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Abstract. A broad range of high impact applications involve learn-
ing a predictive model in a temporal network environment. In weather
forecasting, predicting effectiveness of treatments, outcomes in health-
care and in many other domains, networks are often large, while inter-
vals between consecutive time moments are brief. Therefore, models are
required to forecast in a more scalable and efficient way, without compro-
mising accuracy. The Gaussian Conditional Random Field (GCRF) is a
widely used graphical model for performing structured regression on net-
works. However, GCRF is not applicable to large networks and it cannot
capture different network substructures (communities) since it consid-
ers the entire network while learning. In this study, we present a novel
model, Adaptive Skip-Train Structured Ensemble (AST-SE), which is a
sampling-based structured regression ensemble for prediction on top of
temporal networks. AST-SE takes advantage of the scheme of ensemble
methods to allow multiple GCRFs to learn from several subnetworks.
The proposed model is able to automatically skip the entire training
or some phases of the training process. The prediction accuracy and
efficiency of AST-SE were assessed and compared against alternatives
on synthetic temporal networks and the H3N2 Virus Influenza network.
The obtained results provide evidence that (1) AST-SE is ∼140 times
faster than GCRF as it skips retraining quite frequently; (2) It still
captures the original network structure more accurately than GCRF
while operating solely on partial views of the network; (3) It outper-
forms both unweighted and weighted GCRF ensembles which also oper-
ate on subnetworks but require retraining at each timestep. Code and
data related to this chapter are available at: https://doi.org/10.6084/
m9.figshare.5444500.

1 Introduction

A variety of real-world prediction problems involve temporal network analysis to
forecast future events. In particular, structured regression models are widely used
for severe weather forecasting by learning past weather-related measurements
while considering the network structure among measurement stations [13]. These
models are also applied for predicting future hospital admissions based on past
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Fig. 1. Skip-training between consecutive timesteps.

admissions and couplings between hospitals [13]; predicting disease occurrence,
knowing which diseases co-occur and how frequently each occurred in the past.

Forecasting in temporal networks is commonly approached by employing a
single structured model to learn the relationship between the response variables
and the explanatory variables, along with the correlations between nodes, from
multiple past timesteps, in order to predict the response for each node in one
or multiple upcoming timesteps [6,15]. However, issues arise when the time for
prediction is limited, and the large size of networks increases the computational
and space complexity when learning from multiple previous timesteps. To over-
come these limitations, one can train a simple unstructured learner at the current
timestep in order to perform a one-step ahead prediction. Although unstructured
learners can be rapidly trained, they do not always obtain accurate predictions
since they are not capable of capturing between-node correlations. Structured
learners such as the Gaussian Conditional Random Fields (GCRFs) may be more
accurate, but they require more time for retraining at each timestep. Moreover,
they consider the whole network structure while learning, without taking advan-
tage of useful substructures within the network. Taking these issues into account,
while noticing that the data distribution does not change frequently in most tem-
poral settings, we propose a new model that can automatically decide whether
to skip the majority of unnecessary computation, which comes from retraining
at each timestep, and make predictions in a more timely and accurate manner.

Inspired by this insight, we propose a multi-state model, Adaptive Skip-Train
Structured Ensemble (AST-SE). The AST-SE is outlined in Fig. 1. First, in order
to achieve greater predictive performance, AST-SE incorporates multiple GCRFs
into a single composite structured ensemble. Then, to capture the hidden network
substructures, GCRFs are trained simultaneously on subnetworks, generated by
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subsampling which decreases complexity and increases scalability. In addition, at
each timestep, AST-SE automatically determines whether it should (1) simply
skip training if the model learned from the previous data obtains comparable
accuracy on the present validation data (State 1 ); (2) assign new weights to its
components based on the present training data (State 2 ); or (3) retrain some
of its GCRF components (State 3 ). Its accuracy and efficiency were compared
to ensemble and non-ensemble based alternatives on both synthetic temporal
networks and on a real-world application. AST-SE has shown to outperform its
competitors, while learning in a more efficient, scalable, and potentially more
accurate manner.

The main characteristics of AST-SE are summarized in the following:

1. Efficiency: AST-SE is ∼140 and ∼4.5 times faster than GCRF and ensemble-
based alternatives, respectively, in case when its components are run in par-
allel on the H3N2 Virus Influenza network.

2. Scalability: AST-SE focuses only on partial views of a network, and therefore
it is scalable as the network size expands.

3. Accuracy: While being fast and scalable with vast network sizes, AST-SE
also obtains a ∼34–41% decrease in mean squared error on average, when
compared against alternatives on the H3N2 Virus Influenza network.

