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Abstract. Diplegia is one of the most common forms of a broad fam-
ily of motion disorders named cerebral palsy (CP) affecting the voluntary
muscular system. In recent years, various classification criteria have been
proposed for CP, to assist in diagnosis, clinical decision-making and com-
munication. In this manuscript, we divide the spastic forms of CP into 4
other categories according to a previous classification criterion and pro-
pose a machine learning approach for automatically classifying patients.
Training and validation of our approach are based on data about 200
patients acquired using 19 markers and high frequency VICON cam-
eras in an Italian hospital. Our approach makes use of the latest deep
learning techniques. More specifically, it involves a multi-layer percep-
tron network (MLP), combined with Fourier analysis. An encouraging
classification performance is obtained for two of the four classes.

1 Introduction

Cerebral palsy (CP) is a broad family of non curable disorder of the voluntary
muscular system, which appears in human’s early childhood; this disorder is
characterized by a great variety of symptoms, including stiff muscles, tremors and
a general loss of coordination. CP is treatable but it is not curable; its symptoms
could become more noticeable, but they do not worsen during lifetime. Common
treatments include the effort of therapists and rehabilitation specialists, and
the use of physiotherapy, antispastic drugs, orthosis and devices and functional
surgery. Several classifications have been proposed for CP and are based on
different aspects of this disorder. One of the most used classification relies on
the identification of muscle tone anomalies as well on the type of the prevailing
neurological symptom. This classification identified three classes as: (1) spastic,
characterized by constant muscle tightness and stiffness; (2) dyskinetic, affecting
patients unable to control involuntary movements; (3) ataxic, associated with
shakiness and lack of coordination.
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Another classification relies on the somatic location of the prevailing neuro-
logical symptom: (1) tetraplegia if all four limbs are affected; (2) hemiplegia if
only one side of the body is afflicted; (3) diplegia if it involves symmetrical parts
of the body.

A good classification system separates patients into clinical clusters char-
acterized by sharing comparable prognosis, thus easing choice of treatment and
communication of the expectations on autonomy level during child growth. With
this goal, Ferrari et al. [7] have proposed a new classification of spastic forms
of CP, which divides diplegia into other 4 forms (see Table 1), aimed at quickly
conveying a “clinical snapshot” of a child by cross-referring to histories of other
patients with similar motor impairments and dysfunctions therefore easing the
choice of providing specific indications about the treatment to be adopted and
about the disorder evolution over time. Moreover, it has been first validated in
[4], analyzing a group of 467 subjects affected by CP (213 suffering from diplegia
and 115 from tetraplegia), and characterized by significant correlations between
identified walking forms. Further validation results, referring to the classification
of spastic diplegia and involving 50 children and adolescents followed by profes-
sionals of rehabilitation, have been illustrated in [14]. This validation activities
have evidenced that the less and the most severe forms of CP are the most easily
identifiable, whereas the remaining two being more challenging.

In this work an automatic classification tool able to identify the 4 forms of
spastic diplegia defined in [7] is illustrated. This tool combines frequency domain
processing of the measurements acquired by means of multiple markers and
high frequency VICON cameras with state of the art deep learning techniques.
This work falls within the broad category of social signal processing, intended
as the analysis of one ore more subjects as it interacts with another or with
the environment. In this field techniques have shown competitive performance
in classifying people interaction in crowd, as shown in [17]), but also in small
groups [16] and in pairs [13].

The remaining part of this manuscript is organized as follows. In Section
2 previous work on the classification of diplegia is illustrated. In Sect. 3 gait
analysis is introduced, and the sensors and methods employed for collecting
measurements are illustrated; moreover, some indications about the adopted pre-
processing techniques are provided. In Sect. 4 the architecture of the employed
deep network is described. In Sect. 5 some numerical results are shown. Finally,
Sect. 6 offers some conclusions.

2 Related Work

As far as we know, this is the first attempt of building a system based on the
classification proposed in [7]. In the following previous work on diplegia classi-
fication is illustrated. However, note that most of it aims at discerning between
healthy patients and patients affected by diplegia.

In [6] previous work on children affected by CP has been analysed. The
considered methods include traditional data analysis systems and more recent
machine learning techniques.
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Table 1. Diplegia forms from Ferrari et al. [7]

Form Traits

Form I-forward leaning
propulsion

Antepulsion of trunk, walking on toe tips. Requires
constant support of four point canes

Form II-tight skirt Pronounced knee flexion in midstance, loaded knee
behavior, short and frequent steps

Form III-tight rope
walkers

Frontal trunk swinging and use of upper limbs to
keep balance, presence of a dysperceptive disorder
causing fearing feeling of falling and fear of open
spaces without anything to cling on

Form IV-dare devils Mainly a motor deficit. Increased talipes equinus at
start of walking. Inability to stop walking abruptly
without falling in early age

In [9] a support vector machine (SVM) for identifying spastic diplegia is
proposed. A dataset of 3D points acquired by a six-camera Vicon System is
analyzed; a group of 88 children affected by spastic diplegia and a control group
of 68 children has been considered. Four features (namely, stride length, cadence,
leg length and age) have been extracted from raw data. The best results have
been achieved using only stride length and cadence (normalized on the basis of
leg length and age) and adopting a radial basis function as kernel. In particular,
an overall accuracy of 96.80% with 10-fold stratified cross validation has been
achieved.

