
Food Ingredients Recognition Through
Multi-label Learning

Marc Bolaños1,2(B), Aina Ferrà1, and Petia Radeva1,2
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Abstract. Automatically constructing a food diary that tracks the
ingredients consumed can help people follow a healthy diet. We tackle the
problem of food ingredients recognition as a multi-label learning prob-
lem. We propose a method for adapting a highly performing state of the
art CNN in order to act as a multi-label predictor for learning recipes
in terms of their list of ingredients. We prove that our model is able
to, given a picture, predict its list of ingredients, even if the recipe cor-
responding to the picture has never been seen by the model. We make
public two new datasets suitable for this purpose. Furthermore, we prove
that a model trained with a high variability of recipes and ingredients
is able to generalize better on new data, and visualize how it specializes
each of its neurons to different ingredients.

1 Introduction

People’s awareness about their nutrition habits is increasing either because they
suffer from some kind of food intolerance; they have mild or severe weight prob-
lems; or they are simply interested in keeping a healthy diet. This increasing
awareness is also being reflected in the technological world. Several applications
exist for manually keeping track of what we eat, but they rarely offer any auto-
matic mechanism for easing the tracking of the nutrition habits [2]. Tools for
automatic food and ingredient recognition could heavily alleviate the problem.

Since the reborn of Convolutional Neural Networks (CNNs), several works
have been proposed to ease the creation of nutrition diaries. The most widely
spread approach is food recognition [8]. These proposals allow to recognize the
type of food present in an image and, consequently, could allow to approximately
guess the ingredients contained and the overall nutritional composition. The
main problem of these approaches is that no dataset covers the high amount of
existent types of dishes worldwide (more than 8,000 according to Wikipedia).

On the other hand, a clear solution for this problem can be achieved if we
formulate the task as an ingredients recognition problem instead [6]. Although
tens of thousands of types of dishes exist, in fact they are composed of a much
smaller number of ingredients, which at the same time define the nutritional
composition of the food. If we formulate the problem from the ingredients recog-
nition perspective, we must consider the difficulty of distinguishing the presence
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of certain ingredients in cooked dishes. Their visual appearance can greatly vary
from one dish to another (e.g. the appearance of the ingredient ‘apple’ in an
‘apple pie’, an ‘apple juice’ or a ‘fresh apple’), and in some cases they can even
be invisible at sight without the proper knowledge of the true composition of
the dish. An additional benefit of approaching the problem from the ingredients
recognition perspective is that, unlike in food recognition, it has the potential
to predict valid outputs on data that has never been seen by the system.

In this paper, we explore the problem of food ingredients recognition from
a multi-label perspective by proposing a model based on CNNs that allows to
discover the ingredients present in an image even if they are not visible to the
naked eye. We present two new datasets for tackling the problem and prove
that our method is capable of generalizing to new data that has never been seen
by the system. Our contributions are four-fold. (1) Propose a model for food
ingredients recognition; (2) Prove that by using a varied dataset of images and
their associated ingredients, the generalization capabilities of the model on never
seen data can be greatly boosted; (3) Delve into the inner layers of the model
for analysing the ingredients specialization of the neurons; and (4) Release two
datasets for ingredients recognition.

This paper is organized as follows: in Sect. 2, we review the state of the art;
in Sect. 3, explain our methodology; in Sect. 4, we present our proposed datasets,
show and analyse the results of the experiments performed, as well as interpret
the predictions; and in Sect. 5, we draw some conclusions.

2 Related Work

Food analysis. Several works have been published on applications related to
automatic food analysis. Some of them proposed food detection models [1]
in order to distinguish when there is food present in a given image. Others
focused on developing food recognition algorithms, either using conventional
hand-crafted features, or powerful deep learning models [8]. Others have applied
food segmentation [11]; use multi-modal data (i.e. images and recipe texts) for
recipe recognition [15]; tags from social networks for food characteristics per-
ception [9]; food localization and recognition in the wild for egocentric vision
analysis [3], etc.

