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Abstract. We describe a defense against zeroizing attacks on indistin-
guishability obfuscation (iO) over the CLT13 multilinear map construc-
tion that only causes an additive blowup in the size of the branching
program. This defense even applies to the most recent extension of the
attack by Coron et al. (PKC 2017), under which a much larger class of
branching programs is vulnerable. To accomplish this, we describe an
attack model for the current attacks on iO over CLT13 by distilling an
essential common component of all previous attacks.

This essential component is a constraint on the function being obfus-
cated. We say the function needs to be input partionable, meaning that
the bits of the function’s input can be partitioned into somewhat inde-
pendent subsets. This notion constitutes an attack model which we show
captures all known attacks on obfuscation over CLT13. We find a way
to thwart these attacks by requiring a “stamp” to be added to the input
of every function. The stamp is a function of the original input and
eliminates the possibility of finding the independent subsets of the input
necessary for a zeroizing attack. We give three different constructions of
such “stamping functions” and prove formally that they each prevent
any input partition.

We also give details on how to instantiate one of the three functions
efficiently in order to secure any branching program against this type
of attack. The technique presented alters any branching program obfus-
cated over CLT13 to be secure against zeroizing attacks with only an
additive blowup of the size of the branching program that is linear in the
input size and security parameter.

We can also apply our defense to a recent extension of annihilation
attacks by Chen et al. (EUROCRYPT 2017) on obfuscation over the
GGH13 multilinear map construction.
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1 Introduction

Indistinguishability obfuscation (iO) has so far relied on multilinear maps for
instantiation (e.g. [GGH+13b]) and viable candidates for such are sparse. On
top of that, the few that exist [GGH13a,CLT13,GGH15] have all been shown
to suffer from significant vulnerabilities. However, not all attacks against these
multilinear maps can be applied to iO. The very particular structure that most
iO candidates induce puts numerous constraints on the way the encoded values
can be combined, thus often not allowing the flexible treatment needed to mount
an attack. Attacks on iO schemes have nonetheless been found for obfuscation
of increasingly general families of functions.

In this paper, we focus on the Coron-Lepoint-Tibouchi (CLT13) multilin-
ear maps [CLT13]. The known attacks over CLT13 are called zeroizing attacks
[CHL+15,CGH+15,CLLT17]. To be carried out, they require multiple zero
encodings that are the result of multiplications of elements that satisfy a certain
structure. Since obfuscations of matrix branching programs only produce zeroes
when evaluated in a very specific manner, setting up such a zeroizing attack on
an obfuscated branching program is rather non-trivial.

Because of this, the first paper applying zeroizing attacks over CLT13 to
iO only showed how to apply the attack to very simple branching programs
[CGH+15], and attacking more realistic targets seemed out of reach of this
technique. However, a very recent work by Coron et al. [CLLT17] introduced
a simple method that can transform a much larger class of branching programs
into ones that have this very specific structure. As such, zeroizing attacks appear
much more threatening to the security of iO over CLT13 than previously thought.

1.1 The Story So Far: Branching Programs and Zeroizing Attacks

This section will serve as a light introduction to the terminology and concepts
at work in this paper.

Branching Programs. The “traditional” method of obfuscation works with
matrix branching programs that encode boolean functions. A (single input)
matrix branching program BP is specified by the following information. It
has a length �, input size n, input function inp : [�] → [n], square matrices
{Ai,b}i∈[�],b∈{0,1}, and bookend vectors A0 and A�+1. An evaluation of the
branching program BP on input x ∈ {0, 1}n is carried out by computing

A0 ×
�∏

i=1

Ai,xinp(i) × A�+1.

If the product is zero then BP(x) = 0 and otherwise, BP(x) = 1.
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Multilinear Maps and Obfuscating Branching Programs. Current
instantiations of iO are based on graded multilinear maps [GGH+13b,BGK+14].
This primitive allows values {ai} to be encoded to {[ai]} in such a manner that
they are hidden. The multilinear map allows evaluation of a very restricted class
of polynomials over these encoded values. Moreover, evaluating a polynomial, p,
over the encodings in this way should only yield one bit of information: whether
or not the result, p({ai}), is zero.

To obfuscate a branching program, we first randomize the matrices and
then encode the entries of the matrix using a multilinear map. (See for exam-
ple [BGK+14] for details on how the matrices are randomized.) The hope is
that the multilinear map will allow evaluations of the branching program but
will not allow other malicious polynomials over the encodings that would violate
indistinguishability. In fact, Barak et al. [BGK+14] show that if zero testing
the result of evaluations over the multilinear map truly only reveals whether or
not the evaluation is zero and does not leak anything else then this scheme is
provably secure.

Zeroizing Attacks on Obfuscated Branching Programs. Unfortunately,
the assumption that zero-testing does not leak any information is unrealistic.
In particular, the zeroizing attacks over the CLT13 multilinear map work by
exploiting the information leaked during successful zero tests to obtain the secret
parameters.

