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Abstract. We present a unified contextual bandit framework for recom-
mendation problems that is able to capture long- and short-term interests
of users. The model is devised in dual space and the derivation is conse-
quentially carried out using Fenchel-Legrende conjugates and thus lever-
ages to a wide range of tasks and settings. We detail two instantiations
for regression and classification scenarios and obtain well-known algo-
rithms for these special cases. The resulting general and unified frame-
work allows for quickly adapting contextual bandits to different appli-
cations at-hand. The empirical study demonstrates that the proposed
long- and short-term framework outperforms both, short-term and long-
term models on data. Moreover, a tweak of the combined model proves
beneficial in cold start problems.

Keywords: Recommendation · Contextual bandits
Dual optimization · Personalization

1 Introduction

Recommender systems are designed to serve user needs. While some needs arise
on short notice due to weather changes, news articles, or advertisements, others
manifest over a long time span and express general interest in, for example, cars,
stock markets, or garments in favored colors. User needs are therefore driven by
individual long-term and collective short-term interests where the latter is highly
influenced by the zeitgeist and common trends.

Traditional recommender systems, however, focus on only one aspect of rec-
ommendation, that is either on a personalized long-term, or an ad-hoc short-term
approach. Collaborative filtering-based methods [6,8], for example, aim to con-
sider long-term preferences of users, while others aim topics of user sessions and
focus on short-term interests [2,13,15]. In general, context-aware approaches [9],
and their kernelized variants [4,14], may be leveraged to meet both aspects. On
the other hand, some recent works focus on context-aware bandits for personal-
ization purposes. Collaborative contextual bandits are introduced in [16] where
the context and payoffs are shared among the neighboring users to reduce learn-
ing complexity and overall regret. In addition, contextual bandits are used to
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learn the latent structure of users in probabilistic settings to cope with cold-start
scenarios [12,17]. Nevertheless, these methods are usually tailored to solve very
specific recommendation tasks and may not be applicable to different scenarios.
Therefore, a more flexible and comprehensive approach is required to cope with
diverse facets of recommendation.

In this paper, we present a unified contextual bandit framework to capture
long- and short-term interests of users. The underlying model consists of a con-
textual (the short-term) and an individual user-based (the long-term) part to
determine the expected reward,

E[rt,ai
|uj ] = θ�

i xt
︸ ︷︷ ︸

Short−term

+ β�
j zai

︸ ︷︷ ︸

Long−term

+bi.

In the above composition, the expected reward is computed from two distinct
parts. The first term models the short-term behavior for a given context xt at
time t. The context determines the recent trend or the topical interest of the
current session. In the short-term part, the outcome of choosing each arm ai for
the given context xt is specified linearly and by its weight vector, θi.

The long-term model, on the other hand, allows to capture individual inter-
ests for user uj across item features, zai

(describing item ai). We propose to con-
nect the short-term and long-term recommendation in one unified model. Note
that bi acts as constant term in the linear model for each arm. The optimization
is performed simultaneously for all the arms so that the short-term part serves as
a joint popularity-based predictor while the long-term part acts as an individual
offset. All derivations are carried out in the dual space using Fenchel-Legendre
conjugates of the loss functions which renders our approach as a framework for a
wide range of loss functions. We obtain LinUCB [9] and LogUCB [10] as special
cases for regression and classification scenarios, respectively.

The next section derives a generalized recommendation model in dual space
which is followed by its instantiations for regression and classification scenarios.
Section 3 contains our main contribution and presents the combination of long-
term and short-term recommender systems within the unified framework with
potential optimization methods. Additionally, possible extensions for our pro-
posed approach is discussed in Sect. 4. We present empirical studies in Sects. 5
and 6 concludes.

