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Abstract. In this paper, we consider a generalized variant of inverse
reinforcement learning (IRL) that estimates both a cost (negative
reward) function and a transition probability from observed optimal
behavior. In theoretical studies of standard IRL, which estimates only
the cost function, it is well known that IRL involves a non-identifiable
problem, i.e., the cost function cannot be determined uniquely. This
problem has been solved by using a new class of Markov decision pro-
cess (MDP) called a linearly solvable MDP (LMDP). In this paper, we
investigate whether a non-identifiable problem occurs in the generalized
variant of IRL (gIRL) using the framework of LMDP and construct a
new gIRL method. The contributions of this study are summarized as
follows: (i) We point out that gIRL with LMDP suffers from a non-
identifiable problem. (ii) We propose a Bayesian method to escape the
non-identifiable problem. (iii) We validate the proposed method by per-
forming an experiment on synthetic data and real car probe data.

Keywords: Inverse reinforcement learning · Linearly solvable MDP
Bayesian method

1 Introduction

Inverse reinforcement learning (IRL) is a method that estimates the cost (nega-
tive reward) function of a certain class of Markov decision process (MDP) from
an agent’s optimal behavior. Since designing a truly effective cost function is
regarded as a difficult problem in various applications of reinforcement learn-
ing (RL) including robot control tasks, IRL attracted the attention of robotics
researchers from an early stage [1]. Its application area is now spreading and the
effectiveness of IRL has been reported for taxi driver destination prediction [2],
preferred route estimation after a natural disaster [3], and natural language
processing [4]. These studies show that IRL can estimate the cost functions of
entities, such as people and animals, whose internal structure is unobservable
and whose preferences remain vague.

In this paper, we consider a generalized variant of IRL that simultaneously
estimates both the cost function and transition probability. Since this problem
is a generalization of existing IRL methods that estimate only the cost function,
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Fig. 1. Input and output of RL, IRL and gIRL with linearly solvable MDP.

we call it generalized IRL (gIRL). Figure 1 shows the input and output of RL,
IRL and gIRL. Specifically, as shown in the figure, we tackle the gIRL using the
framework of the linearly solvable MDP (LMDP) [5].

LMDP has been proposed as a new class of MDP where a forward prob-
lem (RL) is more easily solved than with standard MDP [5]. Dvijotham showed
that IRL with the LMDP has a unique solution [6], i.e., the cost function gener-
ating agent behavior is uniquely identified. It is regarded as important result in
IRL. The first IRL paper [7] proved the existence of a non-identifiable problem
with standard MDP, and therefore the cost function is not unique and that a
cost function with entirely zero values is always one of the solutions. Until Dvi-
jotham’s paper was published it had remained an open issue as to whether it was
possible to avoid a non-identifiable problem.1 However, a gIRL with the LMDP
has not yet been studied. Since the number of transition probability parameters
of the LMDP is smaller than that of a standard MDP, the use of the LMDP is
suitable for gIRL.

The study most closely related to ours is the work reported by Makino and
Takeuchi [8], which considers gIRL on the partially observable MDP for con-
structing efficient apprenticeship learning methods. It is experimentally con-
firmed that gIRL formulation contributes to the realization of a more effective
policy [8]. However, the theoretical aspect of gIRL remained unknown and there
is no gIRL method for the LMDP.

In this paper, we provide a theoretical analysis and a new method for gIRL.
Beginning with an investigation as to whether a non-identifiable problem occurs
in gIRL with LMDP, we establish a new formulation of gIRL and new gIRL
methods. We apply the proposed method with both synthetic data and real car
probe data collected in Yokohama City, Japan. The contributions of this paper
can be summarized as follows:

1 Although Ziebart et al. [2] also solve the non-identifiable problem by using the max-
imum entropy principle, Dvijotham and Todorov show that Ziebart’s formulation is
equivalent to the special case of an inverse problem of LMDP [6].
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– We point out that generalized IRL using the framework of LMDP involves
a non-identifiable problem; the cost function and transition probability can-
not be uniquely estimated. This is because we cannot distinguish between
the effect of the cost function and that of the transition probability on the
observed transitions.