Before discussing the zeroizing attacks on iO, we first consider how the
attacks work over raw encodings. Each of the known zeroizing attacks requires
sets of encodings that satisfy a certain structure. We describe here the structure
required for the simplest attack. This version of the attack was first presented
in [CHL+15]. Namely, to attack a CLT instance of dimension n, an adversary
needs three sets of encodings {Bi}i∈[n], {C0, C1}, and {Dj}j∈[n] such that for
every i, j ∈ [n] and σ ∈ {0, 1}, BiCσDj is a top-level encoding of zero. In other
words, we must be able to vary the choice of encoding in each set independently
of the other choices and always produce an encoding of zero. If an adversary
is able to obtain such sets, then the adversary is able to factor the modulus of
the ciphertext ring, completely breaking the CLT instance. There are several
variants of this attack, some requiring sets of vectors or matrices of encodings
instead of plain encodings. But all have the requirement of obtaining three sets
which we can combine in some way to achieve encodings of zero, and where we
can vary the choice from each set independently of the others. We give more
details about these attacks in Sect. 3.

We show (Theorem 2, Sect. 3) that all currently known zeroizing attacks over
CLT13 to branching program obfuscation give rise to a constraint on the function
being obfuscated, which we call an input partition, described below. In fact,
Theorem 2 shows that this applies not only to all current zeroizing attacks over
CLT13 but to a broader class of zeroizing attacks, as we discuss further below.
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Input Partitioning. Let f : {0, 1}n → {0, 1} be a function to be obfuscated.
We say that there is an input partitioning of f if there exist sets A ⊆ {0, 1}k, B ⊆
{0, 1}l, k + l = n and a permutation π ∈ Sn such that |A| , |B| > 1 and for every
a ∈ A and b ∈ B, f(π(a||b)) = 0, where π acts on the bit-string a||b by permuting
its bits. In words, the function f can be input partitioned if the indices of the
input can be partitioned into two sets such that varying the bits of the partitions
independently within certain configurations will always yield zero as the output.

All current attacks on obfuscation over CLT13 require an input partition,
and we will describe later how there is strong evidence that more generally any
zeroizing attack will also require it. In fact, the current attacks need a partition
into three parts to succeed, but since any input partition into three parts can
be viewed as an input partition into two parts, we treat that more general case
instead.

It is worth noting that zeroizing attacks, in fact, require a stronger condi-
tion on the branching program in order to succeed; the matrices of the obfus-
cated branching program must be organized in a specific way in relation to the
three sets of inputs. But preventing an input partition necessarily prevents this
stronger condition.

1.2 Our Contributions

Our aim in this paper is to provide a robust defense against the known classes
of zeroizing attacks for iO over CLT13 and against potential future extensions
of these attacks. Further, we want the defense to have a minimal impact on the
efficiency of the obfuscated program. In this section, we describe how we achieve
such a defense that only incurs an additive linear blowup in the multilinearity.1

Attack Model. Our defense is built on an attack model based on the input par-
titions described above. Previous authors [CGH+15,CLLT17] have considered
the stronger condition mentioned at the end of the section on input partitioning
above as a requirement for their attacks, but we are the first to consider the
input partition of a boolean function as the basis of a formal attack model.

In Sect. 4.1 we define this attack model formally. Before this, we show in
Sect. 3.3 that the model captures all current zeroizing attacks on obfuscation
over CLT13. We also argue that the model broadly captures any new attack
which uses the general strategy of these attacks.

There is a simple intuition behind why the attack model is sufficient for cap-
turing any zeroizing attack on obfuscation over CLT13. Obfuscation schemes are
designed so that the ways in which an adversary can construct encodings of zero
are severely restricted. Intuitively, the sets of polynomials over the encodings
that an adversary should be allowed to compute should only be honest evalua-
tions of branching programs, or something very close to this. In fact, [BMSZ16]
1 An important practical caveat is that we will work with the variant of CLT13

described in [GLW14], which avoids a vulnerability by increasing the dimension
of the CLT13 instance. We give more details on this in Sect. 5.3.
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prove that the standard obfuscation scheme used in this paper has a property
very close to this intuition, namely that the only successful evaluations of poly-
nomials of the encodings are given by linear combinations of honest evaluations
of the obfuscated program. Recall that zeroizing attacks over CLT13 require
three sets of encodings; the result of [BMSZ16] shows the adversary has very few
degrees of freedom in constructing the three sets other than varying the inputs
to the branching program.

Given this model, we construct a procedure which takes an input partition-
able function f : {0, 1}n → {0, 1} and produces a function g with the same
functionality, but on which no input partitions exist. The existence of an input
partition depends on which inputs cause g to output zero; note that a branch-
ing program is defined to output zero if the result of the multiplications of the
matrices is zero and one if the result is any other value. So we will think of g as
being a function {0, 1}n′ → {0,⊥}.