2 Linear Bandits in Dual Space

In this paper, we focus on sequential recommender systems for m users, U =
{u1, u2, ..., um}, and n items, A = {a1, a2, ..., an}. Every item ai is characterized
by a set of attributes given by a feature vector zai

∈ R
k. At each time step

t, the goal of the system is to recommend items for the actual context of the
ongoing session, which is described by a feature vector xt ∈ R

d. In the following,
we show how to derive the general optimization framework for linear bandits in
dual space considering short-term information.
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2.1 General Optimization

Assume that the learning procedure for every item (arm) consists of Ti trials,
and for every context xt the reward rt is obtained. Therefore, {(xt, rt)}Ti

t=1 is
the set of Ti samples and their corresponding rewards. The reward corresponds
to the user feedback w.r.t. the recommended items; its domain depends on the
application at-hand; e.g., rt ∈ {1, 0} for click/no click. We deploy a contextual
bandit framework with linear payoff function for arm ai,

h
(i)
θi,bi

(xt) = θ�
i xt + bi,

where hypothesis h predicts the expected payoff for the i-th arm, E[rt,ai
], and θ

contains the model parameters. The bandit framework learns every hypothesis
h(i) independently of the other arms. We therefore discard the index i in the
remainder of this section for ease of notation and address the problem for a
single arm.

Given an arbitrary loss function V (·, rt), and using l2 norm regularizer, the
optimization problem can be stated as

inf
θ ,b

1
T

T
∑

t=1

V (θ�xt + b, rt) +
λ

2
‖θ‖2.

We rewrite the objective by incorporating yt as shorthand for the predicted
payoff. Using C = 1

λT gives

inf
θ ,b,y

C

T
∑

t=1

V (yt, rt) +
1
2
‖θ‖2 s.t. ∀t : θ�xt + b = yt.

The equivalent unconstrained problem is derived by incorporating Lagrange mul-
tipliers, α ∈ R

T ,

sup
α

inf
θ ,y ,b

C

T
∑

t=1

V (yt, rt) +
1
2
‖θ‖2 −

T
∑

t=1

αt(θ�xt + b − yt).

Setting the partial derivatives w.r.t. b and θ to zero, leads to the following
condition

1�α = 0 and θ =
T

∑

t=1

αtxt = X�α,

where X ∈ R
T×d is the design matrix given by the training data. Substituting

the optimality conditions into the optimization function yields

sup
α ,1�α=0

inf
y

C

T
∑

t=1

(

V (yt, rt) +
1
C

αtyt

) − 1
2
α�XX�α.
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Moreover, we move the infimum inside the summation as it solely depends on
the first term. Using infw f(w) = − supw −f(w), we obtain

sup
α ,1�α=0

−C
T

∑

t=1

sup
yt

( − αt

C
yt − V (yt, rt)

) − 1
2
α�XX�α.

Recall that the Fenchel-Legendre conjugate of a function g is defined as g∗(u) =
supx u�x − g(x) [3]. Thus, the dual loss is given by

V ∗( − αt

C
, rt

)

= sup
yt

−αt

C
yt − V (yt, rt).

(for a comprehensive list of dual losses see [11]). The generalized optimization
problem in dual space is therefore reduces to

sup
α ,1�α=0

−C

T
∑

t=1

V ∗( − αt

C
, rt

) − 1
2
α�XX�α. (1)

2.2 Upper Confidence Bound

The challenge in bandit-based approaches is to balance exploration and exploita-
tion to minimize the regret. Auer [1] demonstrates that confidence bounds pro-
vide useful means to balance the two oppositional strategies. The idea is to use
the predicted reward together with its confidence interval to reflect the uncer-
tainty of the model given the actual context. Thus, gathering enough information
to reduce the uncertainty in a multi-armed bandit is as important as maximizing
the reward.

In our contextual bandit, the expected payoff is approximated by a linear
model with an arbitrary loss function where a general optimization approach is
used to estimate the parameters. The uncertainty U of the obtained value for
each arm is therefore proportional to the standard deviation σ of the expected
payoff, U = cσ, where the variance σ2 is estimated from training points in
neighbouring contexts as well as the model parameters. The uncertainty is added
as an upper bound to the prediction to produce a confidence bound for selection
strategy across the arms. The computation of the confidence bound depends on
the choice of the loss function. We illustrate the obtained bounds for two special
cases in the remainder.