– To avoid the non-identifiable problem, we adopt a Bayesian approach with
hyperparameters, which is also used approach for IRL with a standard
MDP [8–11]. We also extend the LMDP to a multiple intention setting [11,12]
and use it to formulate generalized IRL. This enables us to apply the pro-
posed method to many practical problems such as traffic data analysis. Our
new Bayesian gIRL method with the extended LMDP can estimate the cost
functions, the transition probability, and the hyperparameters.

– We confirm the effectiveness of the proposed method by performing numerical
experiments using both synthetic data and real car probe data. The result of
our car probe data experiment shows that the proposed method can estimate
the LMDP parameters, which reflect car drivers’ behavior.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
LMDP. The non-identifiable problem of the LMDP is illustrated in Sect. 3.
Section 4 presents the extended LMDP and Sect. 5 introduces the proposed gIRL
method. Section 6 is devoted to the experimental evaluation and Sect. 7 concludes
the paper.

2 Linearly Solvable MDP (LMDP)

In this section, a basic property of the LMDP [5] is introduced. Although the
definition of the LMDP is similar to that of the MDP, its difference is critical
in creating solutions to the forward and inverse problems. Note that this work
focuses on an “infinite horizon discounted cost” case [13]; however, its application
to other settings is straightforward.

Definition of LMDP: The LMDP is defined by the quintuplet {S,A, P̄ ,R, γ},
where S = {1, 2, · · · , S} is a finite set of states and S is the number of
states. A = {A1,A2, · · · ,AS} is a set of admissible actions at each states.
P̄ = {p̄jk}S

j,k=1 indicates passive transition probabilities, each element of which
defines the transition probability from state j to state k when an action is not
executed. R : S → R is a state cost function (negative reward function) and we
denote the state cost at state j as rj . γ ∈ [0, 1) is a discount factor.

In the LMDP, action a is a continuous valued R
S dimensional vector and the

action transition probability from state j to state k when action aj = {ajk}S
k=1

is executed is defined by

pjk(aj) = p̄jk exp(ajk). (1)

Note that any action executed at state j, aj , must belong to a set of admis-
sible actions, Aj , which is defined as

Aj =
{
aj ∈ R

S |
∑

k
pjk(aj) = 1; p̄jk = 0 → ajk = 0

}
, (2)
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so that the sum of the probabilities equals one. Therefore, the transition prob-
ability itself can be controlled by an action. To execute a certain action, it is
necessary to pay the action cost defined by action cost function. The action cost
when action aj is executed in state j is defined as

qj(aj) = KL(pj(aj)||pj(0)), (3)

where KL(·||·) is the Kullback-Leibler divergence and pj(a) = {pjk(a)}S
k=1.

Thus, the action cost increases as pjk(a) deviates further from a passive tran-
sition p̄jk. Note that when the action is a zero vector, a = 0, pjk(0) equals
the passive transition probability p̄jk and the action cost qj(0) = 0. Intuitively,
the LMDP is a class of MDP in which the transition probability itself can be
controlled by the payment of the action cost. Unlike standard MDP where the
transition probability is defined separately for each action, the passive transition
probability substantially determines the transition probability of all the actions.
Thus, we consider that it is suitable to use the LMDP for gIRL.

Let π = {aj}S
j=1 be a policy whose element aj indicates the action executed

in state j. The value function of policy π, vπ = {vπ
j }S

j=1, is defined such that
element vπ

j indicates the expected sum of the future cost from state j when
following policy π,

vπ
j = lim

T→∞
EdT

[
T∑

t=1

γt−1 {rst
+ qst

(ast
)}

∣
∣
∣s1 = j

]

. (4)

Here EdT denotes the expectation over trajectory dT = {st}T
t=1, the tran-

sitions from t = 1 to T where st denotes the visit state at time t, which fol-
low probability P (dT |P̄,π) = pini

s1

∏T−1
t=1 pstst+1(ast

). pini is the initial state
distribution.