Input Stamping. The idea behind such a procedure is to append a “stamp”
to the end of the input of the function f . The stamp is designed to not allow
the input as a whole to be input partitioned. More specifically, we will construct
a function h : {0, 1}n → {0, 1}m such that given any f : {0, 1}n → {0, 1} we can
construct a new program g : {0, 1}n+m → {0,⊥} from f such that g(s) outputs
0 if and only if the input is of the form s = x||h(x) and f(x) = 0 and otherwise
outputs ⊥. Note that the original {0, 1}-output of f is recoverable from g as long
as the evaluation took place with the correct stamp appended to the input.

Our main theoretical result is to find a necessary and sufficient condition on h
such that g cannot be input partitioned. If this is the case then we say h secures
f . We state a sufficient condition below as Theorem 1. In Sect. 4.3 we restate
Theorem 1 with both necessary and sufficient conditions after introducing some
preliminaries which are required for the stronger version of the theorem.

Theorem 1 (Weakened). Let h : {0, 1}n → {0, 1}m. Let x1,1, x1,2, x2,1, x2,2 ∈
{0, 1}n be treated as integers. If whenever

x1,1 − x1,2 = x2,1 − x2,2

h(x1,1) − h(x1,2) = h(x2,1) − h(x2,2)

it is the case that x1,1 = x1,2 or x1,1 = x2,1, then h secures all functions
f : {0, 1}n → {0, 1}.

With this theorem, two questions arise: whether is feasible to construct such
an h, and how efficiently we can construct the modified g to be. The second
question is relevant with respect to the work in [AGIS14,BISW17] on improving
the efficiency of obfuscation of branching programs. It is especially relevant to
[BISW17] since this paper uses CLT13 to achieve a significant speedup factor
from previous constructions. Thus, establishing the security of obfuscation over
CLT13 with minimal overhead is pertinent.

With regards to efficiency, the size of the image of h becomes important.
Using an h that has an output size m which is large relative to n will necessarily
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affect the efficiency of the resulting g. In Sect. 4.4 we explore the minimum value
of m necessary in order for h to be secure. We show that m must be at least
linear in terms of n.

Constructions. The first two instantiations we present for h address the ques-
tion of the feasibility of constructing such a function. They are both number-
theoretic and follow from the fact that Theorem1 can be interpreted as a sort
of nonlinearity property. We show that squaring and exponentiation modulo a
large enough prime satisfy this property and thus secure any function f . We
stress that we do not rely on any number-theoretic assumptions in the proofs
that these functions satisfy Theorem 1.

The third instantiation is a combinatorial function and is motivated by the
desire for efficiency. To that end, instead of defining a single function which
is guaranteed to have the property specified above, we define a family of very
simple functions where the probability of a random choice from this family is
very likely to have the property.

We define h as follows. Let k and t be parameters set beforehand. For each
i ∈ [t] and j ∈ [n], choose πi,j,0 and πi,j,1 at random from the set of permutations
acting on k elements. For an input x ∈ {0, 1}n, define

hi(x) = (πi,1,x1 ◦ πi,2,x2 ◦ · · · ◦ πi,n,xn
)(1).

Then h(x) = h1(x)||h2(x)|| . . . ||ht(x).
We give a combinatorial probabilistic argument that with k = O(1) and

t = O(n + λ) the choice of h secures all functions f : {0, 1}n → {0, 1} with
overwhelming probability as a function of λ.

Parallel Initialization. Since this construction for h is defined in terms of per-
mutations and processes the input in the same way that a branching program
does, constructing a branching program that computes such an h and subse-
quently modifying a branching program for f to create a branching program
for the corresponding g is fairly straightforward. While this is already vastly
more efficient than implementing the first two instantiations of h using a matrix
branching program, running the functions hi in sequence would cause a linear
blowup in the size of the branching program. We do much better than this and
achieve a constant blowup factor with the following trick. Unlike the GGH13
multilinear map construction, CLT13 allows for a composite ring size. We use
this fact to evaluate all the hi in parallel. This achieves a constant factor over-
head in the branching program size.2 (This technique was used, for example,
in [AS17,GLSW15], albeit for different purposes.)

Perspectives. We remark that the attacks in [CLLT17] still do not apply to
obfuscations of all branching programs. Specifically, if the branching program
2 In fact, our actual overhead is additive and linear in terms of the input size of f , not

the size of its branching program. See Sect. 5.3 for details.
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is too long compared to the input size then there is a blowup associated with
the transformation in [CLLT17] which becomes infeasible. Also, it is not yet
known how to apply the attack to dual-input branching programs, due to a
similar blowup in complexity. Although this is the case, it is definitely possible
that future work will extend zeroizing attacks to longer branching programs and
dual-input branching programs. Our defense hedges against these possible future
attacks, because it defends against any attack which requires an input partition.