2.3 Instantiations

In the following parts, we demonstrate two well-known optimization problems
which can be recovered from Eq. (1) by substituting the corresponding loss func-
tions. The instantiations illustrate how a general platform simplifies comparing
and analyzing various loss functions in different situations.
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Squared Loss. The first instantiation deals with regression scenarios for real-
valued payoffs, rt ∈ R. The squared loss function and its dual are given by

V (yt, rt) =
1
2
(yt − rt)2 and V ∗(st, rt) =

1
2
s2t + strt,

where the latter can be rewritten as

V ∗( − αt

C
, rt

)

=
1

2C2
α2

t − 1
C

αtrt.

Incorporating the conjugate loss function into Eq. (1) gives

max
α ,1�α=0

− 1
2C

α�α + α�r − 1
2
α�XX�α, (2)

where the supremum becomes a maximum as the loss function is continuous. The
equivalent problem in the primal space corresponds to ridge regression where
parameters are determined by optimizing the regularized sum of squared errors,

min
θ ,b

1
T

T
∑

t=1

1
2
(θ�xt + b − rt)2 +

λ

2
θ�θ.

To obtain θ, we set its gradient to 0 which yields θ = − 1
λT

∑T
t=1

(θ�xt + b − rt)xt. The relation αt = − 1
λT (θ�xt + b − rt) holds and we have

θ =
T

∑

t=1

αtxt = X�α.

For the threshold parameter b, we obtain the equation 1
T

∑T
t=1 (θ�xt + b − rt) =

0, and thus arrive at the optimality conditions

−λ
T

∑

t=1

αt = 0 ⇒ 1�α = 0.

Expanding the terms in the summation and substituting the optimality condi-
tions leads to the optimization problem

min
α ,1�α=0

C
(1
2
α�XX�XX�α − r�XX�α

)

+
1
2
α�XX�α,

where C = 1
λT . By removing XX� from all the terms and converting the mini-

mization into a maximization, we have

max
α ,1�α=0

−1
2
α�XX�α + r�α − 1

2C
α�α,

which precisely recovers Eq. (2). The confidence bound for the linear bandit with
square loss is given by (cmp. also [9])

U = c
√

x�
t (X�X + λI)−1xt.
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Logistic Loss. In this section, we derive the optimization problem for the
logistic loss which is defined as

V (yt, rt) = log(1 + exp(−ytrt)).

The conjugate of loss function is given by

V ∗(−αt

rt
, rt) = (1 − αt

Crt
) log(1 − αt

Crt
) +

αt

Crt
log(

αt

Crt
),

and incorporating the latter into Eq. (1) leads to Eq. (3)

max
α ,1�α=0

− C
T

∑

t=1

[(1 − αt

Crt
) log(1 − αt

Crt
) +

αt

Crt
log(

αt

Crt
)]

− 1
2
α�XX�α. (3)

The analogous problem in primal space is known as a logistic regression [7] and
gives

min
α̂

1
2

∥

∥

∥

∥

T
∑

t=1

α̂trtxt

∥

∥

∥

∥

2

+ C

T
∑

t=1

G(
α̂t

C
), s.t.

T
∑

t=1

α̂trt = 0,

where G(δ) = δ log δ + (1 − δ) log(1 − δ). Setting αt = α̂trt, and converting the
minimization into a maximization recovers Eq. (3).

The covariance of the parameters for the logistic regression problem is given
by Σ = XT V X, where V is diagonal matrix of π(1 − π), and π is computed by
the sigmoid function ρ, i.e., π = ρ(X�θ). Consequentially, the lower and upper
confidence bounds are given by

Ulo = ρ
(

r̂t − c
√

x�
t Σ−1xt

)

, Uup = ρ
(

r̂t + c
√

x�
t Σ−1xt

)

,

respectively [5]. The confidence bound for the contextual bandit is therefore
U = Uup−Ulo. Mahajan et al. [10] introduce a variance approximation technique
to obtain the confidence bound for logistic loss for probit functions.