Forward Problem with LMDP: The forward problem with the LMDP is to
obtain the optimal policy π∗ = {a∗

j}S
j=1 that minimizes the expected sum of the

future cost. The optimal action in state j is given by

a∗
j = arg min

aj∈Aj

{

rj + qj(aj) + γ

S∑

k=1

pjk(aj)vk

}

= −γvj − log
( S∑

k=1

p̄jk exp(−γvk)
)
,

(5)

where v = {vj}S
j=1 is the optimal value function vj = minπ vπ

j that can be
computed by solving the optimal equation [5]. Inserting Eq. (5) into Eq. (1),
optimal transition probability, the action transition probability when the optimal
action being executed is written as

p∗
jk = pjk(a∗

j ) =
p̄jk exp(−γvk)

∑
� p̄j� exp(−γv�)

. (6)

We emphasize that the above form of optimal transition probability is a direct
consequence of the LMDP unlike Bayesian IRL, which uses the value function
as a potential function [9].
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3 Generalized IRL and the Non-identifiable Problem

3.1 Generalized Inverse Reinforcement Learning

This section illustrates the non-identifiable problem of generalized IRL (gIRL)
with the LMDP. The purpose of gIRL is to estimate the state cost function and
passive transition probability of the LMDP from a transition log that follows
the optimal transition probability Eq. (6). Figure 1 illustrates the forward and
inverse problems of the LMDP.

A key motivation for gIRL can be explained as follows. Let us consider a
case where the cost function must be estimated only from the past movements
of a person who is interested in a certain place in a city. In this case, the passive
transition probability between places, which can be interpreted as the transition
probability of a person who has a uniform state cost function (same degree
of interest in each place), is of course unknown and cannot be observed. That
is, gIRL is useful for estimating a state cost function when only a set of past
movements is available, which is a common setting in various machine learning
problems.

To determine whether the state cost function and passive transition proba-
bility can be uniquely estimated or not, we consider a case where the amount of
available data is sufficiently large. In this case, the optimal transition probabil-
ity itself can be observed. Therefore, we need to seek the corresponding relation
between the optimal transition probability and a pair consisting of a state cost
function and a passive transition probability.

3.2 Toy Example of Non-identifiable Problem

Figure 2 shows a toy example in which LMDPs with different passive transitions
and value functions provide equivalent optimal transition probabilities. In the
left dotted box in Fig. 2, the passive transition from state-1 to state-1, p̄11, is p
and the value function of state-1, v1, is v. Similarly, in the right dotted box, they
are p′ = p/(K − pK + p) and v′ = − log(K)/γ + v. We can easily confirm that
the optimal transition probabilities for both LMDPs are equivalent for arbitrary
constant K. This means that we cannot identify the passive transition probability
and value function simultaneously from the optimal transition probability. By
considering the transition probability and value function to be parameters and
the optimal transition probability to be a probabilistic model, this is a case where
the model is non-identifiable2. Note that the above examples are compatible with
the claim made by Dvijotham and Todorov [6]. Since they consider a case where
the passive transition probability is known, the value function can be uniquely
estimated.

Non-identifiability implies the impossibility of estimating the state cost func-
tion uniquely. Let us consider the setting of the constant value K = exp(γv) in
2 The probabilistic model Pθ is called identifiable in statistics if parameter θ1 �= θ2,

then distributions Pθ1 and Pθ2 are different [14]. A model which is not identifiable
is called non-identifiable.
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Fig. 2. An example that indicates that LMDPs with different passive transitions and
value functions provides an equivalent optimal transition probability. This implies that
the passive transition probability and the value function cannot be uniquely estimated
even if the optimal transition probability itself is observed. We call this problem the
non-identifiable problem of gIRL with LMDP.

the previous toy example. In this case, the value and the state cost of state 1
become 0, v1 = r1 = 0, and the passive transition equals the optimal transition,
p̄11 = p∗

11. This means that the optimal transition probability of the left LMDP
can be reproduced by the right LMDP with a state cost function whose values
are all zero. This fact immediately leads to the following theorem:

Theorem 1 (Non-identifiability of gIRL with LMDP). Let S and γ be a set
of states and a discount factor. Then, the mapping from a pair consisting of
passive transition probability P̄ ∈ [0, 1]S×S and state cost function R ∈ R

S to
the optimal transition probability of the LMDP (S,A, P̄ ,R, γ) is not one-to-one.

Proof. When R = 0, the passive transition probability and optimal transition
probability are identical. Then, for any LMDP, there exists an LMDP that has
an all zero state cost function and a passive transition probability that is identical
to the optimal transition probability of a given LMDP. ��

This is an obviously unacceptable result because the transition probability
and cost function have different roles in RL; cost is a target of the agent to be
minimized, the transition probability determines the possible movements of the
agent. Their two roles should not be mixed.