It is noteworthy to contrast this line of work with the recent attacks on iO over
the GGH13 [GGH13a] multilinear maps construction. In [MSZ16] Miles et al.
implement the first known such attacks, which they call annihilating attacks.
A follow-up paper [GMM+16] gives a weakened multilinear map model and
an obfuscation construction in this model which is safe against all annihilating
attacks. We stress that the attacks over CLT13 are not related to these anni-
hilating attacks, which are not known to work over CLT13. However, a recent
paper attacking obfuscation over GGH13 [CGH17], in which the authors extend
annihilating attacks to the original GGHRSW construction of iO, does use an
input partition as part of their attack. They do this as a first step in order
to recover a basis for the ideal which defines the plaintext space. Our defense
applies to this step of their attack.

As a final note, our defense does not operate in a weak multilinear map
model, in contrast to the one defined in [GMM+16]. We leave it as an important
open question to develop such a weak multilinear map model for CLT13.

Organization. In Sect. 3 we discuss the attacks on obfuscation over CLT13 in
more detail. In Sect. 4 we define formally what it means for a function to be
input partitionable, and give a necessary and sufficient condition for any h to
secure a function. We also give our lower bound on the size of the image of h.
Finally, in Sect. 5 we define and prove the correctness of our instantiations of h.

2 Notation

We first introduce some notation for our exposition.

Definition 1. For any positive integer k ∈ N we denote by Zk the set Z/kZ.

Definition 2. Let n ∈ N be a positive integer and v ∈ N
n a vector. We will

denote by Zv the set

Zv1 × Zv2 × · · · × Zvn
.

In this and following sections we will consider functions f that we want
to secure and input stamping functions h. We will consider such functions as
having domains and/or codomains of the form Zv. Note that if we define v =
(2, 2, . . . , 2), then Zv = {0, 1}n, so this is a generalization of binary functions.
We do this because in the instantiations section we will define an h which needs
this generalized input format. Thus we state all theorems using this more general
format to accommodate such instantiations.
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Definition 3. For a positive integer n ∈ N we denote by [n] the set {1, 2, . . . , n}.
Definition 4. For a positive integer t ∈ N, we denote by St the set of permuta-
tions of the set [t].

Definition 5. For two vectors or strings a and b let a||b denote their concate-
nation.

3 Attack Model for Zeroizing Attacks on Obfuscation

In this section, we give a high-level overview of the new attack by Coron, Lee,
Lepoint and Tibouchi [CLLT17]. We start by reviewing the older attacks in
[CHL+15,CGH+15] which this attack is based on.

3.1 CLT13 Zeroizing Attacks

The basic idea behind all the zeroizing attacks over CLT13 is to exploit the spe-
cific structure of the zero-test of CLT13, which differs from the other multilinear
map constructions. CLT13 works over a ring Zx0

∼= ⊕k
i=1 Zpi

where each pi is a
large prime and zero-testing of an encoding works by multiplying the encoding
by a zero-test parameter pzt, checking that the result is “small” in Zx0 . The
simplest version of the attack adheres to the following outline: the adversary
finds three sets of CLT13 encodings {ai}i∈[n], {b0, b1}, and {cj}j∈[n] such that
for every i, j ∈ [n] and σ ∈ {0, 1}, aibσcj is a top-level encoding of zero. Now,
define the matrices Wσ, σ ∈ {0, 1} by

Wσ[i, j] = pztaibσcj

where Wσ[i, j] denotes the entry of W in the ith row and jth column. Since
each Wσ is an outer product of elements of Zx0 it can never be full-rank over
Zx0 . A key point in the zeroizing attacks, however, is that the way the zero-
test works, the matrix Wσ will be invertible over Q when the right encodings
{ai}i∈[n], {b0, b1}, and {cj}j∈[n] are chosen. Write bσ as its decomposition in
Zx0 by the Chinese Remainder Theorem, bσ = (bσ,1, . . . , bσ,k), where for each i,
bσ,i ≡ bσ (mod pi). Then computing W0W

−1
1 and finding the eigenvalues (over

the rationals), one obtains the rational ratios b0,i/b1,i for each i. This leads to a
factorization of x0.

More general attacks allow that the encodings {ai}i∈[n], {b0, b1}, and
{cj}j∈[n] be replaced with matrices of encodings {Ai}i∈[n], {B0, B1}, {Cj}j∈[n] ∈
Z

d×d
x0

together with vectors s ∈ Z
d×1
x0

, t ∈ Z
1×d
x0

. In this case it is required that
for every i, j ∈ [n], σ ∈ {0, 1}, s × Ai × Bσ × Cj × t is an encoding of zero and
the matrices W0,W1 are defined by

Wσ[i, j] = pzt(s × Ai × Bσ × Cj × t).

