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Abstract. In this paper we present the interesting Behavioral Con-
straint Miner (iBCM), a new approach towards classifying sequences.
The prevalence of sequential data, i.e., a collection of ordered items such
as text, website navigation patterns, traffic management, and so on, has
incited a surge in research interest towards sequence classification. Exist-
ing approaches mainly focus on retrieving sequences of itemsets and
checking their presence in labeled data streams to obtain a classifier.
The proposed iBCM approach, rather than focusing on plain sequences,
is template-based and draws its inspiration from behavioral patterns used
for software verification. These patterns have a broad range of character-
istics and go beyond the typical sequence mining representation, allowing
for a more precise and concise way of capturing sequential information
in a database. Furthermore, it is possible to also mine for negative infor-
mation, i.e., sequences that do not occur. The technique is benchmarked
against other state-of-the-art approaches and exhibits a strong potential
towards sequence classification. Code related to this chapter is available
at: http://feb.kuleuven.be/public/u0092789/.
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1 Introduction

Analyzing sequential data [1] has seen a vast surge in interest during recent
years, driven by the growth of typical sources such as DNA databases, text
repositories, road analysis [2] and user behavior analysis [3]. Many techniques
exist to derive ordered items from temporal databases, focusing on either dif-
ferent techniques for discovery, e.g., using prefix-oriented and constraint-based
approaches, or towards different outcomes, e.g., regular expressions or closed
sequences. These sequential features can be used for classifying new database
entries, a discipline that does not only focus on constructing the most complete
set of features, but rather the most discriminating.

In this paper, we propose a new sequence classification technique, called
iBCM (interesting Behavioural Constraint Miner), which featurizes sequences
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according to a predefined set of behavioral constraint templates. As such, a
fine-granular view of the temporal relations between items can be achieved and
applied towards classification. Furthermore, iBCM allows for easy identification
of the differences between classes, and gives insight into what types of rela-
tions are typically relevant for classification. In the experimental evaluation, it
is shown that iBCM is capable of obtaining high discriminative power while min-
imizing the number of features needed. In addition, only deriving a certain type
of constraint templates can already capture the most discriminating features.

This paper is structured as follows. In Sect. 2, an overview of the state-of-
the-art of both sequence mining and classification is discussed. In Sect. 3, the
backdrop for mining behavioral sequence patterns is introduced, which leads into
the discussion of the inference part of iBCM in Sect. 4. Next, Sect. 5 reports on
a benchmark with other state-of-the-art techniques. Finally, Sect. 6 summarizes
the contributions and provides suggestions for future work.

2 State-of-the-Art

In this section, an overview of existing sequence mining and classification tech-
niques is discussed.

2.1 Sequence Mining

Sequence mining, also referred to as frequent ordered itemset mining or tempo-
ral data mining, has been tackled in numerous ways. The original approach was
rooted in frequent itemset discovery [4] and based on apriori-concepts. Exten-
sions to this original approach have been proposed to obtain closed sequences [5]
and to achieve performance benefits through prefix representation of the dataset
[6]. A constraint-based approach was proposed in [7] in the form of cSPADE, and
has recently seen a strong interest towards extending it along the declarative con-
straint programming paradigm. More specifically, several studies investigate how
to generically build a knowledge base of constraints covering the sequences in a
temporal dataset. For example, in [8], a satisfiability-based technique is devised
for enumerating all frequent sequences using cardinalities for the constraints
retrieved. In [9] a better prefix representation for sequences mining constraints
was introduced, which was later extended for GAP constraints [10]. A similar
approach was devised in [11], in which the authors propose an approach that
speeds up the retrieval of constraints by precomputing the relations between
items in a dataset to avoid reiterating over the sequences. These approaches can
also be used to quickly retrieve regular expressions. In [12], a general constraint
programming approach that steers away from explicit wildcards is introduced.
Finally, a similar vein of research was pursued with Warmer [13], an inductive
logic programming pattern discovery algorithm that relies on the Datalog for-
malization for expressing multi-dimensional patterns. It was elaborated further
for sequences in [14]. The proposed work is a special purpose algorithm that
mines for a subset of Datalog patterns.
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2.2 Sequence Classification

While many insights from sequence mining carry over into sequence classifica-
tion, the nature of the objective is different. Rather than eliciting the full set of
sequences or constraints supported, it is paramount that the feature set exhibits
the following characteristics.