It is well-known for IRL with standard MDP that the cost function with
entirely zero values is always one of the solutions [7]. Therefore, our observation
indicates that the generalized IRL problem with the LMDP also raises similar
theoretical concerns.

Remark 1. Note that we do not view this as a problem that the optimal tran-
sition is consistent by transformation v′

i = vi + c for all states i using a common
constant value c while the passive transition probability remains fixed; this is
because the magnitude relation of the value function holds. This type of degree
of freedom can be removed by, for example, setting the value function of a cer-
tain state at zero. The problem tackled in this paper is the non-identifiability of
the value function and the passive transition probability.
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3.3 Approach for Non-identifiable Problem

We confirmed above that gIRL with LMDP suffers from non-identifiability. This
subsection introduces an idea that can avoid this problem. A promising approach
is to introduce hyperparameters. This approach is the same as that used by Ng
and Russel for IRL with MDP to avoid non-identifiability [7]. They introduce
hyperparameters to make the cost function sparse, i.e., the cost becomes zero in
many states. However, as stated in their paper, a remaining problem was that the
estimated result strongly depends on the manual setting of the hyperparameters.
Therefore, we construct a gIRL method with a Bayesian framework that can
estimate hyperparameters. By automatically estimating the hyperparameters,
their dependency is weakened. The Bayesian approach is promising since its
effectiveness has already been confirmed for standard IRL with an MDP [9–11].
We also introduce a new gIRL formulation for a later experiment.

Our new formulation considers a collection of LMDPs that share state and
passive transition probabilities. The setting is referred to as multiple intention or
multitask IRL in the literature [11,12]. The following example explains the moti-
vation behind using this new formulation. Again, let us consider a case where the
state cost function of a certain person needs to be extracted. If the trajectories
of several people are available, the task seems obvious when we consider that
only the cost function alone depends on each person and the passive transition
probability is not person dependent. Thus, our new gIRL is formulated as the
problem of estimating everybody’s cost functions and common passive transition
probabilities from observed trajectories. Thanks to this formulation, hyperpa-
rameters for the cost function are defined as common parameters among all peo-
ple; this may contribute to performance improvement similar to that described
in [11]. The next two sections present a rigorous formulation and an estimation
algorithm.

4 Shared-Parameter LMDPs

In this section, we re-formulate gIRL. We consider a collection of LMDPs that
share states S, passive transition probability P̄, and discount factor γ. Each
LMDP has its own state cost function, Ri, where i is the index of the LMDP.
We call this collection of LMDPs, shared-parameter LMDPs (SP-LMDPs). We
formulate gIRL as an inverse learning problem to estimate the passive transition
probability and all the state cost functions in the SP-LMDPs. Figure 3 shows
all the parameters of the SP-LMDPs. gIRL with the SP-LMDPs is a natural
extension of IRL because gIRL with SP-LMDPs can be seen as a setting in
which multiple state cost functions are estimated. Each cost function may be
the cost function of a different person, animal and so on. We emphasize that
the setting at which multiple cost functions are defined on a standard MDP has
already been studied [11,12] but it has not been studied for an LMDP.

We provide a formal definition of SP-LMDPs as follows. SP-LMDPs are
defined by the quintuplet {S,A, P̄ ,R, γ}. The definitions of S, A, P and γ are
equivalent to those for an LMDP while that of R is different. R = (R1, · · · ,RI)
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Fig. 3. Forward and inverse problems of SP-LMDPs. We call this inverse problem,
which estimates all the state cost functions and passive transition probabilities of SP-
LMDPs, gIRL with SP-LMDPs.

is a set of state cost functions and Ri = {rij}S
j=1. I is the number of functions

in the set. From this definition, we can construct I LMDP; the i-th LMDP
is defined as {S,A, P̄ ,Ri, γ}. Note that SP-LMDPs with I = 1 reduce to an
LMDP.

Since the forward problem of the i-th LMDP can be solved independently fol-
lowing the method explained in Sect. 2, SP-LMDPs pose no difficulty in solving
the forward problem. Let us define V = {vi}I

i=1. vi = {vij}S
j=1 is the opti-

mal value function of the i-th LMDP. This optimal value function satisfies the
following optimal equation.

vij = min
aij∈Aj

{
rij + qj(aij) + γ

∑

k
pjk(aij)vik

}
= rij − log

(∑

k
p̄jk exp(−γvik)

)
.