We again require that W1 is invertible. Write Bσ as its decomposition in Zx0

by the Chinese Remainder Theorem Bσ = (Bσ,1, . . . , Bσ,k) where each Bσ,i is a
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matrix. Analyzing the characteristic polynomial of W0W
−1
1 now yields the char-

acteristic polynomials of B0,iB
−1
1,i for every i. This again leads to a factorization

of x0.
We refer to [CGH+15] for further details.

3.2 Zeroizing Attacks on Obfuscation over CLT13

All known attacks on obfuscation over CLT13 have proceeded in a very similar
manner to the method just described: since the evaluation of a branching pro-
gram is a product of matrices over encodings in a multilinear map, they divide
the steps of the branching program into three parts corresponding to the sets of
encodings above such that these three parts can be varied independently of the
others.

To see what we mean by this, let

M(x) = M̂0 ×
r∏

i=1

M̂i,xinp(i) × M̂r+1, x ∈ {0, 1}t

be an obfuscation of a matrix branching program. We try to find Bx = M̂0 ×∏a
i=1 M̂i,xinp(i) , Cx =

∏b
i=a+1 M̂i,xinp(i) , and Dx =

∏r
i=b+1 M̂i,xinp(i) × Mi,r+1 such

that we can partition the input bits as B ·∪C ·∪D = [t] and the value of Bx, Cx, and
Dx rely only on B, C, and D, respectively. Write M(bcd) to mean the evaluation
of M where b specifies the bits with positions in B, and with c, d likewise with
C,D. We further try to find sets of bit strings B,C ,D where B,D are large and
C is at least of size two and for all b ∈ B, c ∈ C , d ∈ D , M(bcd) = 0. If we can
do all this, then the corresponding products of matrices form products of zero
which decompose in a similar manner to the products of encodings used for the
previous attack, and can similarly be used to mount an attack on the CLT13
instance used.

The problem with using this attack directly is that only the very simplest
of branching programs can be decomposed in this way. The three pieces of the
branching program Bx, Cx and Dx which correspond to the three sets of encod-
ings in the zeroizing attack must be consecutively arranged in the branching
program. In particular, this rules out attacks on any branching program that
makes several passes over its input.

The modified attack in [CLLT17] overcomes this limitation with a matrix
identity which allows a rearranging of the matrix product corresponding to a
branching program execution. The identity is as follows:

vec(A · B · C) = (CT ⊗ A) · vec(B),

where vec is the function sending a matrix D = [d1,d2, . . . ,dn] for column
vectors di to the vector
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vec(D) =

⎡

⎢⎢⎢⎣

d1

d2

...
dn

⎤

⎥⎥⎥⎦ .

Using this identity, [CLLT17] shows how to attack a branching program with
input function inp(i) = min(i, 2t + 1 − i) for 1 ≤ i ≤ 2t + 1. Note that any
branching program with this function does not satisfy the property above which
was required for the earlier CLT13 attacks, since every input bit except for
the t-th bit controls two nonconsecutive positions in the branching program.
This input function was originally used in the branching programs which were
attacked in [MSZ16]. We can write such a program evalution as

A(x) = B(x)C(x)D(x)C ′(x)B′(x) × pzt (mod x0)

where B(x) and B′(x) are both controlled by the same inputs, and likewise for
C(x) and C ′(x). [CLLT17] show that this can be rewritten as

(B′(x)T ⊗ B(x)) × (C ′(x)T ⊗ C(x)) × vec(D(x)) × pzt (mod x0)

where now the three sets of inputs control consecutive pieces of the product.
They then show how to use a modification of the original attack on this product,
factoring x0.

3.3 Attack Model

To defend against zeroizing attacks as described above and other attacks follow-
ing a similar tangent, we distil an attack model. The model we will be employing
is fairly general and introduces the notion of an input partition, which will be
formally defined in the following section. We here bring an informal version of
the definition. Note that this definition only deals with functions with binary
strings as input.

Definition 6 (Input Partition – Informal). Let f : {0, 1}n → {0,⊥} be a
function. An input partition for f is a tuple

(σ ∈ Sn; a1, a2 ∈ {0, 1}n1 ; c1, c2 ∈ {0, 1}n2)

such that n1 + n2 = n and for every choice of i, j ∈ {1, 2},

f(σ(ai||cj)) = 0,

where σ permutes the string ai||cj by permuting its indices.

Intuitively, the above definition describes that the input bits of the function f
can be partitioned into two parts that can be varied independently while f still
evaluates to 0. In the following we will demonstrate that the currently known
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zeroizing attacks against obfuscation and the most natural derivatives of such
all require an input partition of the obfuscated function to exist.