3 A Unified Contextual Bandit

In our setting, personalized and user specific information cannot simply be incor-
porated into the bandit by another type of context. Instead, we suggest to incor-
porate a long-term model into the short-term approach of the previous section.
Therefore, we are able to model the behavior of users for the recommendation
process. The long-term part captures the interests of user ut for every arm ai.
We thus assume a separate set of parameters for the personalized part of the
model, given by βj ∈ {β1, ...,βm}, where βj ∈ R

k. The long-term preferences
of users are also modelled by a linear relationship β�

j zai
. For user ut ≡ uj , the

joint long- and short-term model is

h
(i)
θi,βt,bi

(xt,zai
) = θ�

i xt + β�
t zai

+ bi.
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3.1 The Objective Function

As in Sect. 2, all the parameters of the short-term model are still independent
from every other item as well as the user parameters among themselves. However,
user parameters {β1, ...,βm} are shared across the arms and that makes the
objective function to be connected for all the arms and users. Hence, the general
optimization problem with arbitrary loss function, V (·, rt) becomes

inf
θ1,...,θn
β1,...,βm

b

1
T

T
∑

t=1

V (θ�
t xt + β�

t zt + bt, rt) +
λ

2

∑

i

‖θi‖2 +
μ̂

2

∑

j

‖βj‖2

where λ and μ̂ are the regularization parameters for the item and user weights,
respectively. Let C = 1

λT , μ = μ̄
λ , and y = (. . . , yt, . . .)�, we have

inf
θ1,...,θn
β1,...,βm

b,y

C

T
∑

t=1

V (yt, rt) +
1
2

∑

i

‖θi‖2 +
μ

2

∑

j

‖βj‖2

s.t. ∀t : θ�
t xt + β�

t zt + bt = yt,

which results in the Lagrange function

sup
α

inf
θ1,...,θn
β1,...,βm

b,y

C

T
∑

t=1

V (yt, rt) +
1
2

∑

i

‖θi‖2 +
μ

2

∑

j

‖βj‖2

−
T

∑

t=1

αt(θ�
t xt + β�

t zt + bt − yt).

Note that {θt,zt} ∈ {{θ1,za1}, . . . , {θn,zan
}}, βt ∈ {β1, . . . ,βm}, and bt ∈

{b1, . . . , bn}. The derivatives with respect to θi generate

θi =
∑

t
θt=θi

αtxt =
∑

t

δitαtxt = (X ◦ δi)�α.

In the above equation, δi ∈ R
T is a binary vector which is 1 when θt = θi, and

zero otherwise. X ∈ R
T×d is the design matrix of input vectors, and ◦ is element-

wise product (each element in the vector multiplies by a row in the matrix). We
compute the derivations for βj ,

βj =
1
μ

∑

t
βt=βj

αtzt =
1
μ

∑

t

φjtαtzt =
1
μ

(Z ◦ φj )�α,
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where again φj ∈ R
T is the indicator vector for the corresponding user and Z

is the design matrix for the items features. Additionally, the derivatives w.r.t. bi

gives
∀i,

∑

t:bt=bi

αt = 0 → 1�α = 0.

Substituting the obtained conditions in the original problem leads to

sup
α ,1�α=0

inf
y

C

T
∑

t=1

[V (yt, rt) +
1
C

αtyt]

− 1
2

∑

i

α�(X ◦ δi)(X ◦ δi)�α − 1
2μ

∑

j

α�(Z ◦ φj )(Z ◦ φj )�α,

which can be written as

sup
α ,1�α=0

−C
T

∑

t=1

sup
yt

(−αt

C
yt − V (yt, rt))

− 1
2

∑

i

α�(X ◦ δi)(X ◦ δi)�α − 1
2μ

∑

j

α�(Z ◦ φj )(Z ◦ φj )�α.