– Compact: in order to build classifiers in reasonable time, the set of features
should be reduced to a minimum,

– Interesting: features of sequential patterns should be supported in a
database, but their usefulness towards classification, i.e., their discriminative
power, also depends on other factors such as confidence and interestingness
[15]. In general, there is a need for a balance in the feature set that strikes
support values in between extremely high and low values [16],

– Concise: the feature set is small though comprehensive, and explains the
sequential behavior in an understandable way.

Many sequence classification techniques have been proposed [17–19], each focus-
ing on a different approach ranging from extensions to sequence pattern mining
algorithms, to statistical approaches that infer the explanatory power of sub-
sequences. They can be classified as either being direct, i.e., the features are
extracted according to their strength towards the classifier, or indirect, i.e., all
features are generated and later selected by a classifier. [17] extends the cSPADE
algorithm with an interestingness measure that is based on both the support and
the window (cohesion) in which the items of the constraint occur. In [18] BIDE-
D(C) is introduced which rather incorporates information gain into BIDE to
provide a direct sequence classification approach. In [19], the sequence database
is split up in smaller parts to be recreated by a sparse knowledge base that pun-
ishes for infrequent behavior by constructing a Bayesian network of posteriors
that are able to reconstruct the sequence database. A similar approach is used
in [20], where a strong emphasis is used towards finding interesting sequences.

In contrast to the previously mentioned techniques, iBCM draws from
insights in constraint programming, but rather than constructing a complete
constraint base that is able to elicit the sequence database as a whole, highly
diverse and informative behavioral patterns are used that incorporate cardinal-
ity, alteration, gaps, as well as negative information. By fixing the pattern base,
it becomes easy to write a specific and fast algorithm for retrieving them from
large databases. The technique employs only binary constraints, however, other
studies such as [17] have already revealed that for sequence classification, the
length of the patterns does not have to exceed 3, or even 2.

3 The Framework of Behavioral Templates

In this section, the preliminaries are established and an overview of the behav-
ioral constraint templates/patterns and their characteristics is given.
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3.1 Sequences and Sequence Databases

The task of sequence classification relies on the principles of both a sequence
and a sequence database, as well as the classes or labels needed to discern their
behavior.

Definition 1. A sequence σ = 〈σ1, σ2, ..., σn〉 is a list of items with length |σ| =
n out of the alphabet Σσ. We denote:

– occ(a, σ) = {i | σi = a, i ∈ N} the ordered set of positions of a ∈ Σσ in σ,
– min(occ(a, σ)) the first occurrence,
– max(occ(a, σ)) the last occurrence, and
– |occ(a, σ)| the number of occurrences.

Sequences, or ordered sets of items, are typically bundled in sequence databases,
which can be defined as follows.

Definition 2. A sequence database SB is a set of sequences with L : SB → N a
labeling function assigning a class label to a sequence consisting of the items in
ΣSB. The number of sequences in the database is |SB|.
Consider the example sequence database in Table 1, with ΣSB = {a, b, c}, |SB| =
6, and |img(L)| = 2.

Table 1. Example database.

