of training examples.
Implementation. In practice we use data structures such as inverted indexes and
tries to fully take advantage of the sparsity and the nested structure of the
feature space. We also investigate empirically the quality of the upper bound
by computing the number of distinct features investigated per iteration, and
measuring the running time per iteration, and for fully learning a model.

4 Experiments

We evaluate our learning algorithm on synthetic data and two benchmarks from
recent data challenges. First, we analyze and compare our method to other lin-
ear regression methods on simulated sequence regression data where we vary
the data generation parameters. Next, we study a sequence regression prob-
lem, to compare our learning algorithm to state-of-the-art sequence regression
approaches on real data. Finally, we study a sequence classification problem, in
order to compare the squared loss bound effectiveness to related methods devel-
oped for sequence classification. We run all experiments on a PC with 132 GB
RAM, single Intel Xeon 2.4 GHz CPU and 5.4 TB HDD. All our code and data
is available online6.

4.1 Synthetic Data

In this section we analyze our method (named SqLoss) on synthetic data. The
controled generation of data allows us to compare SqLoss to the state-of-the-art
(SotA) methods in a systematic way. We generate sequence regression datasets
according to Algorithm 3. Before the actual sequence generation starts, n motifs
have to be generated by drawing m symbols from a given alphabet Σ. For each
of these motifs, the influence on the response variable (i.e., the motif weight)
is set randomly. The first step of the sequence generation is to define which
motifs each sequence contains. The binary indicator variables Iij encode this as
in (13). Each of these indicator variables is set to 0 or 1 according to a user
set probability. Depending on the value of the indicator variable, an insertion
position for the motif in question is determined. Next, the actual generation of
the string starts. For each position in the sequence, the algorithm checks if a
motif has to be inserted. If not, a random symbol from the alphabet is inserted.

6 Code of our algorithms: https://github.com/svgsponer/SqLoss.
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Otherwise the corresponding motif is placed at this position. As soon as the
end of the sequence is reached, a score is assigned to the sequence, according
to (13), where ε is Gaussian noise. This generation process can lead to the case
that a motif is present in a sequence by chance. Our implementation checks all
generated sequences for unintentionally inserted motifs and replaces them with
a random subsequence of the same length as the motif.

yi =
n∑

j=1

wjIij + ε, where Iij =
{

1, if sequence i contains motif j
0, otherwise (13)

Algorithm 3. Generation of Sequence Regression Dataset with n = 2 Motifs
Input: Number of sequences N , length of sequence L, number of motifs n, motif length

m, alphabet Σ.
Output: Dataset with N (sequence, score) pairs.

Generate n motifs by drawing m symbols ∼ U(Σ)
Set weights for each motif
for i < N do

pos1 ∼ U(L) if Ii1

pos2 ∼ U(L) if Ii2

for l < L do
if l = pos1 or l = pos2 then

add motif to sequence
else

add symbol c ∼ U(Σ) to sequence
end if

end for
add sequence si to data set with yi = w1Ii1 − w2Ii2 + ε

end for

In the following experiment we generate 10,000 sequences of length 5,000
and insert 2 motifs. We compare SqLoss to three regression methods: ordinary
least squares (ols), ridge regression (ridge) and linear support vector regression
(linsvr). For all these methods we use the implementations in scikit-learn (version
0.17) [13] with default parameters and explicitly generate all k-mers up to k = 5.
For SqLoss we do not restrict k and use default parameters (see code online).
Figures 1 and 2 show the average mean squared error (MSE) and training time
over 5 runs, for various alphabet sizes and 4 different motif lengths (3, 5, 7, 10).
We note that the SotA methods’ performance suffers if the motifs are longer than
the maximal extracted k-mer. With increasing alphabet size, this effect vanishes
as the density of k-mers feature space decreases. If the k-mer density is low
enough, subsequences (e.g., 5-mers) of motifs can already indicate the presence
of the whole motif and so be used to learn an appropriate weight. When the motif
is shorter than the extracted k-mers, all methods perform similar, even though
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with increasing alphabet size the SotA methods achieve slightly worse results.
We suspect this is caused by overfitting since the feature space becomes huge.
Even though this is a simplified regression problem, it is promising to see that
SqLoss achieves comparable or better results in different data generation settings,
without the need to set k explicitly. This means that our method requires much
less feature engineering for achieving good prediction quality.