(7)

Then, the optimal transition probability from state j to state k is, for the
i-th LMDP, given by

p∗
ijk =

p̄jk exp(−γvik)
∑

� p̄j� exp(−γvi�)
. (8)

The above optimal transition probability shows that the agent executing the
optimal policy tends to move adjacent states whose value functions are small.

5 Proposed Generalized IRL Method

5.1 Bayesian Modeling

This subsection details the proposed gIRL method, which can estimate both
the state cost functions and passive transition probabilities with SP-LMDPs
from observed transitions. We denote the transition logs of the i-th LMDP as
Di and the number of observed transitions from state j to state k in the i-th
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LMDP as nijk. We also denote all the transition logs as D = {Di}I
i=1. Our

gIRL method is naturally derived by considering that each transition is gener-
ated by the probability defined in Eq. (8) which has parameters V , P̄. In this
section, we re-parametrize p̄jk as wjk = − log p̄jk. We define W = {wj}S

j=1 and
wj = {wjk}S

k=1. Then, the probability that transition log D is generated given
parameter V ,W can be written as

P (D|V ,W ) =
∏

i

∏

j,k∈S

( exp(−wjk − γvik)
∑

� exp(−wj� − γvi�)

)nijk

. (9)

We can avoid the ill-posedness of gIRL, and also obtain the full parameter-
estimation procedure by adopting a Bayesian approach. We define a Gaussian
prior distribution on vi and wj for all i, j given by

P (V |α) =
I,S∏

i,j=1

N (vij |0,
1
α

), P (W |β) =
S∏

j=1

∏

k∈Ωfr
j

N (wjk|0,
1
β

). (10)

Note that Ωfr
j denotes a set of reachable states “from” state j by a one step

transition.3 We also used a conjugate gamma prior on the hyper-parameters,
similar to [15]:

P (α) = G(α|a0, b0) =
ab0
0

Γ(a0)
αa0−1e−b0α, P (β) = G(β|a0, b0) =

ab0
0

Γ(a0)
βa0−1e−b0β .

(11)

We set a0 = 10−1 and b0 = 10−2 in an experiment described later. Summa-
rizing the above, we denote the joint distribution of all the parameters and the
set of trajectories as

P (D,V ,W , α, β) = P (D|V ,W )P (V |α)P (W |β)P (α)P (β)
︸ ︷︷ ︸

P (V ,W ,α,β)

. (12)

Figure 4(a) shows a graphical model representation. The posterior distribu-
tion of parameters is given by

P (V ,W , α, β|D) = P (D,V ,W , α, β)/P (D), (13)

where P (D) is the marginal likelihood P (D) =
∫

P (D,V ,W , α, β)dV dW dαdβ.
Since the exact computation of the marginal likelihood is infeasible, we adopt
the variational Bayesian (VB) approach [16] to obtain the posterior distribution.

5.2 Variational Bayes

The VB algorithm is designed to obtain the variational distributions that approx-
imate the posterior distribution. The variational distribution q(V ,W , α, β) is
estimated by minimizing functional F̃ [q,η, ξ], which is defined by
3 If such adjacency information is not available, consider Ωfr

j as a set of all states S.
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F̃ [q,η, ξ] := Eq

[
log

q(V ,W , α, β)
h(V ,W ,η, ξ)P (V ,W , α, β)

]
(14)

under the constraint that the parameters are independent: q(V ,W , α, β) =
q(V )q(W )q(α)q(β). Note that h(V ,W ,η, ξ) is a lower bound of the likelihood
function (Eq. (9)), i.e., h(V ,W ,η, ξ) ≤ P (D|V ,W ) for all V ,W . η and ξ are
auxiliary variables. The functional F̃ [q,η, ξ] is an upper bound of the negative
log marginal likelihood − log P (D). By minimizing F̃ [q,η, ξ], we can indirectly
minimize the Kullback-Leibler (KL) divergence between the variational distri-
butions and posterior distribution.