Now, suppose that we were given an obfuscated branching program

M(x) = M̂0 ×
r∏

i=1

M̂i,xinp(i) × M̂r+1, x ∈ {0, 1}t

as above, which we wish to use the technique of zeroizing attacks against. We
will think of the entries of the matrices M̂0, {M̂i,b}i∈[r], M̂r+1 as indeterminates
since they are given to us as encoded values. Thus, an encoding from one of the
matrices will uniquely identify that matrix. We need to find the partitioned set of
encodings which is necessary to perform a zeroizing attack using the encodings of
the branching program. We elaborate as follows. We are given CLT13 encodings
for each element of the matrices M̂i,b and the vectors M̂0 and M̂r+1. We need
to combine these in some way to obtain encodings as

i , b
s
σ, cs

j indexed by i, j ∈
[n], σ ∈ {0, 1}, and s ∈ I for an index set I such that for every choice of i, j, σ,∑

s∈I as
i b

s
σcs

j is an encoding of zero. Note that the matrix products of the more
general attack can also be written out in this manner.

In every known zeroizing attack against an obfuscated program M , the zeroiz-
ing attack employed is such that

∑
s∈I as

i b
s
σcs

j is an evaluation of M at a point
xi,σ,j ∈ {0, 1}n. Specifically, the index set I and the as

i , b
s
σ, cs

j are such that the
as

i , b
s
σ, cs

j correspond to entries in the Mi,b of the branching program and

M(xi,σ,j) = M̂0 ×
r∏

l=1

M̂l,xi,σ,j
inp(l)

× M̂r+1 =
∑

s∈I

as
i b

s
σcs

j .

This is even the case with the new attacks in [CLLT17]; they show that each
evaluation can be conceptually rewritten as some other product, but they still
use plain evaluations of a branching program.

Setting each element in the zeroizing attack matrix to be a branching pro-
gram evaluation is obviously the most natural way to try to apply zeroizing
attacks to obfuscations of branching programs, and there is strong evidence
that it is the only way. This is because [BMSZ16] show that given an obfus-
cated branching program encoded in a multilinear map the only way to obtain
a top-level zero is by taking a linear combination of honest branching program
evaluations over inputs that evaluate to zero. In other words, for any zeroizing
attack {as

i }i,s, {bs
σ}σ,s, {cs

j}j,s, i, j ∈ [n], σ ∈ {0, 1}, s ∈ I, we have that for all
i, j, σ,

∑

s∈I

αsa
s
i b

s
σcs

j =
∑

x∈χi,σ,j

αxM(x)

This is nearly the condition in Theorem2. In all current attacks, in fact, only
a single M(x) is computed for each i, σ, j, and so we restrict our analysis to this
setting.
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We denote by fx the zero-tested encoding pzt · M(x). In our analysis, we
make the following simplifying assumptions about the encodings of a zeroizing
attack. We stress that these assumptions are in line with every known zeroizing
attack on obfuscation.

Assumption 1: Suppose that
∑

s∈I as
i b

s
σcs

j = M(x) and define the set

E = {d | ∃i such that d occurs in M̂i,xinp(i)}.

We assume that for every s ∈ I, as
i , b

s
σ, and cs

j is a product of encodings
from E .

Assumption 2: The sum
∑

s∈I as
i b

s
σcs

j is equal to the evaluation of M on a
single input x.

We now show that all zeroizing attacks which follow this pattern must yield
an input partition in the function being obfuscated, which constitutes a strong
justification for our model’s usefulness.

Theorem 2. Let a valid zeroizing attack against an obfuscated program M using
the CLT13 encodings

{as
i }i,s, {bs

σ}σ,s, {cs
j}j,s, i, j ∈ [n], σ ∈ {0, 1}, s ∈ I

be given. Assume that the zeroizing attack satisfies Assumptions 1 and 2 and that
for a family of inputs {xi,σ,j},

∑

s∈I

as
i b

s
σcs

j = M(xi,σ,j)

Then there must exist an input partition for the function encoded by the branch-
ing program.

Proof. For each encoding d of the obfuscated branching program M , define the
origin of di as or(d) = (i, b) where Mi,b is the matrix in which d occurs. For a

product
∏k

i=1 di of encodings, denote by input
(∏k

i=1 di

)
the set

input

(
k∏

i=1

di

)
=

k⋃

i=1

{(inp(i), b) | or(di) = (i, b)}.

In words, considering
∏k

i=1 di as part of an evaluation of the obfuscated branch-

ing program on some input x, input
(∏k

i=1 di

)
specifies which bits of x are

determined to be what by the product. I.e. if (i, b) ∈ input
(∏k

i=1 di

)
then

somewhere in the (partial) evaluation of the branching program, xi = b was
used to determine the choice of matrix.



