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Abstract. This paper investigates how to exploit human feedback for
interactive object segmentation in videos. In particular, we present an
interactive video object segmentation approach where humans can con-
tribute by either explicitly clicking on objects of interest in videos or
implicitly while looking at video sequences. User feedback is then trans-
lated into a set of spatio-temporal constraints for an energy-based min-
imization problem. We tested the method on standard benchmarking
datasets when using both eye-gaze data and user clicks. The results indi-
cated how our method outperformed existing automated and interactive
methods regardless of the type of human feedback (explicit or implicit),
and that click-based feedback was more reliable than eye-gaze one.

1 Introduction

The recent progress in digital imaging and smartphone technologies, followed by
their relatively low cost and the explosion of social networks, have favoured the
generation and sharing of an impressive amount of visual data content over the
internet (to give an idea, 80% of all consumer Internet traffic in 2019 will be due
to video data1). Millions of videos and images are shared daily on Youtube, Face-
book, Twitter, Flickr, etc., and now represent the primary source of information
and communication.

Nevertheless, this massive visual data can be seen as an added value only
if it is possible to analyze and effectively understand it, thus turning raw data
into meaningful information needed for several applications: from security to
surveillance to ecology monitoring to marketing strategies. This highlights the
importance of automated analysis methods that, as a consequence, are proliferat-
ing. Unfortunately, such methods are not always capable of satisfying application
requirements, especially in terms of expected accuracy. A key role in the under-
standing process may be played by humans, who, on one hand, have an extraor-
dinary ability in performing high-level tasks with unreachable performance for
1 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
ip-ngn-ip-next-generation-network/white paper c11-481360.html.
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machines, and, on the other hand, have limited processing/computation capa-
bilities, making it impossible to analyze visual data at a large scale. Combining
and integrating effectively humans and machines is, therefore, highly desirable,
as also witnessed by the recent research front that aims at involving actively
humans in the machine learning loop [4,16,20–22,25,29,31].

Through this paper we intend to contribute to the research on humans in
the loop for video understanding by attempting to answer the question “what
is the most suitable and effective way to exploit human capabilities in analyz-
ing visual data while keeping efforts as low as possible?”. This question has a
two-fold implication related to human exceptional performance in understanding
the visual world: (a) visual scene understanding in humans involves implicit and
involuntary processing, such as eye movements, that, if exploited by automated
methods, despite being rather noisy information, would allow to reduce signif-
icantly human intervention (given the involuntary nature of the feedback); (b)
explicitly annotating visual data, e.g., by providing per-frame bounding boxes,
is an easy task for humans but extremely tedious and time-consuming, and
requires, at large scale, a collective effort.

To support the answer to this research question, we propose an interactive
method for video object segmentation, which extends existing interactive meth-
ods [2,6,17,26] to work with several interaction modalities converting user feed-
back into spatio-temporal constraints for the segmentation process. However, the
main contribution is the comparison between (a) implicit eye gaze data recorded
through an eye-tracker while subjects look at video sequences, and (b) explicit
user clicks collected while people play a web game for video object segmentation.
We tested our approach on standard video benchmarks and compared the perfor-
mance of the two interaction modalities, beside comparing it to state-of-the-art
automated and interactive video object segmentation methods.

2 Related Work

In this paper we propose a video object segmentation approach posed as a binary
labeling task (i.e., background/foreground segmentation) solved through MRF
energy minimization as in [8,13,19]. The difference between those methods and
ours is that we involve humans in the segmentation loop; therefore, our approach
falls within the interactive video segmentation research area [2,6,17]. Interactive
video object segmentation methods aim at converting human input (often in the
form of drawn lines or strokes) into constraints for spatio-temporal segmentation,
so that manual annotations can be propagated to multiple frames. Our paper
draws inspiration from these methods but extends them in the way humans and
their feedback are included into the video object segmentation process. Indeed,
in our work, user feedback is obtained either explicitly by asking multiple users to
click on video sequences through a web-game or by simply asking single users to
look at video sequences and then recording eye-gaze data through an eye-tracker.