ID Sequence Label ID Sequence Label

1 abbcaa 1 4 acbbcaacc 2

2 abbccaa 1 5 acbbcaa 2

3 abbaac 1 6 acbbcaa 2

3.2 Declare Pattern Base

The iBCM approach relies on a set of behavioral constraint templates based on
the Declare language [21], which itself is inspired by the formal verification pat-
terns of Dwyer [22]. These are widely used for identifying not only sequential,
but overall behavioral characteristics of programs and processes. The Declare
template base consists of a number of patterns for modeling flexible business
processes, which are typically expressed in linear temporal logic (LTL), or regu-
lar expressions and finite state machines (FSMs). The template base is extensi-
ble, but the most widely-used entries are listed in Table 2. The patterns contain
both unary and binary constraints. The unary constraints focus either on the
position (first/last), or the cardinality. The choice constraint can be considered
an existence constraint over multiple items. The binary constraints exhibit a
hierarchy [25]. There are unordered constraints (responded/co-existence), sim-
ple ordered (precedence, response, succession), alternating ordered, and chain
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Table 2. An overview of Declare constraint templates with their corresponding LTL
formula and regular expression.

Template LTL formula [23] Regular expression [24]

Existence(A,n) ♦(A ∧ ©(existence(n −
1, A)))

.*(A.*){n}

Absence(A,n) ¬existence(n,A) [ˆA]*(A?[ˆA]*){n-1}
Exactly(A,n) existence(n,A) ∧

absence(n+ 1, A)
[ˆA]*(A[ˆA]*){n}

Init(A) A (A.*)?

Last(A) �(A =⇒ ¬X¬A) .*A

Responded existence(A,B) ♦A =⇒ ♦B [ˆA]*((A.*B.*) |(B.*A.*))?

Co-existence(A,B) ♦A ⇐= ♦B [ˆAB]*((A.*B.*) |(B.*A.*))?

Response(A,B) �(A =⇒ ♦B) [ˆA]*(A.*B)*[ˆA]*

Precedence(A,B) (¬BUA) ∨ �(¬B) [ˆB]*(A.*B)*[ˆB]*

Succession(A,B) response(A,B) ∧
precedence(A,B)

[ˆAB]*(A.*B)*[ˆAB]*

Alternate response(A,B) �(A =⇒ ©(¬AU B)) [ˆA]*(A[ˆA]*B[ˆA]*)*

Alternate precedence(A,B) precedence(A,B) ∧
�(B =⇒
©(precedence(A,B))

[ˆB]*(A[ˆB]*B[ˆB]*)*

Alternate succession(A,B) altresponse(A,B) ∧
precedence(A,B)

[ˆAB]*(A[ˆAB]*B[ˆAB]*)*

Chain response(A,B) �(A =⇒ ©B) [ˆA]*(AB[ˆA]*)*

Chain precedence(A,B) �(©B =⇒ A) [ˆB]*(AB[ˆB]*)*

Chain succession(A,B) �(A ⇐⇒ ©B) [ˆAB]*(AB[ˆAB]*)*

Not co-existence(A,B) ¬(♦A ∧ ♦B) [ˆAB]*((A[ˆB]*) |(B[ˆA]*))?

Not succession(A,B) �(A =⇒ ¬(♦B)) [ˆA]*(A[ˆB]*)*

Not chain succession(A,B) �(A =⇒ ¬(©B)) [ˆA]*(A+[ˆAB][ˆA]*)*A*

Choice(A,B) ♦A ∨ ♦B .*[AB].*

Exclusive choice(A,B) (♦A ∨ ♦B) ∧ ¬(♦A ∧ ♦B) ([ˆB]*A[ˆB]*) |.*[AB].*([ˆA]*B[ˆA]*)

ordered constraints. Hence, the opportunity exists to express not only the order-
ing, but also the repeating (alternation) and local (chain) behavior of two items.
Furthermore, there are negative constraints, expressing behavior that does not
occur. These can prove especially useful in the context of classification, and are
typically not generated by sequence classification techniques that only mine for
positive patterns.

Definition 3. A sequence constraint π = (A, t) is a tuple with A a set of items
and t the type of constraint.