2 Related Work

Structured Regression. The Gaussian Conditional Random Field model is
a popular graphical model for structured regression. It was originally proposed
in [9] for regression in remote sensing applications. The framework is further
extended for temporal prediction tasks, along with a method for uncertainty
propagation tracking [6]. Models for spatio-temporal prediction are also adapted
for semi-supervised learning, and can handle missing information in targets [12],
and attributes [11]. The extension of the framework for directed graphs is pro-
posed in [16].

Some approaches [13] further extended the model’s expressiveness, which
allowed more accurate predictions. Finally, scalabillity and computational effi-
ciency have also been addressed. One fast approximation for structured regres-
sion utilizes graph compression to reduce the computational burden in large
graphs [18]. However, due to approximation, those approaches lose information,
which leads to the implementation of a fast model with exact inference in [5].

Ensemble Methods. Ensemble learning has been thoroughly researched over
the past two decades. The main idea of ensemble methods is to improve the
predictive performance of a single learner by generating multiple versions of it
and learning each on a different data subset. Predictions made by these learners
are then combined according to a certain aggregation scheme. Various methods
for ensemble generation have been developed using different data replication
techniques and learner aggregation schemes, with Bagging [1,2] and Boosting
[4] being among the most popular. Although, recent ensemble approaches [7,10]
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have been focused on regression, they do not consider the structural component
while learning. To the best of our knowledge, the power of ensemble learning has
not been exploited when dealing with structured data in a temporal setting. For
more details on ensembles in general, refer to [3].

3 Preliminaries

3.1 Problem Statement

Assume that a network of N nodes changes over time. At timestep t, the network
is represented by the weighted attributed graph G(t) = (V (t), E(t),X(t),y(t))
comprised of a set V (t) of N nodes, a set of edges E(t) = {(v(t)

i , v
(t)
j )|S(t)

ij > 0} ⊆
V (t) × V (t), N D-dimensional input vectors (attributes) organized in a matrix
X(t) = [x(t)

1 , . . . ,x(t)
N ]�, and an output (target) vector y(t). A node vi is asso-

ciated with its attribute vector x(t)
i and a corresponding output (target) value

y
(t)
i , for each i = 1, . . . , N , while an edge (v(t)

i , v
(t)
j ) connects nodes v

(t)
i and v

(t)
j

only if the element S
(t)
ij in the similarity matrix S(t) is positive. In this temporal

formulation, the objective is to predict the outputs y(t+1) for all nodes in the
next timestep, given the unobserved graph G(t+1) = (V (t+1), E(t+1),X(t+1)).

In this work, we consider networks with a fixed number of nodes among all
timesteps. In a more general case, N can change over time, and our model can
also be directly applied to such case.

3.2 Gaussian Conditional Random Fields

Continuous Conditional Random Fields (CCRFs) [8] address the above-
described problem by modeling the conditional distribution of y(t), given X(t), as

P (y(t)|X(t)) =
1

Z(X(t), α(t), β(t))
exp

{
N∑
i=1

A(α(t), y
(t)
i ,X(t)) +

∑
i∼j

I(β(t), y
(t)
i , y

(t)
j )

}
,

(1)
where the interaction potential function A(α(t), y

(t)
i ,X(t)) models the relation-

ship between y
(t)
i and all attribute vectors in X(t), while the pairwise interac-

tions between y
(t)
i and y

(t)
j are captured by an interaction potential function

I(β(t), y
(t)
i , y

(t)
j ), for all i, j = 1, . . . , N . Integrating the entire term in the expo-

nent over y gives the value of the normalization constant Z(X(t), α(t), β(t)). Typ-
ically, both functions are defined by combining the parameters α(t) and β(t) with
a feature function f(y(t)

i ,X(t)) and a pairwise interaction function g(y(t)
i , y

(t)
j ),

respectively. Defining f(y(t)
i ,X(t)) and g(y(t)

i , y
(t)
j ) as quadratic functions

f(y(t)
i ,X(t)) = −

(
y
(t)
i − Ri(X(t))

)2

; g(y(t)
i , y

(t)
j ) = −S

(t)
ij

(
y
(t)
i − y

(t)
j

)2

, (2)
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yields the following expression for the conditional probability

P (y(t)|X(t)) =
1

Z(X(t), α(t), β(t))
exp

{
−α(t)

N∑
i=1

(
y
(t)
i − Ri(X(t))