Multi-Label learning. Multi-label learning [13] consists in predicting more
than one output category for each input sample. Thus, the problem of food
ingredients recognition can be treated as a multi-label learning problem. Several
works [14] argued that, when working with CNNs, they have to be reformulated
for dealing with multi-label learning problems. Some multi-label learning works
have already been proposed for restaurant classification. So far, only one paper [6]
has been proposed related to ingredients recognition. Their dataset, composed of
172 food types, was manually labelled considering visible ingredients only, which
limits it to find 3 ingredients on average. Furthermore, they propose a double-
output model for simultaneous food type recognition and multi-label ingredients
recognition. Although, the use of the food type for optimizing the model limits
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its capability of generalization only to seen recipes and food types. This fact
becomes an important handicap in a real-world scenario when dealing with new
recipes. As we demonstrate in Sects. 4.3 and 4.4, unlike [6], our model is able to:
(1) recognize the ingredients appearing in unseen recipes (see Fig. 1b); (2) learn
abstract representations of the ingredients directly from food appearance (see
Fig. 2); and (3) infer invisible ingredients.

Interpreting learning through visualization. Applying visualization tech-
niques is an important aspect in order to interpret what has been learned by
our model. The authors in [17] have focused on proposing new ways of perform-
ing this visualization. At the same time, they have proven that CNNs have the
ability to learn high level representations of the data and even hidden inter-
related information, which can help us when dealing with ingredients that are
apparently invisible in the image.

3 Methodology

Deep multi-ingredients recognition. Most of the top performing CNN archi-
tectures have been originally proposed and intended for the problem of object
recognition. At the same time, they have been proven to be directly applicable to
other related classification tasks and have served as powerful pre-trained models
for achieving state of the art results. In our case, we compared either using the
InceptionV3 [12] or the ResNet50 [7] as the basic architectures for our model.
We pre-trained it on the data from the ILSVRC challenge [10] and modified
the last layer for applying a multi-label classification over the N possible out-
put ingredients. When dealing with classification problems, CNNs typically use
the softmax activation in the last layer. The softmax function allows to obtain
a probability distribution for the input sample x over all possible outputs and
thus, predicts the most probable outcome, ŷx = arg maxyi

P (yi|x).
The softmax activation is usually combined with the categorical cross-entropy

loss function Lc during model optimization, which penalizes the model when the
optimal output value is far away from 1:

Lc = −
∑

x

log(P (ŷx|x)). (1)

In our model, we are dealing with ingredients recognition in a multi-label frame-
work. Therefore, the model must predict for each sample x a set of outputs
represented as a binary vector Ŷx = {ŷ1x, ..., ŷNx }, where N is the number of out-
put labels and each ŷix is either 1 or 0 depending if it is present or not in sample
x. For this reason, instead of softmax, we use a sigmoid activation function:

P (yi|x) =
1

1 − exp−f(x)i
(2)
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which allows to have multiple highly activated outputs. For considering the
binary representation of Ŷx, we chose the binary cross-entropy function Lb [5]:

Lb = −
∑

x

N∑

i

(ŷix · log(P (yi|x)) + (1 − ŷix) · log(1 − P (yi|x))) (3)

which during backpropagation rewards the model when the output values are
close to the target vector Ŷx (i.e. either close to 1 for positive labels or close to
0 for negative labels).

4 Results

In this section, we describe the two datasets proposed for the problem of food
ingredients recognition. Later we describe our experimental setup and at the
end, we present the final results obtained both for ingredients recognition on
known classes as well as recognition results for generalization on samples never
seen by the model.

4.1 Datasets

In this section we describe the datasets proposed for food ingredients recognition
and the already public datasets used.

Food101 [4] is one of the most widely extended datasets for food recognition.
It consists of 101,000 images equally divided in 101 food types.