A binary constraint has an antecedent, implying the constraint, and a conse-
quent. Both can exist out of a set of items, however, in the rest of the paper we
will assume both to be singletons. The type of the constraints correspond with
the templates that are defined in Table 2. For convenience, the constraints are
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written in an abbreviated fashion, e.g., altPrec(a, b). They all correspond with a
certain regular expression which can be converted into an FSM. We denote the
corresponding regular expression as §(t). We write the FSM A corresponding
with the regular expression as A = §(A, t) or A = §(altPrec(a, b)). An example
of altPrec(a, b) is depicted in Fig. 1.

Fig. 1. Automaton of alternate precedence(a,b).

Definition 4. A sequence σ supports a constraint π iff σ ∈ L(A(π)) where L
denotes the language of the corresponding FSM. The support of the constraint
in the database is sup(π)SB = |{σ|σ ∈ L(A(π)) ,∀σ ∈ SB}|.
E.g., in SB = {aab, abb}, σ1 ∈ L(§(altPrec(a, b))), σ2 /∈ L(§(altPrec(a, b))), and
sup(π)SB = 1.

3.3 Comparison with Other Sequence Constraint Representation

The iBCM approach does not intend to be able to reproduce the database.
Rather it is able to capture the most discerning sequence-based features. Con-
sider for example the database in Table 1. Table 3 lists the constraints that are
present for both labels. Notice that for label 1, a does not always precede b.
Also, for label 2 c occurs before b. This can be discerned by only 3 constraints
which are marked in bold. Hence, with only 3 features, it is possible to classify

Table 3. The behavioral constraints present in the sequence database of Table 1. The
constraints that are supported at 100% are left out for 50%.

Support Label Supported constraint templates

100% 1 init(a), existence(a,3), exactly(b,2), response(b,a), precedence(a,c),
succession(b,c), not succession(c,b), precedence(a,b)

2 init(a), existence(a,3), exactly(b,2), response(b,a), precedence(a,c),
precedence(c,b), response(b,c), precedence(a,b)

50% 1 exactly(c,1), last(a), response(c,a), alternate precedence(a,c),
alternate precedence(b,c),

2 last(a), exactly(c,2), response(c,a)
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the traces correctly. Lowering the support threshold results in more constraints
being different, although the number of constraints does not have to drastically
increase, as for example response(a,b) will eventually be replaced by alternate
response(a,b) because of the hierarchy between the constraints. To achieve the
same results with typical sequence-based constraints as used in, e.g., SPADE,
it is harder to make such concise distinctions, as non-local information present
in, e.g., succession requires either longer or more sequences to approach the
behavior that will converge towards the language of the regular expression.

To summarize, iBCM exhibits the following advantages:

– It employs a rich, varied set of constraints that can be derived in a fast
manner,

– It can be extended to incorporate any regular expression,
– It includes negative constraints for providing counter evidence, useful towards

classification,
– It includes both unary cardinalities, as well as relational constraints,
– It enables easy comparison of constraint sets,
– It enables understanding what type of behavioral relations are present,
– It can be converted into a global automaton for representing behavior graph-

ically.

4 iBCM: Algorithm Design and Implementation

This section outlines the algorithm for constructing the set of features based
on the constraint templates discussed in Sect. 3. iBCM is an indirect sequence
classification approach, i.e., the featurization and classification part are separate.
Section 5 outlines the performance of the constraints generated by the approach
as binary features (present/not present).

4.1 Inferring Constraints

The featurization approach is employed as a 3-step approach and outlined in
Algorithm 1.

Step 1: Retain frequent items. First, items that exceed the support threshold
are withheld in set A (line 2). Only these items will be used for checking unary
constraints, and will be used in pair for checking binary constraints.