)2

−β(t)
∑
i∼j

S
(t)
ij

(
y
(t)
i − y

(t)
j

)2

⎫
⎬
⎭ ,

(3)

where Ri(X(t)) denotes the prediction for the i-th node, made by the k-th
unstructured predictor at timestep t. The first term in the exponent controls the
relevance of each unstructured predictor. The second term models the depen-
dencies among the output values by considering a symmetric similarity matrix
S(t) = [S(t)

ij ]N×N , thus defining an undirected weighted graph. The larger the

weight of an edge (v(t)
i , v

(t)
j ), the more similar y

(t)
i and y

(t)
j are. Of course, a

weight of zero indicates no connection between a pair of nodes.
Since the exponent in Eq. (3) is composed of quadratic functions of y(t), the

conditional probability distribution can be transposed directly onto a multivari-
ate Gaussian distribution,

P (y(t)|X(t)) =
1

(2π)N/2|Σ(t)|1/2
exp

{
−1

2
(y(t) − μ(t))�Σ(t)−1

(y(t) − μ(t))
}

.

(4)
Therefore the resulting model is referred to as Gaussian CRF (GCRF). Setting
(3) and (4) equal to each other results in the precision matrix

Q(t) = α(t)I + β(t)L(t), (5)

where I is an identity matrix, and L(t) is the Laplacian matrix of S(t). The
precision matrix Q(t), being the first canonical parameter of the Gaussian distri-
bution, can be used to directly calculate Σ(t) = 1

2Q
(t)−1

. The second canon-
ical parameter is simply a weighted combination of all unstructured predic-
tions R(t) = [R1(X(t)), . . . , RN (X(t))]�, i.e. b(t) = 2R(t)α(t). Finally, learning a
GCRF model at timestep t comes down to determining the optimal parameters
that maximize the conditional log-likelihood

[α(t), β(t)]� = arg max
α,β

L(α, β) = arg max
α,β

log
(
P (y(t)|X(t);α, β)

)
, (6)

such that α, β > 0 is satisfied to guarantee the positive semi-definiteness of Q(t).
Upon learning, predictions for the nodes in the next timestep are simply made by
using the canonical parameters to directly calculate the distribution’s expected
value, that is,

μ(t+1) =
(
α(t)I + β(t)L(t+1)

)−1

R(t+1)α(t). (7)

Note that, in the general case, multiple unstructured predictors and different
similarity matrices can be used by the GCRF.
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4 Methodology

In this section we provide a detailed description of the proposed model, called
Adaptive Skip-Train Structured Ensemble (AST-SE). First, we briefly introduce
the major component, which applies ensemble learning in the structured regres-
sion realm. Thereafter, we explain how AST-SE can skip-train on top of tempo-
ral networks. As for the computational complexity of AST-SE, it is discussed in
Sect. 5.2, along with the complexities of its competitors.

4.1 Generating GCRF Ensembles by Network Subsampling

In the traditional GCRF, the relationship between the influence of unstructured
predictors and the influence of the dependencies among the outputs is modeled
through a single pair of α and β. However, in the real-world datasets, a single
pair of α and β cannot fully capture such relationships over the whole network.
One straightforward solution is to model relationships for each node and each
link, which increases the complexity of the model [13]. Therefore, in our pro-
posed model, AST-SE, multiple graphical models are employed in order to learn
different relationships using network sub-structures. The model takes advantage
of the scheme of ensemble methods to incorporate multiple GCRFs to learn from
several replicas of the available data by utilizing sampling techniques.

Subbagging [1] (a variation of bagging that considers subsampling, i.e. sam-
pling at random, but without replacement, to generate multiple training subsets)
is one of the most popular sampling-based ensemble methods, and it has shown
to reduce variance and improve stability, as well as to aid overfitting avoidance.
Since we are dealing with networked data, subbagging is applied in AST-SE
as it is easily scalable to large networks and it is more suitable to sample net-
works without replacement, so that nodes and edges are not duplicated within a
single subnetwork, but can be shared among multiple subnetworks. Henceforth,
by sampling multiple subnetworks and aggregating the knowledge gathered from
different graphical models that operate among these subnetworks, AST-SE learns
hidden substructures within the original network.

Now, let φ : (NN ,RN×N ,RN×D) �→ R
N denote the outcome of a GCRF

model, that maps a graph G to a vector μ containing the predictions for all
nodes in G. In order to generate a graphical ensemble model, the graph at the
current timestep G(t) is subsampled M times, thus resulting in M subgraphs
G

(t)
1 , . . . , G

(t)
M such that Nm = |V (t)

m | = ηN , where η ∈ [0, 1], for each m =
1, . . . ,M . Thereafter, a single GCRF model φ

(t)
m is trained on each subgraph

G
(t)
m .