Finally, by converting the first term to the conjugate of the loss function using
Fenchel-Legendre conjugates, we obtain

sup
α ,1�α=0

− C

T
∑

t=1

V ∗(−αt

C
, rt) − 1

2

∑

i

α�(X ◦ δi)(X ◦ δi)�α

− 1
2μ

∑

j

α�(Z ◦ φj )(Z ◦ φj )�α. (4)

Equation (4) constitutes a generalized optimization problem for contextual ban-
dits with arbitrary loss function. It contains the short-term model in Eq. (1) as
a special case when no personal long-term interests need to be captured.

3.2 Optimization

Equation (4) can be optimized with various optimization methods depending
on the loss function as well as standard techniques such as gradient-based
approaches. For real-time applications and online scenarios, model updates can
be performed using (mini-) batches at regular intervals as well, for efficiency.
The objective function needs to be maximized w.r.t. the dual parameters α and
is given by

sup
α ,1�α=0

− CI
�V ∗(−α

C
, r) − 1

2

∑

i

α�(X ◦ δi)(X ◦ δi)�α

− 1
2μ

∑

j

α�(Z ◦ φj )(Z ◦ φj )�α.
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The gradient w.r.t. α is obtained by computing the derivatives

−C
∂V ∗(− α

C
, r)

∂α
− [

∑

i

(X ◦ δi )(X ◦ δi )
�]α − 1

μ
[
∑

j

(Z ◦ φj )(Z ◦ φj )
�]α − γI = 0.

The actual form of the gradient depends on the dual loss V ∗ and further deriva-
tions are omitted accordingly. Note that instantiations often give rise to more
sophisticated and efficient optimization techniques than the general form in
Eq. (4) allows, see also Sect. 2.3. Nevertheless, the sketched gradient-based app-
roach will always work in case a general optimizer is needed, e.g., in cases where
several loss functions should be tried out. Once the optimal parameters, αopt,
have been found, they can be used to compute the primal parameters

θi = (X ◦ δi)�αopt, βj =
1
μ

(Z ◦ φj )�αopt.

Alternatively, kernels KX = φX(X,X) and KZ = φZ(Z,Z) could be deployed in
the dual representation to allow for non-linear transformations and convolutions
of the feature space.

Once the required parameters are found, the payoff estimates are used
together with the respective confidence interval U of the arm to choose the
arm with the maximum upper confidence value according to

at = arg max
ai∈A

θ�
i xt + β�

t zai
+ bi + Ui,t.

Learning with Squared Loss. In this section, we present the optimization
algorithm for a special case of unified contextual bandit framework with squared
loss. As it is mentioned in Sect. 2.3, the conjugate of squared loss is given by

V ∗(−αt

C
, rt) =

1
2C2

α2
t − 1

C
αtrt,

which leads to the following objective

max
α ,1�α=0

− 1
2C

α�α + r�α − 1
2

∑

i

α�(X ◦ δi)(X ◦ δi)�α

− 1
2μ

∑

j

α�(Z ◦ φj )(Z ◦ φj )�α.

The summation
∑

i(X ◦δi)(X ◦δi)� is equivalent to (
∑

i δi ⊗δ�
i )◦XX�, where

⊗ stands for the vector outer product. Considering the same equivalency for the
last term as well, we rewrite the equation as follows

max
α ,1�α=0

− 1
2C

α�α + r�α

− 1
2
α�[(

∑

i

δi ⊗ δ�
i ) ◦ XX� +

1
μ

(
∑

i

φi ⊗ φ�
i ) ◦ ZZ�]α.
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By using min instead of max, setting P = 1
C I+(

∑

i δi ⊗δ�
i )◦XX� + 1

μ (
∑

i φi ⊗
φ�

i )◦ZZ�, and q = −r, the problem becomes a standard quadratic optimization
with a constraint,

min
α ,1�α=0

1
2
α�Pα + q�α. (5)