Figure 4(b) makes it easier to understand our optimization scheme. We define
functional F̄ as follows:

F̄ [q] := Eq

[
log

q(V )q(W )q(α)q(β)
P (D,V ,W , α, β)

]
. (15)

This is also an upper bound of the negative log marginal likelihood, and its
difference is given by the KL divergence between variational distributions and
the posterior distribution (See the green box in Fig. 4(b)). F̃ [q,η, ξ] is always
greater than F̄ [q], and its difference is given by the average log ratio of function
h and the likelihood function (See the blue box). Since log marginal likelihood
does not depend on variational distributions, minimizing F̃ w.r.t. variational
distribution q corresponds to minimizing the sum of the KL divergence and the
average log bound-likelihood ratio. Minimizing F̃ w.r.t. auxiliary variables η and
ξ corresponds to minimizing the average log bound-likelihood ratio. Iterating this
procedure yields a variational distribution.

Remark 2. For probabilistic models belonging to an exponential family, the VB
algorithm is derived by using F̄ [q] as the objective functional. However, since
the softmax function in Eq. (9) breaks the conjugate-exponential structure in
our model, we make use of upper bound function h. The use of a bound function
in VB can be found in logistic regression [17], mixture of experts [15] and the
correlated topic model [18].

There are various choices for function h since several bounds of the softmax
function have been derived [18–21]. From here, we use the following definition of
function h, which is a quadratic form with respect to vij , wjk, by using the bound
described by Bouchard [20]. This choice yields an analytical update equation that
is easy to implement.

log h(V ,W ,η, ξ) =
∑

j,k
− n·jkwjk +

∑

ij
− ni·jγvij

−
∑

ij
nij·

{
ηij +

∑

�
f(−wj� − γvi�, ηij , ξij�)

}
, (16)

f(x�, η, ξ�) = log(1 + eξ�) + (x� − η − ξ�)/2 + λ(ξ�){(x� − η)2 − ξ2� }, (17)

where λ(ξ�) = 1
2ξ�

(σ(ξ�) − 1/2) and σ(·) is a sigmoid function. The dot index
means that the corresponding index is summed out: n·jk =

∑
i nijk, ni·k =∑

j nijk, nij· =
∑

k nijk. We can easily confirm that this h is a lower bound of
likelihood P (D|V ,W ) by the following theorem.
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Fig. 4. (a) Graphical model. Shaded nodes indicate observed variables. Dependency
on a0 and b0 is omitted for clarity. (b) Optimization scheme of the proposed algorithm.
(Color figure online)

Theorem 2 (Bouchard) [20]. For any x ∈ R
L, any η ∈ R and any ξ ∈ [0,∞)L,

the following inequality holds: log
(∑L

�=1 ex�

)
≤ η +

∑L
�=1 f(x�, η, ξ�).

We construct an algorithm that iteratively updates the variational distri-
bution q and auxiliary variables ξ,η. Algorithm 1 summarizes the parameter
estimation procedure. Parameter update is explained as follows.

Update of Variational Distribution q: With the variational method, the
optimal variational distribution must satisfy the following optimal equation:

q(V ) ∝ exp
(
Eq(W )q(α) [log h(V ,W ,η, ξ)p(V |α)]

)
, (18)

q(W ) ∝ exp
(
Eq(V )q(β) [log h(V ,W ,η, ξ)p(W |β)]

)
, (19)

q(α) ∝ exp
(
Eq(V ) [log p(V |α)p(α)]

)
, (20)

q(β) ∝ exp
(
Eq(W ) [log p(W |β)p(β)]

)
. (21)

The above distributions are given by elementwise Gaussian distri-
bution q(vij) = N (vij |μv

ij , (σ
v
ij)

2), q(wjk) = N (wjk|μw
jk, (σw

jk)2) and
gamma distributions q(α) = G(α|aα, bα), q(β) = G(β|aβ , bβ), where
μv

ij , σ
v
ij , μ

w
jk, σw

jk, aα, bα, aβ , bβ are variational parameters.