Ingredients1011 is a dataset for ingredients recognition that we constructed
and make public in this article. It consists of the list of most common ingredients
for each of the 101 types of food contained in the Food101 dataset, making a
total of 446 unique ingredients (9 per recipe on average). The dataset was divided
in training, validation and test splits making sure that the 101 food types were
balanced. We make public the lists of ingredients together with the train/val/test
split applied to the images from the Food101 dataset.

Recipes5k2 is a dataset for ingredients recognition with 4,826 unique recipes
composed of an image and the corresponding list of ingredients. It contains a
total of 3,213 unique ingredients (10 per recipe on average). Each recipe is an
alternative way to prepare one of the 101 food types in Food101. Hence, it
captures at the same time the intra-class variability and inter-class similarity of
cooking recipes. The nearly 50 alternative recipes belonging to each of the 101
classes were divided in train, val and test splits in a balanced way. We make also
public this dataset together with the splits division. A problem when dealing
with the 3,213 raw ingredients is that many of them are sub-classes (e.g. ‘sliced
tomato’ or ‘tomato sauce’) of more general versions of themselves (e.g. ‘tomato’).

1 http://www.ub.edu/cvub/ingredients101/.
2 http://www.ub.edu/cvub/recipes5k/.

http://www.ub.edu/cvub/ingredients101/
http://www.ub.edu/cvub/recipes5k/
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Thus, we propose a simplified version by applying a simple removal of overly-
descriptive particles3 (e.g. ‘sliced’ or ‘sauce’), resulting in 1,013 ingredients used
for additional evaluation (see Sect. 4.3).

We must note the difference between our proposed datasets and the one from
[6]. While we consider any present ingredient in a recipe either visible or not,
the work in [6] only labelled manually the visible ingredients in certain foods.
Hence, a comparison between both works is infeasible.

4.2 Experimental Setup

Our model was implemented in Keras4, using Theano as backend. Next, we detail
the different configurations and tests performed. Random prediction: (base-
line) a set of K labels are generated uniformly distributed among all possible out-
puts. K depends on the average number of labels per recipe in the corresponding
dataset. InceptionV3 + Ingredients101: InceptionV3 model pre-trained on
ImageNet and adapted for multi-label learning. ResNet50 + Ingredients101:
ResNet50 model pre-trained on ImageNet and adapted for multi-label learning.
InceptionV3 + Recipes5k: InceptionV3 model pre-trained on InceptionV3
+ Ingredients101. ResNet50 + Recipes5k: ResNet50 model pre-trained on
ResNet50 + Ingredients101.

4.3 Experimental Results

In Table 1, we show the ingredient recognition results on the Ingredients101
dataset. In Fig. 1a some qualitative results are shown. Both the numerical results
and the qualitative examples prove the high performance of the models in most
of the cases. Note that although a multi-label classification is being applied,
considering that all the samples from a food class share the same set of ingre-
dients, the model is indirectly learning the inherent food classes. Furthermore,
looking at the results on the Recipes5k dataset in Table 2 (top), we can see that
the very same model obtains reasonable results even considering that it was

Table 1. Ingredients recognition results obtained on the dataset Ingredients101. Prec
stands for Precision, Rec for Recall and F1 for F1 score. All measures reported in %.
The best test results are highlighted in boldface.

Validation Test

Prec Rec F1 Prec Rec F1

Random prediction 2.05 2.01 2.03 2.06 2.01 2.04

InceptionV3 + Ingredients101 80.86 72.12 76.24 83.51 76.87 80.06

ResNet50 + Ingredients101 84.80 67.62 75.24 88.11 73.45 80.11

3 https://github.com/altosaar/food2vec.
4 www.keras.io.

https://github.com/altosaar/food2vec
www.keras.io
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(a) Ingredients101 samples.

(b) Recipes5k using the fine-grained
3,213 ingredients (left), and using the
1,013 simplified ingredients (right).