Step 2: Generate constraints. Next, every sequence in the database is
checked in the following manner (line 4, and Algorithm2). The sequence is tra-
versed completely, and for every item in the frequent itemset the positions are
stored. This allows for easy verification of the binary constraints. For every
item a ∈ A, |occ(a, σ| is used for determining the cardinality constraints, i.e.,
absence/exactly/ existence. It is also checked whether it occurred as the first or
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last item in the sequence. Next, a is paired with every other b ∈ A\a to determine
the type of behavioral constraint pattern. If a happens before b, the precedence
lineage is reviewed. For every next occurrence of b, it is checked whether there
was another a preceding it for alternate precedence. In the meantime for every
occurrence, the exact position is checked for chain precedence. Both checks stop
when there is no further evidence. If all occurrences of b fit, the constraints are
added to the constraint set. If b happens after a, the response hierarchy is scru-
tinized. Similar to alternate precedence, every occurrence of a is checked for a
subsequent b before the next occurrence. If every next occurrence of a is b, chain
response is stored. After every pairwise check, the respective succession con-
straints are added if both (alternate/chain) response andprecedence are present
in the sequence. When b is not present in the sequence, there is evidence for
exclusive choice.

Step 3: Retain frequent constraints. Finally, for every constraint it is
checked whether it satisfies the minimum support level for the different labels in
the sequence database in line 6 of Algorithm 1. This allows for precise measur-
ing of sequential behavior, as some sequences might support both response and
precedence, and others do not. Still, they can be merged (i.e. the simultaneous
presence of response and precedence forms succession) to reduce the size of the
number of features.

As can be seen from Algorithm 2, the binary constraints can be derived very
efficiently by boolean and string operations. The approach is inspired by both [25,
26]. However, for classification purposes the sequences need to be labeled right
away. The former uses DFAs to check constraints for each frequent pair. Doing
this on a sequence level is computationally expensive, as it would require running
each string many times. The latter builds a knowledge base of occurrence and
precedence relations and calculates the support for constraints. This, however,
is done on a log level, rather than at entry/sequence level, which requires extra
featurization steps afterwards.

Algorithm 1. Mining constraint features per class i
1: procedure Retrieve Constraints(SB, minsup) � Input: Data and parameters
2: A ← frequentItems(ΣSB, minsup) � Retain only frequent items
3: for l ∈ img(L) do Cl ← ∅ � Cl a list with the constraints supporting label l
4: for σ ∈ SB ∧ L(σ) = l do Cl ← mineConstraints(σ, A)

5: for c ∈ Cl do
6: if |{c|c ∈ Cl}| ≥ |Cl| × minsup then CSB ← c

7: applyHierarchyReduction
8: return CSB

4.2 Considerations on Constraint Template Base

Not all Declare constraint templates are fit to be considered for obtaining fea-
tures from single sequences. First of all, constraints might suffer from being vac-
uously satisfied, i.e., they are satisfied because no counterevidence is provided.
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Algorithm 2. Mining behavioral constraint templates
1: procedure mineConstraints(σ, A)
2: C ← ∅
3: for σi ∈ σ do occ(σi, σ) ← i

4: for a ∈ A ∩ Σσ do
5: if |occ(a, σ)| = 0 then C ← absence(a, 1) � Unary constraints
6: else if |occ(a, σ)| > 2 then C ← existence(a, 3)
7: else C ← exactly(a, |occ(a, σ)|)
8: if 1 ∈ occ(a, σ) then C ← init(a)

9: if |σ| ∈ occ(a, σ) then C ← last(a)

10: for b ∈ A ∩ Σσ do � Binary constraints
11: if min(occ(a, σ)) < min(occ(b, σ)) then
12: C ← prec(a, b)
13: i ← min(occ(b, σ)), chain ← (i − 1) ∈ occ(a, σ), continue ← 	
14: while ∃n ∈ occ(b, σ), n > i ∧ continue do
15: if ∃p ∈ occ(a, σ), i < p < n then i ← n
16: if ¬chain ∨ (n − 1) /∈ occ(a, σ) then chain ← ¬
17: else continue ← ¬
18: if continue then C ← altPrec(a, b)

19: if chain then C ← chainPrec(a, b)

20: if max(occ(a, σ)) < max(occ(b, σ)) then
21: C ← resp(a, b)
22: if max(occ(a, σ)) < min(occ(b, σ)) then C ← notSuc(a, b)