In [11] an artificial neural network is employed to combine traditional patient
information with the analysis of heart rate variability. The proposed method is
tested using a dataset that concerns healthy subjects and patients diagnosed
with central coordination disturbances. Data have been acquired employing a
24-h ECG-Holter monitor; moreover, a shallow network consisting of a single
hidden layer with 12 neurons has been employed.

In [1] a Self-Organizing Map (SOM) for unsupervised learning has been
employed. The dataset collects information about three-dimensional joint angles,
moments and powers and refers to 129 gait cycles from 18 subjects not affected
by movement disorders; moreover, the quantisation error (QE) of the differences
between normal and abnormal gaits is computed.

In [15] a rich dataset, referring to more than 900 patients affected with various
pathologies, is exploited; data acquisition is based on a VICON 370 system
consisting of high resolution infrared cameras. Moreover, the available data are
processed to estimate hip rotation and the movements of other junctions, and
then employed to train a SVM classifier. Since different disorders were included
in the dataset, a binary classification algorithm for each of them against all the
others has been trained.

Finally, the principal component analysis (PCA) has been employed in [3] to
identify relevant information for classification of healthy and diplegic subjects.
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3 Gait Analysis

Gait analysis plays a key role not only in the study of the muscular system, but
also in that of the nervous and the sensory ones. Since this analysis involves
the study of locomotion and of body mechanics, various devices are needed
to simultaneously control the motion of multiple human joints; some of these
devices are listed in Table 2. Gait analysis is usually accomplished in dedicated
laboratories, called motion analysis labs (MALs).

Table 2. Devices commonly used for gait analysis

Devices Description

Opto-electronic devices Reflecting markers applied to the patient’s skin in defined
anatomical landmarks able to provide 3D motion of human
segments

Force plates Plates placed on the ground, used to measure the ground
reaction force to body weight

Electromyography Skin electrodes capable of acquiring the electrical signal
generated by the contraction of muscles

Video systems Cameras to record a patient during his/her trial

3.1 Data Format

One of the most advanced protocol for the storage of bio-mechanical data is the
Total3DGait [2], which relies on the C3D format. A C3D file is composed by a
header (which contains not only information about the considered patient such
as his/her height or age, but also data useful for the remaining part of the file)
and a body, which contains the position of every marker for each frame, along
with the validity of the data itself, where the special value −1 indicates an invalid
acquisition, and the precision of the measure. The order of the 3D positions is
specified in the header. An insight in the single marker point is provided in
Table 3.

3.2 Acquisition Method

As the gait analysis involves data referring to several distinct joints, a large
number of markers needs to be applied to the skin of the considered patient.
The Davis protocol [5] is one of the leading methodologies for acquiring not
only 3D motion data, but also useful information about the considered patient,
such as his/her weight and age; these data are collected before applying the
opto-electronics markers for capturing kinematic, dynamic and electromyogra-
phy measurements. Measurements are acquired as the patient walks at normal
speed through the room hosting a MAL; the data usually refer to a variable
number of trials (usually between 4 and 6).
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Table 3. C3D frame

Word Content (signed integer format)

1 X coordinate of point divided by POINT:SCALE factor

2 Y coordinate of point divided by POINT:SCALE factor

3 Z coordinate of point divided by POINT:SCALE factor

4 Byte 1: cameras measuring the considered marker (1 bit per
camera). Byte 2: average residual divided by POINT:SCALE
factor

3.3 Data Pre-processing

Our dataset refers to 1121 trials acquired from 178 patients affected by diplegia.
The acquisition frame rate (100 frames/sec) provided by the employed VICON
system is too large; for this reason every walk has been subsampled by a factor
2, so dropping the frame rate to 50 frames/sec. Moreover, trials not containing
one or more of the 19 markers listed in Table 4 or trials referring less than
two consecutive steps have been discarded. As the foot strikes were included as
meta-data in every trial, multiple consecutive steps have been considered as a
sequence. Our dataset evidences an heterogeneous distribution of the available
measurements over the classes (see Table 6). This reflects, on the one hand,
the incidence of different forms of this disorder in the population; on the other
hand, it shows the difficulty for patients suffering from the most severe symptoms
to sustain multiple trials. As it is fundamental to have a complete separation
between the train set and the test set, our dataset has been split according to the
proportion 0.75:0.25 patient-wise for each class. In Table 6 the resulting numbers
are given for each class; note that the numbers indicated in bold refer to the case
of data augmentation by repetition (this has been employed for the first class
only, since it was substantially poorer than the remaining three classes).