Games have been already employed for collecting human annotation with the
purpose to train and test machine learning methods as interactive segmentation
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or annotation of images [5,15,23,29,30]. Analogously, eye-gaze has been adopted
(a) for identifying the most viewed image regions and their visual descriptors to
be used for image tagging [31] and image indexing/retrieval [3] and (b) as a
tool for human implicit feedback in a video object segmentation scenario with
promising results [27]. As an alternative to eye-gaze, brain activity data recorded
through EEG has been utilized as implicit feedback for supporting interactive
image annotation [16].

Interactive image and video annotation is an active research area both in
multimedia and computer vision, and the existing approaches can be classified
into two main categories: (a) methods requiring explicit user feedback as either
lines and strokes or user clicks [2,5,6,15,17,23,30], and (b) approaches exploit-
ing implicit user feedback (eye gaze or EEG) [3,16,27,31]. However, the main
limitation of these methods is on how user feedback is incorporated into the
interactive annotation process, i.e. how to effectively translate user data into
spatio-temporal constraints for visual data analysis. Furthermore, most of these
methods are thought for image annotation/tagging/segmentation and only few
for video object segmentation and, so far, no one of them has compared the
performance of implicit vs. explicit feedback.

3 The Interactive Video Segmentation Method

Our interactive video segmentation method is based on [26] with the difference
that we make it generic (thus removing some terms which were very application-
specific) and able to work with different interaction modalities including eye-gaze
data. The whole approach relies on (1) a spatial frame segmentation method
which takes into account both visual cues and user input and (b) a spatio-
temporal module able to consider spatio-temporal links between image parts in
consecutive frames.

3.1 Spatial Frame Segmentation

The first step of the algorithm performs image segmentation at the frame level,
which is treated as a binary pixel labeling task (background and foreground). We
start from superpixel segmentation [1] and then group superpixels through min-
imization of an energy cost which enforces spatial and visual coherency between
superpixels as well as including user feedback, as constraints, in the labeling cost.
The underlying idea is that superpixels “selected” by users (either by clicking
on them or by simply looking at them) should be defined as hard constraints in
the energy minimization problem.

Let P = {(x1, y1), . . . , (xn, yn)} be user feedback in the form of (x, y) points
for frame F . We define an energy function over the set of F ’s superpixels S
able to model superpixels “selected” by users, and at the same time, to enforce
spatial constraints on visual smoothness at the frame level. The energy function
for spatial segmentation is based on the assumptions that superpixels identified
by multiple users can be considered as hard constraints for segmentation as well
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as unselected superpixels that are spatially-close and visually-similar to selected
ones; and single superpixels should be ignored as possibly noisy. In particular,
it is defined as:

E1(L) = α1

∑

s∈S

F1(s, ls, P ) +
∑

(s1,s2)∈N (S)

F2(s1, s2, ls1 , ls2) (1)

where L =
{

ls1 , ls2 , . . . , lsnS

}
is the superclick label assignment (lsi

is the binary
superclick label for superpixel si), N (S) is the set of pairs of neighbor superpixels
(that is, having part of boundary in common; we will also use the notation N (s)
to denote the set of neighbors of the single superpixel s), and α1 is a weighing
factor.

F1 takes into account if a superpixel s should be part of an object or not. As
this depends on how many users have selected it and on neighboring superpixels,
it is given by two contributions:

– User feedback fs on superpixel s: the more a superpixel has been selected
by users, the more it is likely to be an object part. The score fs for superpixel
s is:

fs =
|P ∩ s|

max
t∈S

|P ∩ t| (2)

where P ∩s is the set of user data hitting superpixel s and |·| is set cardinality.
The term takes into account how many times superpixel s has been selected
by users.