23: i ← min(occ(a, σ)), chain ← (i + 1) ∈ occ(b, σ), continue ← 	
24: while ∃n ∈ occ(a, σ), n > i ∧ continue do
25: if ∃p ∈ occ(b, σ), i < p < n then C ← altResp(a, b), i ← n
26: if ¬chain ∨ (n + 1) /∈ occ(b, σ) then chain ← ¬
27: else continue ← ¬
28: if continue then C ← altResp(a, b)

29: if chain then C ← chainResp(a, b)

30: add succession if (alternate/chain) response and precedence
31: if b /∈ Σσ ∧ b ∈ A then C ← exclChoi(a, b)

32: return C

Hence, only binary pairs that are both present in a sequence are considered.
This automatically satisfies the choice constraint, as well as responded and co-
existence. Secondly, in a single sequence, absence, exactly, and existence are not
distinguishable. It is opted not to generate all of them, but rather stick with a
layered approach of absence for no occurrences, exactly for 1 to 2 occurrences,
and existence for more than 3 occurrences. It would be possible to check them
separately, and merge them afterwards, however, experiments showed that this
does not have an impact on the results. Finally, exclusive choice and not chain
succession both mine for negative behavior that reflects everything that is not
present in the sequences. While absence does the same, the magnitude of the
number of not existing sequence pairs is vastly larger. Although mining for neg-
ative information is one distinctive feature of the proposed approach, the gain in
accuracy performance does not outweigh the burden in terms of the number of
extra constraints generated. Hence they are not included in the final constraint
set. Not succession is the only negative constraint used. Note that all constraints
are mined with a confidence of 100%.
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4.3 Scalability

The computational tractability of the technique relies heavily on two compo-
nents. First of all, the length of the sequence is an important factor as they
are traversed completely. Hence, the performance is bound in the extreme by
the length of the longest sequence. Secondly, the minimum support determines
the number of activities, hence the number of pairs and constraint templates
that need to be checked. In the worst case, all pairs have to be checked for all
binary templates. Most constraints can be checked by simple lookups, but in
case the templates in the upper part of the hierarchy are checked, the complex-
ity in the worst case is the length of the string for checking alternating and chain
behavior. This results in O(|A|2 × |σ|). As will become clear from experimental
evaluation, however, iBCM can achieve good results at high minimum support
levels, reducing |A| drastically.

5 Experimental Evaluation

In this section, the technique will be evaluated on widely-used, realistic datasets
and compared with 4 other approaches.

5.1 Setup

Below, an overview of the data, implementation, and other approaches is given.

Data and Classification. The datasets that were used are summarized in
Table 4 and are a mix with both a large set of distinct items, as well as a large
number of data entries. They are discussed in more detail in [17,19]. All tech-
niques were first employed to generate interesting sequences, and next to build
a predictive model by using the presence of the sequences as a binary feature.
Three classifiers were considered, i.e., naive Bayes (NB), decision trees (DT),
and random forests (RF), for which the Weka1 Java implementation was used.
All runs were executed using a Java 8 Virtual Machine on an Intel i7-6700HQ
CPU with 16GB DDR4 memory. A 10-fold cross-validation was applied for all
the experiments.

Approaches. iBCM is benchmarked against 4 other state-of-the-art techniques,
being cSPADE [7], Interesting Sequence Miner (ISM) [19], Sequence Classifica-
tion based on Interesting Sequences (SCIP) [17], and Mining Sequential Classi-
fication Rules (MiSeRe) [20], which all have the clear goal of obtaining discrim-
inative, informative sequences for classification and are compared in Table 5. A
comparison with other techniques can be found in the respective works as well.
For cSPADE, iBCM, and SCIP, the support levels were set at 0.1–1.0 by 0.1

1 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/


30 J. De Smedt et al.

Table 4. Characteristics of the datalogs used for evaluation.