Following [12], we have transformed the acquired measurements from the time
domain to the frequency domain; in fact, this form of processing, implemented
through the fast Fourier transform (FFT), has been shown to be extremely
useful in discerning abnormal gaits from normal ones. Since the overall number
N of steps performed by patients in their trials is highly variable among the
four classes, only one coefficient every N was retained in the FFT output; this
removes the dependence from the temporal length of the sequence. Moreover,
only the first 20 coefficients selected in this way have been processed by our
classification algorithm (apart from the first one, they have been normalized).

Moreover, before FFT processing, the following tasks have been
accomplished:

1. The acquired xyz points have been projected onto two of the three human
body’s planes (in particular, the longitudinal and trasversal planes, with the
third one corresponding to the floor plane). The use of these projections is
fundamental to refer every trial to the same system of 3D coordinates. We also
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Table 4. Markers: identifiers and positions

Name Marker position Name Marker position

C7 c7 vertebra LPSIS Right hip joint

LA Left shoulder RGT Right knee joint

RA Right shoulder LGT Left knee joint

REP Right elbow RLE Right ankle joint

LEP Left elbow LLE Left ankle joint

RUL Right wrist joint RCA Right heel joint

LUL Left wrist joint LCA Left heel joint

RASIS Right hip joint RFM Right foot

LASIS Left hip joint LFM Left foot

RPSIS Right hip joint

swept two axes if the patient was to hindered to walk along the main side of
the room hosting the MAL.

2. The absolute xyz coordinates have been transformed into a set of 27 three-
dimensional angles, as shown in Table 5; each angle has been projected on
every plane, as angles represent meaningful information in the classification
of diplegia [7].

4 Classification Algorithm Based on a Multi Layer
Perceptron Network

4.1 MLP Architecture

The base unit of a multi layer perceptron (MLP) network is called perceptron.
Perceptrons have an high degree of similarity with the mammals brain cells, as
they propagate or soften the incoming input from others. Stacking this units
forms a layer, which could also be concatenated to others to obtain a network,
where every layer is fully connected with the previous and the next one. To
model the neuron activity on the incoming signal, a mathematical variable named
weight is used for every connection, plus a bias is introduced to shift every output
if it’s needed. On the layer’s output a non-linear function is then applied to map
the layer’s input to a new domain, which could be the network final output or
the input of the next layer. This relation can be expressed as

y = f(W ◦ x + b) (1)

where x is the layer’s input and the new output y, W and b are the weight
matrix and the biases of the layer, respectively, ◦ is the dot product and f a
continuous and differentiable function.

The initial values of the weight are drawn from a random distribution, which
could be a Gaussian or some more complex models, while the bias are set to a
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Table 5. Absolute xyz collected coordinates have been transformed into 27 three-
dimensional angles, as most of the clinical signs of diplegia in all its forms are heavily
related on angles instead of positions

Marker I Marker II Marker III

LGT LPSIS LLE

LLE LGT LCA

LCA LLE LFM

LEP LA LUL

LEP C7 LUL

LLE LASIS LFM

LA C7 LEP

RGT RPSIS RLE

RLE RGT RCA

RCA RLE RFM

REP RA RUL

REP C7 RUL

RLE RASIS RFM

RA C7 REP

LPSIS LGT RGT

LASIS LGT RGT

LPSIS LLE RLE

C7 LA RA

C7 LEP REP

RPSIS LGT RGT

RASIS LGT RGT

RPSIS LLE RLE

C7 LUL RUL

LASIS C7 LPSIS

RASIS C7 RPSIS

LA LASIS RASIS

RA LASIS RASIS

small value (typically zero). To compare the output of the last network layer,
which have a size equals to the classes number, with the labels, a mapping

yencode = [0 . . .0,1,0 . . .0] (2)

with

{
yencode[i] = 1 if i == class(y)
yencode[i] = 0 otherwise

(3)

called one-hot encoding, is required.
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Table 6. Distribution of patients, trials and sequences over the four classes before and
after data augmentation. The partitioning we adopted for training and test phases is
also shown.