Algorithm 1 summarizes the procedure of optimizing for the squared loss. In each
iteration, the algorithm computes the UCB value of all arms for the observed
user, and in line 14 chooses the arm with the highest value. The required param-
eters for the quadratic optimization are updated from line 15 to 22 which leads
to optimizing α. The obtained vector is used to update the model parameters.
Note that the objective function is optimized for all the parameters, therefore, it
affects them all and not just one user and one item. In this algorithm, we assume
that the covariance matrices of item and user parameters are independent from
each other. Hence, we discard the correlation between them and obtain the vari-
ance by summing them as z�

a A−1
ut

za + x�
t A−1

a xt (line 11) in order to compute
the confidence bound.

Algorithm 1. Short- and long-term regression UCB
1: Inputs: c, C, and μ
2: Initialize X ← ∅0×d, Z ← ∅0×k, r ← ∅
3: for t = 1, 2, ..., T do
4: if ut is new then (Observe the user ut and context xt ∈ R

d×1)
5: Aut ← Ik · μ, βut

← 0k×1, φut
← 0t×1

6: end if
7: for all a ∈ At do
8: if a is new then (Observe the features of arm za ∈ R

k×1)
9: Aa ← Id, θa ← 0d×1, δa ← 0t×1

10: end if
11: st,a = z�

a A−1
ut

za + x�
t A−1

a xt

12: pt,a = θ�
a xt + β�

ut
za + c

√
st,a

13: end for
14: Choose arm at = arg maxa pt,a with tie broken randomly, and observe payoff rt
15: Aat = Aat + xtx

�
t

16: Aut = Aut + zatz
�
at

17: X ← [X;x�
t ] (Append vertically)

18: Z ← [Z; z�
at

] (Append vertically)
19: r ← [r, rt]
20: for all a ∈ At and u ∈ Ut do
21: Update δa and φu

22: end for
23: for all a ∈ At and u ∈ Ut do (Obtain α by optimizing Eq. 5)
24: θa = (X ◦ δa )�α
25: βu = (Z ◦ φu )�α
26: end for
27: end for
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Learning with Logistic Loss. Another special case of our unified framework
is to apply the logistic loss for the optimization process. As we introduced in
Sect. 2.3, the conjugate of logistic loss is as follows

V ∗(−αt

rt
, rt) = (1 − αt

Crt
) log(1 − αt

Crt
) +

αt

Crt
log(

αt

Crt
).

Employing the above conjugate into the Eq. (4) leads to

min
α ,1�α=0

C

T
∑

t=1

[

(1 − αt

Crt
) log(1 − αt

Crt
) +

αt

Crt
log(

αt

Crt
)
]

+
1
2
α�[(

∑

i

δi ⊗ δ�
i ) ◦ XX� +

1
μ

(
∑

i

φi ⊗ φ�
i ) ◦ ZZ�]α.

The procedure for learning the model is similar to Algorithm 1 in the previous
section. Nevertheless, the objective function in line 23 needs to be optimized dif-
ferently, and also computing st,a in line 11. In the latter, the covariance matrix is
computed for both set of parameters, Σa = XT VaX and Σut = ZT VutZ, respec-
tively. Therefore, x�

t Σ−1
a xt + z�

t Σ−1
ut zt is used as the variance in computing

the lower and upper confidence bounds (see Sect. 2.3). Note that gradient based
methods are still applicable in the optimization part.

4 Discussion

In the following, we discuss some potential alternatives of our proposed approach
which are suitable for particular circumstances.

4.1 Complexity of the Model

The presented unified model in Sect. 3 combines the contextual item model with
the user interest in one framework. The model is therefore more than the vanilla
bandit-based approaches that only model one of those. However, the model con-
tains many parameters and the optimization part becomes more and more com-
plex as the system size (both the number of items and users) grows. We propose
to simplify the approach in two different directions; relaxing the item model or
discarding the personalized term. Hence, we introduce four simplified cases of
the combined approach as follows.