|SB| |ΣSB| |img(L)| |σ| max(|σ|)
context 240 94 5 88.39 246

Unix 5, 472 1, 697 4 32.34 1, 400

auslan2 200 16 10 5.53 18

aslbu 424 250 7 13.05 54

pioneer 160 178 3 40.14 100

news 4, 976 27, 884 5 139.96 6, 779

intervals. SCIP was used for a minimum interestingness level of 0.05 and a max-
imum sequence length of 2 (this length was devised by the authors in [17] and
a longer length increased computation time and did not return better results).
For MiSeRe, 1, 2, 5, and 10 second run times were considered. Finally ISM was
used with a maximum number of iterations of 200, and a maximum number of
optimization steps of 10,000. No notable differences were reported when using
different settings. The implementation of the benchmark can be found online at
https://feb.kuleuven.be/public/u0092789.

Table 5. An overview of the techniques used for benchmarking.

Technique Description Parameters

cSPADE [7] Sequence mining approach based on window,
gap, length, width, and other constraints

Support

SCIP [17] Extension to SPADE based on an interesting
measure that next to the support of a sequence
also consists of the proximity of its items

Support, interestingness,
maximum length of
sequences

ISM [19] Technique that interleaves subsequences and
infers the most compact set of sequences that
can regenerate the database

max # optimization steps,
max # iterations

MiSeRe [20] Randomly generates diverse sequences and
applies a Bayesian approach to retain
interesting sequences

Maximum runtime
(in seconds)

iBCM The devised approach, based on mining a set of
behavioral constraints

Support

5.2 Results

The results in terms of accuracy and the number of generated constraints along
the support spectrum are displayed in Figs. 2 and 3. The results for ISM and
MiSeRe are reported separately in Table 6. An overview of the share of each
constraint template family in the results of iBCM is given in Fig. 4.

Overall, iBCM is capable of achieving a high accuracy, without inducing a
big amount of constraints (|C|). Especially for the aslbu and auslan datasets,

https://feb.kuleuven.be/public/u0092789
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Fig. 2. Overview of the performance of the different algorithms.



32 J. De Smedt et al.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

ac
cu

ra
cy

0.2 0.4 0.6 0.8 1
0

1

2

3

4

support
lo
g
(|C

|)
(a) pioneer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

ac
cu

ra
cy

0.2 0.4 0.6 0.8 1
0

1

2

3

4

support

lo
g
(|C

|)

(b) News

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

ac
cu

ra
cy

0.2 0.4 0.6 0.8 1
0

1

2

3

4

support

l o
g
(|C

|)

(c) Unix

Fig. 3. Overview of the performance of the different algorithms.
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a higher accuracy is obtained than using the state-of-the-art techniques. Also,
iBCM achieves a higher accuracy more rapidly when going down the support
spectrum, achieving high accuracy already for 50% to 60% with a small amount
of constraints (<100). The differences in terms of the type of sequential behavior
present becomes apparent. In the text-based datasets, such as news, the absence
constraint clearly provides a prominent source of information, since rather the
presence of items, not relations, are needed for classification. This lies in line with
the findings in [19]. In the other datasets, the whole set of constraint patterns
is used, except for the very specific chain constraints. The inclusion of negative
constraints might explain the higher accuracy for aslbu and auslan2. The more
comprehensive alternating constraints are indeed often present (note that the
hierarchy reduction cuts away all simple/alternating ordered constraints when
alternating/chain constraints are found).

cSPADE was not able to finish executing the context dataset within 60 min
for support values lower than 50%. Similarly, ISM was not able to do generate
interesting sequences for the News dataset. Besides, the algorithms did not always
generate constraints for certain higher support values. In terms of performance,
in Fig. 5 the time needed to generate the constraints and label the sequences is
plotted. All constraints could be derived in less than 1 second, except for the News
dataset due to the bigger size of |A|. In this case, the technique clearly scales expo-
nentially with the size of |A|. This is probably due to the nature of the data, being
plain text. The higher number of items, of which there are no particularly frequent
after a certain threshold, increases the runtime. In the other datasets, infrequent

Table 6. Accuracny and log(|C|) (between brackets) results for MiSeRe and ISM.