Class Train Test

Patients Trials Patients Trials

0 9 47(94) 4 16

1 36 183 13 83

2 25 174 9 49

3 58 372 20 114

The base architecture of the MLP network we employed is composed by a
single layer containing a number of perceptrons equal to the classes. We then
added other layers to the first one; the number of hidden units included in each
layer was twice that of the previous layer, starting from 32 units contained in
the first additional layer (i.e., in the second layer of the network). To avoid a
potential overfitting, a dropout layer [18] has been also employed; this randomly
turns off some perceptrons during the training set, forcing the network not to
rely on the same weights to produce a specific output.

The network providing the best results is represented in Fig. 1, (its accuracy
scores are given in Sect. 5). Since a probabilistic interpretation of the output
was required, a softmax layer was also used at the bottom of the network and
Adam was used as optimizer [10]. In the following, unless differently stated, the
accuracy metric refers to the single patient’s trial only.

Fig. 1. Architecture of the proposed MLP network.

4.2 Training Phase

Using a part of the total dataset called train set, the MLP follows an iterative
process of two steps. During the first one, called forward propagation, the train
set is fed to the network until it reaches the last layer and the loss score is
computed. In our work we used the categorical cross entropy loss
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L = − 1
N ∗ M

N∑
n=0

M∑
m=0

(yt[n,m] ∗ ln(yp[n,m])) (4)

given the prediction yp[n,m] and the ground truth yt[n,m] for the n-th sample
and the m-th class (M and N denote the overall number of classes and samples,
respectively).

In the second step, called backward propagation, the loss score is used to
update the network weights and the biases, in accordance with the gradient
direction. The general algorithm, known as Stochastic Gradient Descent (SGD),
for updating a weight w is shown in 5

w − α ∗ ∇L

∇w
(5)

where ∇L
∇w is the gradient w.r.t. to w and α is a small constant called learning

rate.
While the SGD is still widely used in the community, several optimized vari-

ants have been proposed in the past years [10].

Fig. 2. Accuracies achieved by different MLP networks on both the training (left) and
test (right); distinct networks are characterized by different numbers of hidden units
in the most populated layer (see the labels of the curves).

5 Results

In Fig. 2 the trends of the accuracies achieved during both train and test phases
for a set of MLP networks are shown. The networks are numbered with the
hidden units of the most populated layer, and have been trained for an average
of 500 epochs on an Nvidia GTX-1060. The network with 256 hidden units on the
top layer has been the best performer, with about 0.603 on the test trials, while
the other score lower results. While the accuracy reported refers to the single
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trial, in Table 7 the class with the top frequency among the patient’s trials is used
as an accuracy meter, where every trial contributes to the final class prediction
of the patient. The Accuracy of the MLP is tested against a baseline obtained
using a Support Vector Machine Classifier [8] with radial basis kernel functions.
While on the classes 0, 1 and 3 the results suggest a validation of the proposed
classification system, the prediction on the class 2 are unreliable even with the
top two scores using the MLP. The reason could lie in the main trait of this form
being a perceptual disturb [7], which of course does not emerge from the motion
data, remaining outside from the network knowledge.

Table 7. Accuracy scores (test set).

Class MLP SVM

Top one Top two Top one Top two

0 0.75 0.75 0.0 0.15

1 0.846 1.0 0.461 0.615

2 0.111 0.333 0.0 0.777

3 0.6 0.9 0.9 0.95

Overall 0.595 0.816 0.537 0.761

The conclusion confirms the existence of the classification in accordance with
the human’s perception, since the classifier performs better on opposite classes
which should have very different traits, as shown in Table 8. Among the other
two classes, the number 2 is the most difficult to be classified, being often con-
fused with the second and the fourth in the top one and top two predictions. In
accordance with the experts in [14] this could be related to some forms of Diple-
gia being partially overlapped and thus having some common traits difficult to
be discerned. The small size of the dataset makes difficult to validate several
aspects of the learning process, such as the presence of overfitting on the train
set.

Table 8. Confusion Matrix of the patients for MLP.

Predicted
3 1 0 0

Ground Truth 0 11 2 0
0 4 1 4
0 7 1 12
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6 Conclusion

In this work we proposed a method to tackle a four class problem using the state
of the art deep learning techniques, which could aid in the development of more
specific treatments for muscular system’s pathologies, such as the Diplegia. We
made use of a MLP (Multilayer Perceptron) on a dateset of 1121 trials from 178
patients, gathered in the last ten years at LAMBDA, Laboratorio Analisi del
Movimento del Bambino Dis-Abile, Azienda Ospedaliera Arcispedale S. Maria
Nuova and University of Modena and Reggio Emilia, Reggio Emilia, Italy. After
a pre-processing step to extract Fourier coefficients of 3D angles motions, we fed
these data to train a MLP able to identify 4 different Diplegia classes. Experimen-
tal results have been encouraging in 3 out of 4 classes. We make a commitment
to release the full anonymized dataset to the machine learning community in
future publications.
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