– Adjacency As: if superpixel s has not been selected by users but it is adjacent
to superpixels which did, it is safe to consider it as foreground as well.
The proximity term As is computed as the fraction of neighbor superpixels

with Isn
> θ, with sn ∈ N (s) and θ = 0.6:

As =
|{sn ∈ N (s) : Isn

> θ}|
|N (s)| (3)

The sum of fs and As (clipped to 1 if necessary) is the likelihood that a
superpixel s is part of the foreground objects, Ps,1 = min (fs + As, 1), while
Ps,0 = 1 − Ps,1 is the probability that s is “not a part” of the foreground. In
the energy function E1, F1 encodes the cost of assigning a certain label to each
superpixel and is the negative log-likelihood of Ps,1 and Ps,0:

F1(s, ls, C) =

{
− log Ps,1 if ls = 1
− log Ps,0 if ls = 0

(4)

F2 is instead the cost of assigning different labels to two adjacent and visually
similar superpixels s1 and s2 and in our case is computed as:

F2(s1, s2, ls1 , ls2) = KL(Hs1 ,Hs2) I(ls1 �= ls2) (5)
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where KL is Kullback-Liebler distance, Hsi
is the RGB color histogram of super-

pixel si, and I is an indicator function which returns 1 if the arguments is true,
and 0 otherwise. The per-frame segmentation is then obtained by minimizing
E1(L) through graph cut; examples are given in Fig. 1 (first row).

Fig. 1. Output examples: (first row) segmentation masks when using only spatial infor-
mation; (second row) segmentation refinement by including temporal constraints. Blue
dots are user input in the form of clicks in the example. (Color figure online)

3.2 Spatio-Temporal Segmentation

The previous step converts user-provided (x, y) points into a set of potential fore-
ground superpixels, but it does not take into account any temporal link between
superpixels in consecutive frames, which, instead, is necessary to cope with per-
frame segmentation errors. To do that we used the idea proposed in [26] which
is based on the assumption that if a set of adjacent superpixels is selected in
consecutive frames, then it is very likely that it is part of an object. Nevertheless,
superpixel extraction is often not consistent in presence of large motion. This
aspect is addressed by including a temporal-based segmentation part, which links
superpixels in consecutive frames according to their visual similarity; and makes
an hypothesis on the position of superpixels in consecutive frames through opti-
cal flow [14]. More specifically, superpixels are linked in consecutive frames by
introducing pairwise potentials on all pairs of superpixels {st, st+ξ} such that st

contains at least one pixel pt whose projection p
vpt

t→t+ξ = pt +vpt
into frame t+ ξ

under the motion vector vpt
(i.e., vpt

is the motion vector computed between
frame t and frame t + ξ for location pt) is part of superpixel st+ξ in frame t + ξ.
Thus, we did not consider only linking between two consecutive frames as in [26]
since user feedback can be faster than clicks as in the case of eyes.
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The energy term encoding spatio-temporal constraints uses (as in the original
work) a batch of 2T +1 consecutive frames from t−T to t+T and is defined as:

E2(L) =
t+T∑

τ=t−T

[
∑

s∈Sτ

F1(s, ls, lτs )

]
+

+
t+T∑

τ=t−T

⎡

⎣
∑

(s1,s2)∈N (Sτ )

F2(s1, s2, ls1 , ls2)

⎤

⎦+

+
∑

(s1,s2)∈NT (∪t+T
τ=t−T Sτ )

F2(s1, s2, ls1 , ls2)

(6)

The first two lines of Eq. 6 are, respectively, a unary potential for each iden-
tified superpixel (first line) and a pairwise potential for each pair of superpixels
belonging to the same frame (second line). The last term (third line), instead,
aims at enforcing temporal smoothing through a pairwise potential defined over
the set NT (∪t+T

τ=t−T Sτ ), i.e. the set of all pairs of superpixels in the 2T +1 “tem-
porally linked” frames, as described above. F1 models whether superpixel s is
more likely to be background or foreground: if s was labeled as foreground in the
frame-segmentation we expect it to be more likely that it is foreground (with a
cost lower than being background), and vice versa. F1 is therefore computed as:

F1(s, ls, lτs ) =

{
γ1 if (ls = 1 ∧ lτs = 1) ∨ (ls = 0 ∧ lτs = 0)
γ2 otherwise

(7)

with γ1 < γ2.
F2 is computes the similarity between “temporally-adjacent” superpixels in

consecutive frames as in Sect. 3.1. E1, E2 are minimized through graph cut. Seg-
mentation examples are shown in the second row of Fig. 1: compared to those of
the first row, these examples highlight how including temporal-based refinement
enhances segmentation performance.