254 R. Fernando et al.

Now, assume for contradiction that we have a valid zeroizing attack as above
for an obfuscated program M that has no input partition. We have that for every
i, j ∈ [n], σ ∈ {0, 1},

∑

s∈I

as
i b

s
σcs

j = M(xi,σ,j).

Since every monomial as
i b

s
σcs

j must produce a top-level encoding and because of
Assumption 1,

input(as
i ) ∪ input(bs

σ) ∪ input(cs
j) = {(k, xi,σ,j

k ) | k ∈ [t]}
Define the sets

A = {input(as
i ) | i ∈ [n], s ∈ I},

B = {input(bs
σ) | σ ∈ {0, 1}, s ∈ I},

C = {input(cs
j) | j ∈ [n], s ∈ I}.

We say that A (resp. B, C) contains a switch of input if there exists k ∈ [t]
such that {(k, 0), (k, 1)} ∈ A (resp. {(k, 0), (k, 1)} ∈ B, {(k, 0), (k, 1)} ∈ C). In
that case we say that k is a bit position of A that switches. If A contains a
switch of input, {(k, 0), (k, 1)} ∈ A, it means that there exists i1, i2 ∈ [n] such
that xi1,σ,j and xi2,σ,j differ in bit k. Note that since {(k, xi,σ,j

k ) | k ∈ [t]} never
contains a switch of input, it must be the case that B ∩ {(k, 0), (k, 1)} = ∅ and
C ∩ {(k, 0), (k, 1)} = ∅ as for every s,

input(bs
σ) ∪ input(cs

j) ⊆ {(k, xi1,σ,j
k ) | k ∈ [t]}

input(bs
σ) ∪ input(cs

j) ⊆ {(k, xi2,σ,j
k ) | k ∈ [t]}

and the two sets on the right of the inclusions differ in bit k while the two sets
on the left of the inclusions are the same.

Assume for contradiction that any two of A, B, C contain a switch of input
and assume without loss of generality that it is A and B. Let k1, . . . , km1 be
the bit positions of A that switch and l1, . . . , lm2 be the bit positions of B
that switch. Then by the above argument, there is no pair (ks, b) contained
in B ∪ C and no pair (ls, b) contained in A ∪ C. Let i1, i2 be given such that
xi1,σ,j and xi2,σ,j differ in some bits and similarly let j1, j2 be such that xi,σ,j1

and xi,σ,j2 differ in some bits. Then there is an input partition given by the
xi1,σ,j1 , xi1,σ,j2 , xi2,σ,j1 , xi2,σ,j2 . To see that this is an input partition, note that
xi1,σ,j1 and xi1,σ,j2 differ in the same bit positions as xi2,σ,j1 and xi2,σ,j2 and
that xi1,σ,j1 and xi2,σ,j1 differ in the same bit positions as xi1,σ,j2 and xi2,σ,j2 . In
the first case, these bit positions are contained in the set {l1, . . . , lm2} and in the
second case in the set {k1, . . . , km1}. This is a contradiction since we assumed
that no input partition existed for the obfuscated function.

Suppose instead that there are no two of A, B, C that contain a switch
of input. Recall from Sect. 3.1 that for a zeroizing attack to be successful, the
matrix W1 must be invertible and further, W0W

−1
1 must yield information about
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bs
σ encodings. If B does not contain an input switch then xi,σ,j does not depend

on σ and for the zeroizing attack, we construct the matrices

W0 = pzt

⎛

⎜⎝
M(x1,0,1) · · · M(x1,0,n)

...
...

M(xn,0,1) · · · M(xn,0,n)

⎞

⎟⎠ = pzt

⎛

⎜⎝
M(x1,1,1) · · · M(x1,1,n)

...
...

M(xn,1,1) · · · M(xn,1,n)

⎞

⎟⎠ = W1.

Thus, W0 = W1 and we get nothing out of computing W0W
−1
1 . If instead neither

A nor C contain an input switch then xi,σ,j depends on neither i nor j. In that
case we get the matrices

W0 = pzt

⎛

⎜⎝
M(x1,0,1) · · · M(x1,0,n)

...
...

M(xn,0,1) · · · M(xn,0,n)

⎞

⎟⎠ =

⎛

⎜⎝
fx1,0,1 · · · fx1,0,1

...
...

fx1,0,1 · · · fx1,0,1

⎞

⎟⎠

W1 = pzt

⎛

⎜⎝
M(x1,1,1) · · · M(x1,1,n)

...
...

M(xn,1,1) · · · M(xn,1,n)

⎞

⎟⎠ =

⎛

⎜⎝
fx1,1,1 · · · fx1,1,1

...
...

fx1,1,1 · · · fx1,1,1

⎞

⎟⎠ .

These two matrices both have rank 1 and are thus not invertible. Therefore, a
zeroizing attack cannot be carried out, a contradiction. ��

4 Securing Functions Against Partition Attacks

4.1 Input Partition Attacks

In this section, we define formally the notion of an input partition attack. We
also define what it means for a function to be hard or impossible to partition.
Since in this section we only are concerned with whether a function outputs zero
or not, we consider functions with codomain {0,⊥}, where ⊥ represents any
non-zero branching program output.