One direct way to predict the outputs for all nodes at the next timestep is
to aggregate the predictions made by all M GCRFs,

Φ(t)(G(t+1)) =
1
M

M∑
m=1

φ(t)
m (G(t+1)). (8)
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However, not all sampled G
(t)
m match some of the representative subgraphs.

Therefore, one convenient way to overcome this issue is to assign a weight to each
GCRF within the ensemble. This way, GCRFs trained on more representative
samples of G(t) should obtain more accurate predictions for all nodes in G(t),
thus gaining higher weights. The overall performance of this ensemble model is
evaluated by minimizing the regularized quadratic loss function,

�({φ(t)
m },ω, G(t)) =

1
N

N∑
i=1

(
y
(t)
i −

M∑
m=1

ωmφ(t)
m (G(t))

)2

+ λ

M∑
m=1

|ωm|, (9)

where λ ≥ 0 is a regularization parameter, and the weights are obtained by

ω(t) = arg min
ω

�({φ(t)
m },ω, G(t)), s.t. 0 ≤ ωm ≤ 1,

M∑
m=1

ωm = 1. (10)

Once the weights are learned, predictions for G(t+1) made by all GCRFs in
the model sequence {φ

(t)
m } are combined in the weighted mixture,

Φ(t)(G(t+1)) =
M∑

m=1

ω(t)
m φ(t)

m (G(t+1)). (11)

4.2 Adaptive Skip-Training in a Temporal Environment

In order to predict the outputs for all nodes at timestep t+1, one can train a sin-
gle GCRF or even a GCRF ensemble model (described in Sect. 4.1) at timestep t.
However, repetitive retraining at each timestep can be often redundant because
data distributions are similar in consecutive timesteps, and sometimes even infea-
sible. For instance, in a case when the number of nodes is large and both learning
and inference must be attained within small time intervals between consecutive
timesteps.

To overcome this issue, we propose a multi-state model that tends to learn
over time in a more adaptive, pragmatic and efficient manner. Such a model
can be adaptive to an extent where it is able to detect and learn changes in
a network once it is necessary while maintaining accuracy. Changing through
3 different states as time passes, AST-SE adapts accordingly. State 1 suggests
that the model trained using the previous data is sufficient for prediction on
the present data, i.e. the previously learned model obtains comparable accuracy
on the present data. On the other hand, when in State 2, the model needs to
slightly change by updating the weights of its GCRF components based on the
present data. Lastly, State 3 adapts to the present data by updating only some
of the GCRF components.

The network at timestep t is split into two parts. One is for training, G
(t)
train,

and the other is for validation, G
(t)
val. Initially (t = 0), there is no previous data

and therefore AST-SE is trained as a weighted structured ensemble using G
(0)
train.
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When t > 0, several criteria are examined to determine which state should
be selected and adaptive (skip-)training is performed accordingly through the
following procedure:

Phase I. First, the model’s state is initialized to State 1 assuming that data
distribution in the present timestep is similar to the previous one. Efficiency
is maximized by relying solely on knowledge gathered in the past. This way,
neither retraining nor weight updating is needed, meaning that both the GCRF
components {φ

(t−1)
m } and their corresponding weights ω(t−1) from the previous

timestep are combined to predict outcomes at timestep t + 1, i.e.

Φ
(t)
1 (G(t+1)) =

M∑
m=1

ω(t−1)
m φ(t−1)

m (G(t+1)). (12)

State 1 is selected if the previously learned model can obtain similar accuracy
on the present data. This occurs when the loss obtained on the current data
using the previous model, �

(t)
1 = �({φ

(t−1)
m },ω(t−1), G

(t)
val), is not larger than the

loss obtained on the previous data �
(t)
0 = �({φ

(t−1)
m },ω(t−1), G

(t−1)
val ). Once the

condition is satisfied, the procedure selects Φ
(t)
1 to perform prediction for the

next timestep.

Phase II. However, relying entirely on past knowledge may cause predictive per-
formance to deteriorate, especially when the data distribution slightly changes
between consecutive timesteps. A fast way to retrain AST-SE is to update the
weights of the GCRF components obtained at t − 1 using the current training
graph G

(t)
train:

Φ
(t)
2 (G(t+1)) =

M∑
m=1

ω(t)
m φ(t−1)

m (G(t+1)), (13)

where ω(t) = arg minω �({φ
(t−1)
m },ω, G

(t)
train). This compels AST-SE to adapt to

current data, while avoiding to retrain its GCRF components. The performance
of Φ

(t)
2 is assessed on the present validation graph using Eq. (9) to calculate the

loss �
(t)
2 = �({φ

(t−1)
m },ω(t), G

(t)
val). If this loss is smaller than or equal to �

(t)
0 , then

the procedure selects Φ
(t)
2 and prediction is performed for the next timestep.