1. Short-Term: To model the payoff function only for the items, no personal-
ization (aka. LinUCB [9]): E[rt,ai

] = θ�
i xt.

2. Short-Term+Average: Considering an average term for all the items, no
personalization (resembling HybridUCB [9]): E[rt,ai

] = θ�
i xt + β�zai

.
3. Long-Term: Only personalized model: E[rt,ai

|uj ] = β�
j zai

.
4. Long-Term+Average: Incorporating the average term into the personal-

ized model: E[rt,ai
|uj ] = β�

j zai
+ θ�zai

.

These cases are easily derivable from equations in Sect. 3. Note that the average
part in case 2 and 4 depicts the item popularity in the recommender systems.
We further examine the benefits of average models in Sect. 5.
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4.2 Preference Based Bandits

One natural extension of our approach is to characterize the model in the
preference-based setting. There are many systems with no available quantita-
tive feedback, whereas the feedback is provided in terms of pairwise comparison
between items. In such cases, the preferences are used in the learning process and
the rankings are predicted directly from the model. In this section, we discuss
how to phrase our bandit framework in a preference-based context.

We consider the contextual bandit problem in a way that the context is
specified by the features of items to recommend. The model is thus defined by
a single bandit which learns the preferences between items for all the users.
Assume that zi and zk are the features of items ai and ak, respectively, and we
assign zi�k := zi − zk to show the preference of item ai over ak. The payoff is
therefore determined as a linear model of the preference,

E[rt,i�k|ut = uj ] = θ�zi�k + β�
t zi�k,

where θ is the weight vector for the average model, while βt = βj is the indi-
vidual parameter for user j which acts as a personal offset. The above equation
is theoretically analogous to the case number 4 in the previous section.

5 Empirical Study

The purpose of this section is to evaluate the performance of our combined con-
textual bandit approach compare to either short-term or long-term models. We
use the squared loss in our experiments as in Algorithm 1. The quality of rec-
ommendation is measured via normalized average rank. For every test instance,
a ranking of all items is inferred by the model. The position of the actually
clicked item in the ranking is then normalized (divided by the total number of
items) and averaged over all test samples. The empirical study illustrates that
adding a long-term model describing the user preferences improves the short-
term recommendation. Additionally, we show that the simplified average models
are beneficial in cold start scenarios.

5.1 Data

The experiments are conducted on a real-world dataset from Zalando, a large
European online fashion retailer, with anonymized click history of various users.
The data is collected over time and bucketized into consecutive sessions. Each
user interacts with the system in different sessions, and each session contains
a sequence of products views. Products are described with some categorical
attributes, such as category, brand, color, gender, price level, and action. We
apply a one-hot encoding of the categorical features and enrich the representation
by three additional features: the item popularity for each item, and “sale to view”
as well as “view to action” ratios per user. The augmented dataset encompasses
users with at least 5 sessions, where all sessions with more than one click are
considered a valid session.
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5.2 Overall Performance

In the first experiment, we examine how the combined approach performs on
data sets of different sizes compared to the long- and short-term models and
a matrix factorization baseline [8]. The parameters of the latter are optimized
by model selection (200 factors, regularization constant 0.1). We thus generate
several subsets of data by randomly sampling different numbers of users to obtain
sets with about 1k user transactions to 15k. We split each set into training and
test sets by reserving 80% of sessions for the former and assigning the rest to
the test set. Note that there is no new user or new item in the test data.

The context in our setup is the feature vector of the previously viewed prod-
uct. Therefore, the first click of each session is discarded and kept as the context
for the next click. The reward value for each action is either 1 for the correct arm
or −1 otherwise. We consider a fixed c = 2.36, and set regularization parameters
λ = μ = 1 for simplicity. Figure 1 depicts the results for our approach as well as
the long- and short-term models averaged over several runs.

Fig. 1. Normalized average rank for different data sizes.