μv
ij =

[
−ni·j +

∑
k∈Ωto

j

{nik·
2

− 2nik·λ(ξikj)(w̄kj + ηik)
}]

γ(σv
ij)

2, (22)

σv
ij =

{
ᾱ +

∑
k∈Ωto

j

2nik·λ(ξikj)γ
2}− 1

2 , (23)

μw
jk =

[
−n·jk +

n·j·
2

+
∑

i
2nij·λ(ξijk)(−γv̄ik − ηij)

]
(σw

jk)2, (24)

σw
jk =

{
β̄ +

∑
i
2nij·λ(ξijk)

}− 1
2 , (25)

aα = a0 +
IS

2
, bα = b0 +

1

2

∑
ij
Eq(V )[v

2
ij ]. (26)

aβ = a0 +

∑
j |Ωfr

j |
2

, bβ = b0 +
1

2

∑
j

∑
k∈Ωfr

j

Eq(W )[w
2
jk]. (27)
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Algorithm 1. Proposed VB Algorithm for gIRL
input D: observed transitions, γ: discount factor
output μv

ij , σ
v
ij , μ

w
jk, σw

jk, aα, bα, aβ , bβ : variational parameters.
1: Initialization.
2: repeat
3: //parameters for variational distribution q
4: Update μv

ij , σ
v
ij following Eq.(22)(23).

5: Update μw
jk, σw

jk following Eq.(24)(25).
6: Update aα, bα, aβ , bβ following Eq.(26)(27).
7: //auxiliary variables ξ, η
8: Update ξij�, ηij following Eq.(29)(30).
9: until converge

Note that Ωto
j denotes a set of states that can reach “to” state j by a one-step

transition and some statistics are given by the following equations: v̄ij = μv
ij , w̄jk = μw

jk,
ᾱ = aα/bα, β̄ = aβ/bβ , Eq(V )[v

2
ij ] = (σv

ij)
2 + (μv

ij)
2, Eq(W )[w

2
jk] = (σw

jk)2 + (μw
jk)2.

The proposed algorithm works by iteratively updating the variational parameters.
Note that the objective functional is monotonically decreased by the updates and thus
converges to a local minimum.

Update of Auxiliary Parameter η, ξ: Since only the term log h(V , W , η, ξ)
depends on ξ in the objective functional Eq. (14), at the optimal point, its partial
derivative must satisfy

∂

∂ξij�
Eq(V )q(W )q(α)q(β)

[
− log h(V , W , η, ξ)

]
= 0

⇔ (σw
j�)

2 + γ2(σv
i�)

2 + (−w̄j� − γv̄i� − ηij)
2 − ξ2ij� = 0. (28)

Therefore, we develop the following update rule:

(ξnewij� )2 ← (σw
j�)

2 + γ2(σv
i�)

2 + (−w̄j� − γv̄i� − ηij)
2. (29)

Similarly, the update rule for η is given by

ηnew
ij ←

{1

2

( |Ωfr
j |
2

− 1
)

+
∑

�∈Ωfr
j

λ(ξij�)(−w̄j� − γv̄i�)
}/{ ∑

�∈Ωfr
j

λ(ξij�)
}

. (30)

In the process of parameter estimation, state cost function R need not be consid-
ered. However, if necessary, using optimal Eq. (7), the estimated function R̂ = {r̂ij} is
obtained as r̂ij = v̄ij + log

(∑
k exp(−w̄jk − γv̄ik)

)
after parameter estimation. Then,

the estimated value function is the optimal value function of the LMDP with the above
estimated state cost function.

6 Numerical Experiment

6.1 Experimental Settings

This section confirms the validity of the proposed method. We conduct a numerical
experiment to determine (i) convergence property, (ii) predictive performance and (iii)
parameter visualization.
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(a) Grid world (b) Yokohama

Fig. 5. Settings for (a) grid world where uniform passive transition probability and
four types of state cost functions are set and (b) yokohama using real car probe data

Data Description: We prepare two experiment settings: grid-world and yokohama.
In the grid-world experiment, we set the passive transition probability of each state
(vertical and horizontal) at a uniform probability (if walls or obstacles exist, self-
transition is to be considered) and prepared four different types of state cost functions:
R1, R2, R3 and R4. The cost of each function is set at 0 just for the corresponding goal
state shown in Fig. 5(a) and at 1 for the other states. By computing the true optimal
transition probability of each LMDP, we generate training and test data in an iid
manner in each state. In the yokohama experiment, we use real car probe data provided
by NAVITIME JAPAN Co, Ltd. This dataset is a collection of GPS trajectories of users
who used a car navigation application on smartphones in Kanagawa Prefecture, Japan.
In particular, we used the trajectories for the Minato-Mirai-21 district in Yokohama.
We use the log data recorded during the holiday period from 2015.4.13 to 2015.5.1 (5
days in total) as training data and the log data of 2015.5.2 as test data. By applying a
landmark graph construction algorithm [22], we construct the abstract street network as
shown in Fig. 5(b). We convert the GPS into transition data between the nodes (states)
of this graph. We treat the logs of 10:00–12:59, 14:00–16:59, 17:00–19:59 as the logs of
LMDP1, 2 and 3, respectively.