Phase III. Once this phase is reached, retraining must be performed in order to
obtain a lower loss. However, AST-SE still tends to skip training when possible.
AST-SE automatically selects models to retrain based on the largest increase
in ascending order of weights. Therefore, instead of retraining all GCRF com-
ponents, a model selection is performed by sorting their weights obtained at
t − 1. The sorted weight sequence ω

(t−1)
s1 ≤ ω

(t−1)
s2 ≤ · · · ≤ ω

(t−1)
sM is then used to

determine a threshold value M∗ for model selection,

M∗ = arg max
m∈[2,M ]

(
ω(t−1)

sm−1
− ω(t−1)

sm

)
, (14)
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Algorithm 1. Adaptive Skip-Train Structured Ensemble (at timestep t)
Input:

GCRF components from previous timestep {φ
(t−1)
m }, along with their weights ω(t−1)

Training graph G
(t−1)
train and validation graph G

(t−1)
val

Attributed graph G(t) = (V (t), E(t),X(t),y(t))
Procedure:

(G
(t)
train, G

(t)
val) ← Split(G(t))

Φ
(t)
1 ← ∑M

m=1 ω
(t−1)
m φ

(t−1)
m � Eq. (12)

state(t) ← 1 � Initialize model’s state to 1
if t > 0 then

Phase I

�
(t)
0 ← �({φ

(t−1)
m }, ω(t−1), G

(t−1)
val )

�
(t)
1 ← �({φ

(t−1)
m }, ω(t−1), G

(t)
val)

if �
(t)
1 ≤ �

(t)
0 then

state(t) ← 1 � Remain in State 1
else

Phase II

ω(t) ← arg minω �({φ
(t−1)
m }, ω, G

(t)
train)

Φ
(t)
2 ← ∑M

m=1 ω
(t)
m φ

(t−1)
m � Eq. (13)

�
(t)
2 ← �({φ

(t−1)
m }, ω(t), G

(t)
val)

if �
(t)
2 ≤ �

(t)
0 then

state(t) ← 2 � Set model’s state to 2
else

Phase III

[ω
(t−1)
s1 , ω

(t−1)
s2 , . . . , ω

(t−1)
sM ] ← Sort(ω(t−1))

M∗ ← arg maxm∈[2,M ]

(
ω

(t−1)
sm−1 − ω

(t−1)
sm

)
{φ

(t)
m

′} ← {φ
(t)
m }M∗−1

m=1 ∪ {φ
(t−1)
sm }M

m=M∗

ω(t) ← arg minω �({φ
(t)
m

′}, ω, G
(t)
train)

Φ
(t)
3 ← ∑M

m=1 ω
(t)
m φ

(t)
m

′
� Eq. (15)

�
(t)
3 ← �({φ

(t)
m

′}, ω(t), G
(t)
val)

if �
(t)
3 ≤ �

(t)
0 then

state(t) ← 3 � Set model’s state to 3
else

state(t) ← arg minp=1,2,3 �p � Choose the min-loss state (Eq. (16))
end if

end if
end if

end if
Output:

Return Φ
(t)

state(t)
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thus pruning those GCRFs whose weights preceded the largest weight increase
in the sorted sequence. Upon removal, exactly M∗ − 1 new GCRF components
are trained on G

(t)
train and added to the ensemble. In addition, as in Phase II,

new weights ω(t) are obtained from the present training graph G
(t)
train,

Φ
(t)
3 (G(t+1)) =

M∗−1∑
m=1

ω(t)
m φ(t)

m (G(t+1)) +
M∑

m=M∗
ω(t)

m φ(t−1)
sm

(G(t+1)) (15)

Accordingly, if the loss of this fused ensemble �
(t)
3 = �({φ

(t)
m }M∗−1

m=1 ∪ {φ(t−1)
sm }

M
m=M∗ ,ω(t), G

(t)
val) is lower than or equal to �

(t)
0 , then Φ

(t)
3 is considered as the

final AST-SE choice at timestep t. Otherwise, the state of the final AST-SE
outcome Φ

(t)
p∗ is chosen as the state in which the minimum loss was obtained, i.e.

p∗ = arg min
p=1,2,3

�p. (16)

The above-described procedure is repeated at each timestep t = 1, . . . , T . Its
algorithmic description is presented in Algorithm 1.