4 Experimental Results

Experiment settings. We tested our method using two user interaction modal-
ities: (1) eye-gaze data recorded by a Tobii T60 eye tracker (with a capture fre-
quency of 60 Hz) while subjects looked at video sequences, and (2) user clicks
collected through a web game on the same set of videos.

The eye-gaze experiments involved sixteen (16) subjects, who were asked to
watch a set of short videos with the goal of following moving objects. For the
click-based experiment we re-adapted (and used the source code released by
the authors) the web-based game proposed in [11], changing only the displayed
video sequences and leaving the underlying gamification strategy unchanged. In
practice, the game consists of several levels, with each level displaying one or
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more video sequences. Twelve (12) users were asked to click on moving objects
and, accordingly, were rewarded with a score reflecting click accuracy.
Datasets and baselines. Performance evaluation and comparison between the
two considered interaction modalities was carried out on 9 video sequences, with
pixelwise annotations, taken from three challenging visual benchmarks for video
object segmentation: SegTrack v2 [12], FBMS-59 [18], and VSB100 [7]. The
selected videos included features such as: camera motion, slow object motion,
object-background similarity, non-rigid deformations and articulated objects.
The comparison between our approach and automated methods was performed
over the Youtube-Objects dataset [24]. The automated video object segmenta-
tion methods were tested using public source code and default parameters. As
for interactive segmentation methods, we did not perform any accuracy compar-
ison since, to the best of our knowledge, all of them require interaction times
not compatible with large scale analysis. For example, labeling 10 video frames
enough to achieve an F1 accuracy of 0.7 took about 50 s with our approach, and
more than 1,000 s with [17].
Collected data. Each of the 12 subjects for the web game experiment spent
approximately 9.5 min playing the game, which resulted in the collection of 40.4
clicks per frame, on average, for a total engagement time of 115 min. Instead,
each eye-gaze experiment took 2 min per subject, and provided on average 35.7
points per frame in 32-min user engagement time. This difference in the amount
of time required to collect similar amounts of data was expected, due to the
higher acquisition rate of the eye-tracker compared to human clicking speed.

Fig. 2. Segmentation output examples. (First two columns) User clicks and (second
two columns) and eye-gaze on sample frames and related output segmentation masks.
(Color figure online)
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Fig. 3. F1 accuracy w.r.t. user feedback points per frame.

Results and discussion. Table 1 reports pixelwise average F1-measure
achieved by our method using different feedback modalities. It is possible to
see how click-based feedback (see ClicksM column in Table 1) outperformed the
eye-gaze–based one; a visual comparison in terms of output segmentation masks
between click and eye-gaze–based interaction is given in Fig. 2.

The primary reason behind the lower performance of the eye-gaze–based
approach lies in the noisy nature of eye movements: eye gaze, indeed, involves
both fixations and saccades with the latter spanning the whole visual scene from
fixation to fixation. Thus, in case of isolated objects it tended to perform fairly
well (fixations and saccades were close) while in case of multiple objects it failed.
Higher performance of the click-based approach was also due to the following:

– In both experiments, top-down saliency was enforced since all participants
were instructed to follow moving objects; however, in the web-game, user
behaviour was driven by game rewards and consequently by competition
among players, which was a strong and effective incentive to click on objects
accurately;

– Since users were allowed to play the game several times, after the first time
they had a prior knowledge on object location. To account for this aspect,
we assessed segmentation accuracy using only the clicks generated by the
12 subjects the first time they played the game. The achieved performance is
shown in column ClicksS of Table 1: it is possible to notice how the comparison
between the click-based approach (ClicksS) and eye-gaze based one was more
balanced, thus indicating that object location prior is a key factor for accurate
results.

We also investigated how the number of user feedback points (either clicks
or eye fixations) affected the segmentation performance. Figure 3 shows how the
F1 measure changed w.r.t. points per frame. When few points were available,
the difference between the two interaction modalities was small, while when
the number of points available became consistent their performance diverged
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significantly. This reinforces our previous claim about the noisy nature of eye-
gaze data especially when dealing with multiple objects; moreover, it confirms
that when users are driven by a proper incentive to carry out a specific task,
performance improves.