The figure shows that the combined approach outperforms both the long-
and short-term methods in terms of average rank (lower is better). The short-
term approach performs worse than the other two, since the data is obtained by
sampling users, and there are many more items than users. However, the size
of data does not change the behavior of the tested methods significantly apart
from the combined model that improves performance with increasing data sizes;
an indicator for the necessity of experiments at even larger scales. The matrix
factorization baseline performs best when all users and items are known.

5.3 Cold Start

One of the main contributions of our proposed approach in the contextual set-
ting is the ability to generalize over different items for individual users. This
advantage suits well in cold start situations where content is highly dynamic
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and item and user sets change frequently. First, we demonstrate the behavior of
the combined approach when new users and items appear in the test set.

We create a subset of data from all the sessions of 100 randomly selected
users. The data contains 1,295 sessions which gives an average of 13 sessions per
user, and about 8,000 products. We split the data into training and test sets with
different ratios for the percentage of new items and new users in the test data.
To this purpose, we leave d% of the users and e% of the products to appear only
in the test set such that it realizes a ratio of e

d for the new items over new users.
We train our combined approach as well as both long- and short-term models,
where the context and reward setup is as in the previous section. Figure 2 (left)
shows the behavior of different approaches; results are averaged over multiple
runs.

Fig. 2. Left: normalized average rank for different ratios of new items to new users.
Right: execution time for different data sizes.

The first impression from Fig. 2 (left) suggests that although the combined
method still outperforms the baselines, its performance declines a bit near the
ratio of 1 when many new users and items are available. Unsurprisingly, the
short-term model performs better for scenarios with only a few new items. This
holds vice versa also for the long-term model that performs better for scenarios
with almost constant sets of users. The performance of matrix factorization
degrades significantly in the new setting which confirms the robustness of our
combined method in real scenarios. However, the robustness comes at the cost
of run-time: the combined approach is computationally expensive because of the
involved convex optimization. The run-time analysis in Fig. 2 (right) displays
the exponential growth in execution time in comparison to the other approaches
discussed in Sect. 4.1.

In this section, we focus on the evaluation of adding average models to the
long- and short-term approaches. We conduct the experiments on a medium sized
dataset to evaluate their performance. The dataset in this experiment contains
all transactions of 500 random users. We split the data by modifying the percent-
age of new users and new items in the test set and analyze two cases. Figure 3
shows how adding the average term significantly improves the performance of
both long-term and short-term models, respectively. As in the previous experi-
ment, in Fig. 3a, the performance of the long-term model decreases for increasing
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numbers of new users. By contrast, extending the long-term model by an average
model remedies this effect and the extended model is able to cope with the chal-
lenging scenario and even improves performance. Similar behavior is shown in
Fig. 3b where short-term model, augmented by an average model, eliminates the
shortcomings of the short-term model in dealing with new items. By contrast,
collaborative filtering fails to catch up and performs poorly in both scenarios.
As a result, maintaining additional average models is an effective and efficient
means in cold start situations. The experiments however also show that there is
no one model that rules them all; instead, the model of choice depends clearly
on the intrinsic dynamics of the applications.

(a) Performance in terms of new users (b) Performance in terms of new items

Fig. 3. Normalized average rank for the data with new items and users.

6 Conclusion

In this paper, we presented a unified model for short-term and long-term rec-
ommendation in a multi-armed bandit framework. The model incorporated the
information from the actual context as well as the long-term preferences of the
users into a single contextual bandit. We transformed the optimization problem
of our bandits into the dual space considering a linear payoff model for the arms.

Addressing the problem in dual space led to a generalized optimization prob-
lem where arbitrary loss functions could be used to reshape the payoff function
according to the application at-hand. As a result, applying contextual bandits
for long- and short-term recommendations is considerably simplified. The exper-
iments show that adding an average model to short- and long-term models leads
to robust methods that clearly outperform their vanilla peers in terms of nor-
malized average rank.
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