5 Experimental Evaluation

5.1 Experimental Setup

In order to inspect the predictive ability of AST-SE and its competitors, exper-
iments were performed to analyze their predictive performance on: (1) syntheti-
cally generated temporal networks, and (2) gene expression network [17] - a real-
world temporal network. In each experiment, given a training graph, M = 30
GCRF models were used by the ensemble approaches, while η = 30% of the
nodes in the original training graph were sampled to construct the subgraph
for each GCRF. At each timestep t, the training graph G

(t)
train for AST-SE was

constructed by sampling 80% of the nodes in G(t), along with the existing edges
between them, while the rest were used for validation. For the alternatives, the
whole graph G(t) was used for training.

Mean squared error (MSE) was calculated for all models when they were
tested on the network at timestep t + 1. In addition, to assess efficiency, the
execution time of all models was measured. Since the components within the
ensemble-based models are decoupled in time, the execution time for each of
these models was measured as their components are run in parallel. Here, we
report both the average MSEs and average execution times, along with the corre-
sponding 90% confidence intervals. All experiments were run on Windows with
64 GB memory and 3.4 GHz CPU. The code was written in MATLAB and is
publicly available at https://github.com/martinpavlovski/AST-SE.

https://github.com/martinpavlovski/AST-SE
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5.2 Baselines

AST-SE was compared against multiple alternatives including both standard
and ensemble-based models. Each one is briefly described in the following:

• LR: An L1-regularized linear regression. LR was employed as an unstructured
predictor for each of the following models in order to achieve efficiency.

• GCRF: Standard GCRF [9] model that enables the chosen unstructured pre-
dictor to learn the network structure.

• SE: Structured ensemble composed of multiple GCRF models. Predictions
for the next timestep are made according to Eq. (8).

• WSE: Weighted structured ensemble that combines the predictions of multi-
ple GCRFs in a weighted mixture (refer to Eq. (11)) in order to predict the
nodes’ outputs in the next timestep.

The computational complexities of all models listed above are presented in
Table 1. The computational complexity of all structured models is calculated
in case learning is attained according to the original GCRF optimization proce-
dure [9] which takes O(IN3). However, the standard GCRF can be replaced by
a faster variant called Unimodal GCRF (UmGCRF)[5]. In such case, the compu-
tational complexities of all structured models (GCRF, SE, WSE, and AST-SE)
will decrease proportionally.

Table 1. Computational complexity of all models in terms of O notation. δ =
|V (t)

train|/N , η is the fraction of the graph used for training, and M is the number of
GCRF components within an ensemble, while I and I ′ denote the number of gradient
ascent iterations needed to learn a GCRF and the number of optimization iterations
needed to obtain weights for multiple GCRF components, respectively. Note that the
computational complexity of each ensemble-based model is calculated as its compo-
nents are run in parallel.

Model Complexity

LR O(d3 + d2N)

GCRF O(d3 + d2N + IN3)

SE O(d3 + d2(ηN) + I(ηN)3)

WSE O(d3 + d2(ηN) + I(ηN)3 + N3 + I ′(NM))

AST-SE State 1 O(((1 − δ)N)3)

State 2 O(((1 − δ)N)3 + (δN)3 + I ′(δNM))

State 3 O(((1 − δ)N)3 + (δN)3 + I ′(δNM) + d3 +
d2(δηN) + I(δηN)3 + I ′(δηNM))

5.3 Experiments on Synthetic Temporal Networks

First, we briefly describe the synthetic temporal networks used in the experi-
ments, their node attributes and edge weights. The structures of the networks
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were generated using an Erdős-Rényi random graph model with N = 10, 000
nodes, while an N ×D attribute matrix X was generated for the node attributes,
such that each attribute xid is normally distributed according to N (0, 1). Then,
assuming that the attributes have linear relationship with the final outputs, we
randomly generated parameters θ and used them to get an artificial output of
an unstructured predictor. That is,

Ri = θ0 + θ1xi1 + · · · + θDxiD + εi, ∀i = 1, . . . , N, (17)

where θ0, θ1, . . . , θD(D = 5) and εi were randomly sampled from U(−1, 1) and
N (0, 1/3), respectively. A weight was assigned to each edge as Sij = e−|Ri−Rj |.
Then, noise sampled from N (0, 2/3) was added to R = [R1, . . . , RN ]�, thus
yielding R̃.