Predictive Performance Measurement: To evaluate the predictive performance,
we use the negative test log likelihood. A lower value indicates that the method extracts
the parameter that reflects the agent’s behavior more precisely. The negative test log
likelihood is defined as (1/T )

∑I
i=1

∑
j,k∈S −ntest

ijk log p̂∗
ijk, where T is the number of

test datasets and ntest
ijk indicates the number of transitions from state j to state k in the

i-th LMDP. p̂∗
ijk is computed by substituting v̄ij and w̄kj into Eq. (8). We compare the

proposed method with Random and Dvijotham’s method [6]. Since Dvijotham’s method
can estimate only the cost function, we set the passive transition probability at a
uniform probability. Moreover, to investigate the effect of passive transition probability
estimation, we also make a comparison with the proposed method, which does not learn
the passive transition probability (fixed at a random initial value).

6.2 Results

Convergence Behavior: Figure 6 shows the convergence behavior of the objective
function and hyperparameters. We can confirm that they both converge to certain val-
ues by iterating the update process. This shows that the proposed method can estimate
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(a) Objective function (b) Hyperparameters

Fig. 6. Convergence behavior of (a) objective function and (b) hyperparameters in
grid world experiment with nij· = 5. (a) shows the result of 10 random initialization
settings and (b) shows one of the paths from the initial point.

(a) Grid world (b) Yokohama

Fig. 7. Comparison of predictive performance of (a) grid world and of (b) yokohama
experiment. Lower values are better.

hyperparameters. In terms of convergence speed, Fig. 6(a) shows that the objective
function basically converges within 50 iterations. In contrast, Fig. 6(b) shows that more
than 200 iterations are needed for hyperparameter convergence. These results imply
that a relatively longer running time is required in order to learn the hyperparameters.

Predictive Performance: Figure 7(a) shows the predictive performance in the grid
world experiment. In comparison with the proposed method without learning the pas-
sive transition probability, the proposed method shows better predictive performance.
This result shows that estimating the passive transition probability contributes to bet-
ter performance. Figure 7(b) shows the predictive performance in the yokohama exper-
iment. Dvijotham’s method is competitive with the proposed method that does not
learn the passive transition probability but the proposed method outperforms them.
This also confirms the effectiveness of the proposed method.

Parameter Visualization: Figure 8(a) shows the estimated parameters in the grid
world experiment for various numbers of observed transitions nij· (visualization of
LMDP-3 and 4 is omitted due to lack of space). We can confirm that as the number of
observed transitions increases, the estimated parameters more closely approach the true
parameters. Figure 8(b) shows the estimated parameters of the yokohama experiment4.

4 This figure is drawn by QGIS using the data interpolation plugin.
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(a) Grid world (b) Yokohama

Fig. 8. (a) True and estimated value functions of LMDP 1,2 and passive transition
probabilities for states 1–10 of grid world for various numbers of observed transitions
nij· = 5, 10, 20. (b) Estimated value function of LMDP1 of yokohama. Value functions
are visualized by a heat map with colors ranging from red to blue. (Color figure online)

Although we are unable to know the true parameters behind the real car probe data, we
observe that the state near attractive locations has a lower value function value. We can
predict that the agent (car driver) tends to move to the locations. This result implies
that the proposed method estimates parameters that reflect car drivers’ behavior.

7 Conclusion and Future Work

In this paper, we tackled the gIRL problem to estimate both the state cost function
and transition probability from the observed optimal behavior of agents. We showed
that gIRL with an LMDP suffers from a non-identifiable problem and, in response, we
proposed a variational Bayesian gIRL algorithm with SP-LMDPs. The result of our
experiment shows the effectiveness of the proposed method. Since the application area
of our method is not limited to traffic data, we plan a further investigation into practical
applications. We also consider that analyzing the theoretical performance constitutes
important future research.
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