Additionally, it can be interesting to see how the proposed method, albeit
more in line with the research on interactive video annotation, compares to state-
of-the-art automated video object segmentation approaches. To do that, we used
the Youtube-Objects dataset (largely employed as a benchmark for video object
segmentation), and compared our approach (using game clicks as data points)
with a selection of recent methods exploiting superpixels for the video object
segmentation, namely, [9,10,18,19,28,32]. The results, in terms of average Pas-
cal Overlap Measure (POM, i.e., intersection over union between output masks
and ground truth segmentation masks) in percentage, are reported in Table 2,
and show that our method outperforms automated video object segmentation
methods. In general, this is not surprising, since it is common that interactive
video annotation tools perform better than automated methods, but, on the
contrary, they are hardly usable in case of large video datasets (e.g., Youtube-
objects). While our method can be seen as an interactive video object segmen-
tation approach, it enables multiple users to co-operate in large scale tasks (for
the web-game, it might suffice to publish it on a social network and make peo-
ple play to collect enough data) reducing the annotation/interaction burden,
which usually lies on the shoulders of few people. Furthermore, the performance
achieved in this work (72.8) was better than the ones in [26] (68.9) with much less
users (12 vs. 63 players). This was due to the removal of several terms including
the assessment of user quality or the assessment of superpixel similarity, and,

Table 1. F-measure scores obtained by the proposed method, using either eye-gaze
data or user-click data. As for user-click we performed two evaluations: (a) exploiting
clicks of first-time-play by users in order to eliminate the bias due to prior knowledge on
object location (column ClicksS), and (b) using all collected clicks (column ClicksM ).

Video Gaze ClicksS ClicksM

animal chase (VSB) 0.62 0.26 0.78

sled dog race (VSB) 0.52 0.53 0.76

tennis (VSB) 0.26 0.57 0.62

cheetah (SegT) 0.67 0.52 0.68

frog (SegT) 0.57 0.57 0.74

monkeydog (SegT) 0.43 0.40 0.64

camel01 (FBMS) 0.65 0.52 0.59

rabbits02 (FBMS) 0.70 0.72 0.89

rabbits04 (FBMS) 0.50 0.76 0.77

Average 0.55 0.54 0.72
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Table 2. POM in percentage for the Youtube-Objects dataset

[18] [28] [9] [32] [19] [10] Ours

Aeroplane 13.7 17.8 73.6 75.8 70.9 86.3 68.4

Bird 12.2 19.8 56.1 60.8 70.6 81.0 64.3

Boat 10.8 22.5 57.8 43.7 42.5 68.6 66.7

Car 23.7 38.3 33.9 71.1 65.2 69.4 72.5

Cat 18.6 23.6 30.5 46.5 52.1 58.9 61.4

Cow 16.3 26.8 41.8 54.6 44.5 68.6 77.2

Dog 18.0 23.7 36.8 55.5 65.3 61.8 76.4

Horse 11.5 14.0 44.3 54.9 53.5 54.0 87.0

Motorbike 10.6 12.5 48.9 42.4 44.2 60.9 80.3

Train 19.6 40.4 39.2 31.4 29.6 66.3 74.1

Average 15.5 23.9 46.3 53.7 53.8 67.6 72.8

provide indications that suitable changes to the segmentation method combined
to increased motivation of subjects leads to better performance.

5 Conclusions

In this paper we presented a general interactive video object segmentation app-
roach able to work with different user interaction modalities. We tested it on
challenging video sequences by employing either eye gaze or user clicks as human
feedback. The conclusions that can be drawn from performance analysis are: (1)
task-driven user clicks allow for accurate segmentation performance; (2) collect-
ing user clicks from multiple users is not enough to yield good performance,
and prior knowledge on object location proved to be an influencing factor, and
(3) eye-gaze user interaction allows for greatly reducing interaction times at the
expenses of segmentation accuracy. In the future, we plan to perform a large-
scale evaluation involving many more users as well as video sequences for a more
accurate analysis of interaction behaviour in order to discovery which visual
descriptors are mainly employed by users and incorporate such features into
automated methods.
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