Temporal networks were constructed assuming that there are 5 different sub-
structures (communities) in each network, meaning that the influence of α and
β is different among communities. The similarity matrix S was divided into 5
disjoint submatrices S1, . . . ,S5. By utilizing GCRF in a generative manner, the
Laplacians of these submatrices, along with their own α and β, and the noisy
predictions R̃m, were used to generate the nodes’ outputs for each subgraph
ym = (αmI + βmLm)−1R̃mαm, such that the values of αm and βm were set in
advance. Finally, all ym and Sm were combined accordingly in a single y and S,
respectively.

The above-described procedure was repeated T times in order to generate
X, y and S for T timesteps using a different set of α and β parameters at each
timestep. α and β were set according to two scenarios. In the first scenario,
we consider only one data distribution change at timestep 6. In timesteps 1 to 5
distributions are similar and also at timesteps 6 to 10. In the second scenario, the
distribution is changed more frequently among timesteps. The GCRF parameter
values in case of both scenarios are summarized in Table 2.

Table 2. GCRF parameter values used to generate the synthetic data. Note that
column 3 and 4 contain the values of α and β, or the intervals from which their values
were uniformly sampled.

Scenario Timestep GCRF parameters

α β

#1 t = 1, . . . , 5 1 [2, 5]

t = 6, . . . , 10 [2, 5] 1

#2 t = 1, 2 1 [2, 5]

t = 3, 4 1 [6, 9]

t = 5 1 1

t = 6, 7 [2, 5] 1

t = 8, 9 [6, 9] 1

t = 10 1 1
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Upon generation, the performance of AST-SE and its alternatives were evalu-
ated under each synthetic scenario. The obtained results are reported in Table 3.
They provide evidence that AST-SE outperforms all of its competitors in terms
of accuracy, and it is the second fastest among them.

Table 3. Synthetic scenarios #1 and #2 - Testing MSE and execution time (in sec-
onds), averaged over all timesteps.

Model Scenario #1 Scenario #2

MSE Execution time MSE Execution time

LR 0.29 ± 0.0077 0.01 ± 0.0110 0.28 ± 0.0094 0.01 ± 0.0117

GCRF 0.25 ± 0.0083 5014.65 ± 360.4290 0.26 ± 0.0089 5254.84 ± 259.3738

SE 0.23 ± 0.0083 188.30 ± 9.0330 0.23 ± 0.0084 193.30 ± 11.1379

WSE 0.21 ± 0.0089 207.52 ± 3.8419 0.21 ± 0.0047 217.14 ± 7.1168

AST-SE 0.19 ± 0.0051 15.38 ± 28.0564 0.20 ± 0.0066 70.16 ± 34.4926

Accuracy: The results show that, under Scenario #1 AST-SE outperforms all
of its competitors by a significant margin. Moreover, its average MSE has the
tightest confidence interval. As for Scenario #2, although the data generated
according to this scenario changes quite frequently, AST-SE still manages to
obtain the lowest MSE among alternatives, while being the second most stable
model with respect to its confidence interval. The models’ accuracy was fur-
ther analyzed by observing their MSEs obtained at each individual timestep.
Figure 2 shows that under both scenarios AST-SE manifests consistent accuracy
by maintaining the lowest MSE at almost all timesteps.
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Fig. 2. Testing MSEs over time. Note that the x-axis starts from 2 since testing starts
after all models are trained at timestep 1.

Efficiency: In order to examine the efficiency of AST-SE, its states were observed
over time and are illustrated in Fig. 3. The frequency of fluctuations in the data
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Fig. 3. AST-SE states selected over time (State 1 - blue, State 2 - red, State 3 -
black). Circles depict states that were selected directly, while triangles depict states
that were indirectly selected, i.e. they were selected in case all phases were passed and
they obtained the minimum loss. (Color figure online)

distribution is different for each scenario, while the ability of ASE-SE to react to
such fluctuations accordingly is evident in both cases. First, according to Fig. 3a,
AST-SE stays in State 1 almost all of the time. A change in its state occurs
exactly at timestep 6, at which the structure of the data generated according to
α = 1, β ∈ [2, 5] suddenly changes to a structure that holds α ∈ [2, 5], β = 1 (see
Table 2). More precisely, the model’s state changes to State 2 in which it needs
to update the weights of its GCRF components in order to adapt to the new
data distribution. At the next timestep, the model returns to State 1 since there
are no drastic changes in the values of α and β and stays in this state till the
last timestep. Overall, by changing states only at two timesteps (6 and 7) under
Scenario #1, AST-SE is ∼320 times faster than GCRF and ∼12–13 times faster
than SE and WSE when all GCRF components within SE, WSE and AST-SE
are run in parallel. The only model faster than AST-SE is LR, but LR obtains
much higher MSE than ASE-SE.