Fig. 1. Average MSE across 5 runs, comparing the impact of varying data generation
parameters (alphabet size, motif length) on 4 regression methods. SqLoss has the lowest
MSE across all data generation scenarios.

Fig. 2. Average training time (sec) across 5 runs, comparing the impact of varying
data generation parameters (alphabet size, motif length) on 4 regression methods.

4.2 TF-DNA Binding Prediction Challenge

The DREAM5 challenge7 [18] provides 40,000 DNA sequences, each with a
numeric score describing the binding affinity of a particular protein called Tran-
scription Factor (TF). The task is to learn a regression function for a given
TF. There are 66 TF each defining a different sequence regression task. We
use the DREAMTools [4] that allow us to compare our results to the results
of the 26 challenge participants [18]. We also show results for DeepBind [2], a
recent method that achieved higher scores than previous participants. Of special
interest is the comparison to challenge winner (Team D) [3], a linear regression
method using k-mers as features. The authors of [3] pre-process the training data
as follows: (1) log2-transform the target scores followed by subtracting the mean;
(2) remove all sequences that were flagged as bad by the challenge organizers; (3)
remove noisy training sequences; (4) filter low intensity probes and (5) restrict

7 http://hugheslab.ccbr.utoronto.ca/supplementary-data/DREAM5/.

http://hugheslab.ccbr.utoronto.ca/supplementary-data/DREAM5/
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the k-mer length between 4 and 8. We only apply the first two transforms but
none of the latter filters, as we want to study our algorithm’s effectiveness when
using minimal domain knowledge. We also study the influence of using wildcards
for allowing more flexible gapped k-mer features (e.g., A*B where * is a extra
symbol in Σ which stands for any symbol of the alphabet).

Table 1. TF-DNA: results of top-5 sequence regression methods for the DREAM5
data challenge.

Team Pearson Pearson Log Spearman AUPR 8mer AUROC 8mer

DeepBind 0.6780 0.7260 0.7060 0.6760 0.9910

SqLossWc 0.6483 0.6846 0.6423 0.7236 0.9967

SqLoss 0.6399 0.6791 0.6390 0.7049 0.9953

Team D 0.6413 0.6742 0.6394 0.6997 0.9942

Team E 0.6375 0.6936 0.6735 0.5223 0.9524

Team F 0.6103 0.6732 0.6555 0.5456 0.9766

The final rank is determined by averaging the ranks of each algorithm under
each evaluation metric (see [18] for details). Table 1 shows these metrics for the
top-5 methods on the benchmark. Our algorithm with one wildcard allowed
(SqLossWc) comes second in the overall rank, right after DeepBind. If we do
not allow wildcards (SqLoss) our method comes third. We can see the benefit of
using wildcards by the increase of the score across all metrics. Figure 3 shows the
normalized loss functions and total number of explored nodes per iteration for
both models for TF47. Additionally, it shows the Pearson correlation achieved
by SqLossWc at each iteration. The flexibility of wildcards clearly increases the
number of nodes in the search tree which influences the runtime. SqLoss needs
on average 513 s total training time per TF, and SqLossWc takes 2,834 s total
training time per TF. Our algorithm reaches similar metrics to Team D and
DeepBind, but the variation without wildcards uses a fraction of the training
time of DeepBind and no specific pre-processing as Team D. The average length
of the learned motifs for SqLoss is 5.05 (std across different TFs: 0.16) with a
maximum length of 10 bases. For SqLossWc the average motif length is 5.4 (std:
0.09) and the longest learned motif is 11 bases long.

An advantage of our linear model is that it can easily be interpreted, unlike
complex non-linear methods such as DeepBind. Table 2 shows some high rank
features for TF13 learned with k-mer features with one wildcard allowed. The
weights directly reflect the importance of the learned features and can provide
important knowledge to domain experts. The learned features are stored in a
trie to allow efficient prediction by linearly scanning test sequences. Prediction
for 40,000 sequences takes 2 s for SqLoss and 4 s for SqLossWc.
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Fig. 3. TF-DNA: loss and explored nodes per iteration, w/o wildcard for protein TF47.
In blue SqLoss, in red SqLossWc. Pearson correlation (green) for SqLossWc. (Color
figure online)

Table 2. TF-DNA: example positive/negative features from SqLossWc model learned
for TF13, where * indicates a wildcard.

Motif Weight

TAAT*A 0.733985

TAATG*G 0.706344

ATG*AAA 0.674507

...
...