Fig. 1. Our method’s results. TPs in green, FPs in red and FNs in orange. (Color figure
online)

Table 2. Ingredients recognition results on Recipes5k (top) and on Recipes5k simplified
(bottom). Prec stands for Precision, Rec for Recall and F1 for F1 score. All measures
reported in %. Best test results are highlighted in boldface.

Validation Test

Prec Rec F1 Prec Rec F1

Random prediction 0.33 0.32 0.33 0.54 0.53 0.53

InceptionV3 + Ingredients101 23.80 18.24 20.66

ResNet50 + Ingredients101 26.28 16.85 20.54

InceptionV3 + Recipes5k 36.18 20.69 26.32 35.47 21.00 26.38

ResNet50 + Recipes5k 38.41 19.67 26.02 38.93 19.57 26.05

Random prediction 6.27 6.29 6.28 6.14 6.24 6.19

InceptionV3 + Ingredients101 44.01 34.04 38.39

ResNet50 + Ingredients101 47.53 30.91 37.46

InceptionV3 + Recipes5k 56.77 31.40 40.44 55.37 31.52 40.18

ResNet50 + Recipes5k 56.73 28.07 37.56 58.55 28.49 38.33

InceptionV3 + Recipes5k simplified 53.91 42.13 47.30 53.43 42.77 47.51
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not specifically trained on that dataset. Note that only test results are reported
for the models trained on Ingredients101 because we only intend to show its
generalization capabilities on new data.

Comparing the results with the models specifically trained on Recipes5k,
it appears that, as expected, a model trained on a set of samples with high
variability of output labels is more capable of obtaining high results on never
seen recipes. Thus, it is more capable of generalizing on unseen data.

Table 2 (bottom) shows the results on the Recipes5k dataset with a simplified
list of ingredients. Note that for all tests, the list was simplified only during the
evaluation procedure for maintaining the fine-grained recognition capabilities of
the model, with the exception of Inception V3 + Recipes5k simplified, where the
simplified set was also used for training. The simplification of the ingredients
list enhances the capabilities of the model when comparing the results, reaching
more than 40% in the F1 metric and 47.5% also training with them.

Figure 1b shows a comparison of the output of the model either using the fine-
grained or the simplified list of ingredients. Overall, although usually only a single
type of semantically related fine-grained ingredients (e.g. ‘large eggs’, ‘beaten
eggs’ or ‘eggs’) appears at the same time in the ground truth, it seems that the
model is inherently learning an embedding of the ingredients. Therefore, it is
able to understand that some fine-grained ingredients are related and predicts
them at once in the fine-grained version (see waffles example).

Fig. 2. Visualization of neuron activations. Each row is associated to a specific neu-
ron from the network. The images with top activation are shown as well as the top
ingredient activation they have in common. The name of their respective food class is
only for visualization purposes and is displayed in green if the recipe contains the top
ingredient. Otherwise, it is shown in red. (Color figure online)
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4.4 Neuron Representation of Ingredients

When training a CNN model, it is important to understand what it is able to
learn and interpret from the data. To this purpose, we visualized the activations
of certain neurons of the network in order to interpret what is it able to learn.

Figure 2 shows the results of this visualization. As we can see, it appears that
certain neurons of the network are specialized to distinguish specific ingredients.
For example, most images of the 1st and 2nd rows illustrate that the character-
istic shape of a hamburger implies that it will probably contain the ingredients
‘lettuce’ and ‘ketchup’. Also, looking at the ‘granulated sugar’ row, we can see
that the model learns to interpret the characteristic shape of creme brulee and
macarons as containing sugar, although it is not specifically seen in the image.

5 Conclusions and Future Work

Analysing both the quantitative and qualitative results, we can conclude that
the proposed model and the two datasets published offer very promising results
for the multi-label problem of food ingredients recognition. Our proposal allows
to obtain great generalization results on unseen recipes and sets the basis for
applying further, more detailed food analysis methods. As future work, we will
create a hierarchical structure [16] relationship of the existent ingredients and
extend the model to utilize this information.
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