Dataset Classifier misere (1s) misere (2s) misere (5s) misere (10s) ISM

aslbu NB 0.56 (2.086) 0.556 (2.111) 0.542 (2.111) 0.595 (2.107) 0.602 (2.274)

DT 0.542 (2.083) 0.547 (2.1) 0.556 (2.111) 0.544 (2.111) 0.626 (2.274)

RF 0.53 (2.097) 0.593 (2.111) 0.586 (2.111) 0.595 (2.111) 0.623 (2.274)

auslan2 NB 0.37 (2.4) 0.31 (2.401) 0.37 (2.401) 0.26 (2.401) 0.225 (1.279)

DT 0.27 (2.401) 0.305 (2.401) 0.27 (2.401) 0.25 (2.401) 0.24 (1.279)

RF 0.25 (2.401) 0.325 (2.401) 0.305 (2.401) 0.295 (2.401) 0.24 (1.279)

context NB 0.938 (2.587) 0.938 (2.892) 0.929 (3.259) 0.888 (3.568) 0.821 (2.025)

DT 0.888 (2.592) 0.871 (2.854) 0.908 (3.282) 0.867 (3.547) 0.821 (2.025)

RF 0.908 (2.645) 0.888 (2.814) 0.933 (3.235) 0.913 (3.554) 0.725 (2.025)

pioneer NB 0.963 (1.903) 0.969 (1.982) 0.813 (2.201) 0.863 (2.369) 0.981 (2.093)

DT 0.994 (1.845) 0.988 (1.959) 0.988 (2.152) 0.988 (2.336) 0.963 (2.093)

RF 0.994 (1.863) 0.994 (2.021) 1 (2.188) 1 (2.342) 1 (2.093)

Unix NB 0.863 (2.423) 0.86 (2.447) 0.815 (2.687) 0.744 (2.707) 0.897 (3.232)

DT 0.901 (2.42) 0.902 (2.616) 0.898 (2.549) 0.903 (2.702) 0.927 (3.232)

RF 0.923 (2.511) 0.91 (2.555) 0.912 (2.716) 0.91 (2.842) 0.908 (3.232)

News NB 0.929 (3.445) 0.929 (3.445) 0.928 (3.446) 0.919 (3.448) NA

DT 0.899 (3.446) 0.901 (3.446) 0.902 (3.446) 0.905 (3.447) NA

RF 0.973 (3.445) 0.969 (3.445) 0.971 (3.446) 0.971 (3.445) NA
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items are truly infrequent and |A| does not necessarily grow. Nevertheless, support
settings as of 0.6 already guarantee a decent level of accuracy.

There is no notable difference in accuracy when using different classifiers,
except for the aslbu and auslan2 datasets. Especially the constraints generated
by cSPADE seem to have a different impact on the classifiers. In general, the
classifiers perform more stably on the datasets with either less labels or with
more sequences to learn from. Random forests seem to perform the best overall.

6 Conclusion and Future Work

This work proposed iBCM, a new technique with the ability to discover features
for sequence classification. Based on behavioral constraint templates, iBCM is
able to concisely distinguish different sequential behaviors in databases. It is
capable of achieving results with high accuracy, while minimizing the number
of features needed compared with other approaches. Furthermore, the infer-
ence technique devised can also be applied towards descriptively interpreting
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the nature of the patterns present in a sequence database, offering insights into
what types of interplay are present between the items in the data.

In future work, a more in-depth comparison of which types of constraints
contribute the most to the classifiers will be made. This establishes the base
for building direct sequence classification techniques as well. Finally, the data-
aware versions of the patterns can be introduced as well. Most patterns are
also described in first-order LTL and can be extended to include non-sequential
information [27] to bridge the gap with Datalog [13]. Also, the target-branched
version of Declare [28], i.e., constraints with a consequent being a set rather than
a singleton will be investigated.
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