In contrast to Scenario #1, the distribution of the synthetic data generated
under Scenario #2 changes quite frequently. For instance, at t = 3, 5, 6, 8, 10 data
distribution changes drastically. Figure 3b shows that AST-SE managed to adapt
accordingly even to these changes. But, the price for such adaptive learning is
the increase in the computational complexity with every other examined con-
dition for potential state change. Nevertheless, according to Table 3, AST-SE
is still ∼75 times faster than GCRF and ∼2.7–3 times faster than ensemble-
based alternatives. As expected, LR is the fastest but AST-SE obtains the best
trade-off between accuracy and efficiency.

Therefore, the more conditions are examined, the more time AST-SE needs
for training. More precisely, an AST-SE that learns in a less dynamic environment
(Scenario #1) will probably stay in State 1, or occasionally select State 2, most of
the time, hence training would be skipped very frequently and execution time will
be reduced. On the contrary, learning in a highly dynamic environment in which
the distribution of the data changes all the time (Scenario #2) will impose AST-
SE to change between states quite often. According to all previously presented
results, it can be inferred that AST-SE may handle both scenarios, but it certainly
works much better for problems in which there are no drastic changes over time.
Many real-world problems are characterized by such properties.
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5.4 Performance on a Real-World Application

The performance of AST-SE against its competitors was also examined on a
real-world data, the H3N2 Influenza Virus dataset. This dataset contains tem-
porally collected gene expression measurements (12,032 genes) of a human sub-
ject infected with the H3N2 virus [17]. Blood samples were collected on multiple
occasions (16 time points drawn approximately once every eight hours) during
the five-day period, after the virus was inoculated in the subject. The task is
to predict the expression value for all genes (nodes) at the next timestep using
the previous 3 timesteps as features. The similarity structure among the genes
was constructed by estimating the sparse inverse covariance matrix from the
expression data, using the algorithm proposed in [14].

The results of all models are summarized in Table 4. Clearly, AST-SE out-
performs all baselines in terms of accuracy. It obtains the lowest average MSE
and seems to be the most stable, as it has the tightest confidence interval for
its average MSE. As to execution time, LR is by far the fastest approach. How-
ever, it obtains a high MSE. Furthermore, although AST-SE is only the second
fastest among all models, it is approximately ∼34–41% more accurate compared
to all of them including LR, thus providing the best trade-off between accuracy
and efficiency. In other words, notwithstanding LR, which is an unstructured
predictor, AST-SE is the fastest among the structured approaches. More pre-
cisely, when its components are run in parallel, in conducted experiments it was
approximately 4.5 times faster than SE and WSE, while being ∼140 times faster
(on average) than a standard GCRF. One reason for this is that, over the whole
time span, State 1 was more frequently chosen than State 2 and State 3 (see
Fig. 4). Another reason is that the ultimate scenario of passing through all 3
states to choose the best one (that is, indirectly selected) is the case in only
4 timesteps out of 12. What is most surprising, is that a model that skips the
entire or some parts of the training process so frequently while operating solely
on partial views can still capture the original network structure more accurately
and in a more efficient manner than a graphical model that takes the whole
network structure into account. According to this, the performance of AST-SE
on both synthetic and gene expression data are consistent.

Table 4. Testing MSE and execution time (in sec-
onds), averaged over all timesteps.

Model MSE Execution time

LR 0.38 ± 0.19 0.10 ± 0.03

GCRF 0.39 ± 0.21 9082.71 ± 1898.43

SE 0.39 ± 0.21 297.29 ± 19.42

WSE 0.35 ± 0.19 309.32 ± 19.44

AST-SE 0.23 ± 0.07 64.00 ± 45.73
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Fig. 4. Selected AST-SE states.
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6 Conclusion

In this study, we introduced AST-SE, a novel ensemble-based model for struc-
tured regression on temporal networks. This model extends the concept of ensem-
ble learning in temporal environments by employing multiple GCRF models to
capture different network substructures and combining them into a single com-
posite ensemble in order to achieve greater predictive power. Changing between
states, at each timestep, AST-SE is able to automatically detect changes occur-
ring over time in the data distribution, and to adapt accordingly by partially, or
even completely skipping the retraining process. According to the experimental
results on both synthetic and real-world data, AST-SE achieves a significant
reduction in execution time, while maintaining sufficient accuracy. Neverthe-
less, our future plans are directed towards developing even more intelligent and
advanced methodologies for detecting changes in temporal data distributions.
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