GGATA −0.188202

TCAAT −0.214858

G*ATAG −0.218132

4.3 Microsoft Malware Classification Challenge

The goal of the Microsoft challenge8 is to classify files into one of 9 malware
families. The training set has 10,868 labeled samples, each with a binary file
with hexadecimal representation and a file with the disassembled code. We want
to find out if we can build effective classifiers using only the binary (bytes)
representation, since disassembling the code requires expensive computation.
Even though this dataset poses a classification, rather than a regression task, we
use it to compare our method to the challenge winners and to similar approaches
developed for linear classification, as implemented in the SEQL framework [8]. In
8 https://www.kaggle.com/c/malware-classification.

https://www.kaggle.com/c/malware-classification
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addition, with sequences of up to 7 million symbols in length and rich alphabet
(|Σ| = 16), we want to study and further calibrate our method on this large and
challenging dataset.

We compare the accuracy, convergence and bound effectiveness for three
learning algorithms: SEQL with classification losses (logistic loss and quadratic
hinge loss) versus our SqLoss regression algorithm (for SqLoss we interpret one-
vs-all binary labels as numeric scores).

To reduce the size of each bytes file we remove the offset field as well as all
question marks and white spaces between hexa bytes. The original challenge uses
the multiclass log-loss as main evaluation metric. We do not use this metric as it
heavily depends on the calibration of the output scores of each method. Similar
to published work [1,17], we report the accuracy results on 4-fold stratified cross-
validation (Table 3). The same input data is used for the SEQL methods and
SqLoss.

Table 3. Malware: accuracy and training time 4-fold CV.

Method Accuracy Training time (mins)

Wang et al. (challenge winner) 0.9983 (multicore, preprocessing only) 2,880

Ahmedi et al. 0.9976 (multicore, preprocessing only) 2,780

SEQL logistic regression loss 0.9958 (singlecore, full training) 603

SEQL quadratic hinge loss 0.9949 (singlecore, full training) 410

SqLoss (our method) 0.9916 (singlecore, full training) 3,183

We note that SqLoss has lower accuracy than the challenge winner [17] and
the recent solution of [1]. Nevertheless, both those methods use a variety of
hand picked features extracted from both the binary and the disassembled files.
Disassembled code is expensive to extract and is inexact, i.e., it is possible for a
single program to have two or more disassemblies. To extract features [1,17] have
to do costly data preprocessing and heavy feature engineering. In particular [17]
have to limit k-mers to a maximum k = 4 and need explicit generation of k-mers
(for both training and test data) which requires 100 GB memory, 16 CPUs, and
48 h extraction time on the training data alone.

To better analyze our method we compare it to SEQL, a linear classification
method that uses branch-and-bound for selecting subsequence features. As we
can see in Table 3, the accuracy of the SEQL losses is comparable to that of
SqLoss, while training time is better for the classification losses. Figure 4 (left
column) shows the value of the three loss functions (normalized by the start loss)
per iteration, for classes 1, 2 and 7. As in [15], we also find that the squared error
loss decreases slower than the classification loss functions. This is expected given
that SqLoss is a regression algorithm used for a classification task. We currently
implement the same stopping criterion for all three losses and we believe this
may be ill suited for SqLoss, as in practice we could stop the iterations earlier
without compromising accuracy. Figure 4 (right column) shows the total number
of nodes explored per iteration during the search for the best feature, for each
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Fig. 4. Malware: comparison of normalized loss function value (left, log scale) and
number of nodes explored (right) per iteration for classes 1, 2 and 7. Blue for squared
hinge loss, green for logistic regression and red for SqLoss. (Color figure online)

of the three methods. The pruning for SqLoss seems to be less efficient than the
one for logistic regression or the hinge loss, on this classification task.

5 Conclusion and Future Work

We present a new method for efficient linear sequence regression in the feature
space of all subsequences. The proposed method uses coordinate gradient descent
with Gauss-Southwell rule to optimize squared error loss. We propose a branch-
and-bound algorithm for efficient Gauss-Southwell selection. Our empirical study
shows that we can achieve results comparable to the state-of-the-art, with a
simple linear regression model, while employing little to no domain knowledge
or pre-processing. In particular, our models can use unrestricted-length, flexi-
ble k-mer features (with wildcards), without compromising training and testing
efficiency. In the future we want to explore other flexible operators on feature
representations of sequences. Further, we want to improve the scalability of our
method as well as extend it to make use of multiple cores.

Acknowledgment. This work was funded by Science Foundation Ireland (SFI) under
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