Definition 7 (Input Partition). Let v ∈ N
t be a vector and f : Zv → {0,⊥}

be a function. An input partition for f of degree k is a tuple

Ik
f =

(
σ ∈ St, {ai}i∈[k] ⊆ Zu1 , {cj}j∈[k] ⊆ Zu2

)

satisfying ai �= aj and ci �= cj for all i, j ∈ [k] with i �= j and σ(u1||u2) = v
such that for all i, j ∈ [k],

f(σ(ai||cj)) = 0.

Definition 8 (Input Partition Attack). For each t ∈ N let vt ∈ N
t be a

vector, Ft be a family of functions f : Zvt
→ {0,⊥}, and let F = {Ft}t∈N. We

say that a PPT adversary A performs an input partition attack of degree k on
F if for a non-negligable function ε,

Pr
w,f←Ft

[A(f) = Ik
f is an input partition of f of degree k

]
> ε(t),

where the probability is taken over the randomness w of A and a uniform choice
of f from Ft.
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Turning the above definition around, we can ensure security against input
partition attacks if the function we obfuscate satisfies the following.

Definition 9 (Input Partition Resistance). For each t ∈ N let vt ∈ N
t be

a vector, Ft be a family of functions f : Zvt
→ {0,⊥}, and let F = {Ft}t∈N.

We say that F is input partition resistant for degree k if no PPT adversary
successfully performs an input partition attack of degree k on F .

A stronger version of this is for a function to simply not admit any input
partitions which would clearly make attacks requiring a partition of the input
impossible.

Definition 10 (Input Unpartitionable Function). Let v ∈ N
t be a vector

and f : Zv → {0,⊥} be a function. We say that f is input unpartitionable
for degree k if it does not admit an input partition of degree k. If f is input
unpartitionable for degree 2, we simply say that it is input unpartitionable.

4.2 Securing Functions

Now that we have defined the type of attack we aim to defend against, we
introduce the input “stamping” function h and define what it means for h to
secure a function f .

Definition 11 (Securing a Function). Let v1 ∈ N
t1 ,v2 ∈ N

t2 be vectors and
write v = v1||v2. Let f : Zv1 → {0, 1} and h : Zv1 → Zv2 be functions and
construct a function g : Zv → {0,⊥} as follows:

g(a||b) =

{
f(a), h(a) = b

⊥, h(a) �= b.

We say that h completely secures f if g is input unpartitionable.

A slightly less strict definition is the following which defines what it means
for a function family to statistically secure a function.

Definition 12 (Statistically Securing a Function). Let v ∈ N
t be a vector,

f be a function f : Zv → {0, 1}, and H be a collection H = {Hλ}λ∈N of function
families such that Hλ is a family of functions h : Zv → Zuλ

for some uλ ∈ N
kλ .

We say that H statistically secures f if for some negligible function ε and for all
λ ∈ N,

Pr
h

$←Hλ

[h completely secures f ] > 1 − ε(λ),

where h is sampled uniformly from Hλ.
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4.3 Necessary and Sufficient Conditions

In this section, we present and prove the necessary and sufficient condition on a
function h in order for it to secure every function f . First, we give some useful
definitions.

Definition 13. Let k ∈ N be a positive integer and define the equivalence rela-
tion ∼ on Zk ×Zk as follows. Two elements (a, b), (c, d) ∈ Zk ×Zk are equivalent
under ∼ if and only if either (a, b) = (c, d) or a = b and c = d. We denote by
Zk the set

Zk = Zk × Zk/∼.

For a vector v ∈ N
t we write Zv for the set Zv1 × Zv2 × · · · × Zvt

.

Definition 14. Let v ∈ N
t be a vector. Define an operation ∗ : Zv × Zv → Zv

as follows. For two elements (a1, . . . , at), (b1, . . . , bt) ∈ Zv,

(a1, . . . , at) ∗ (b1, . . . , bt) = ((a1, b1), . . . , (at, bt)) ∈ Zv.

The operation ∗ is essentially a projection of two vectors a, b ∈ Zv into Zv.
We now give the characterization.

Definition 15 (Safe Function). Let v1 ∈ N
t1 ,v2 ∈ N

t2 be vectors. A function
h : Zv1 → Zv2 is safe if for every x1,1, x1,2, x2,1, x2,2 ∈ Zv1 it is the case that if
both of the following hold:

x1,1 ∗ x1,2 = x2,1 ∗ x2,2

h(x1,1) ∗ h(x1,2) = h(x2,1) ∗ h(x2,2),

then x1,1 = x1,2 or x1,1 = x2,1.

Theorem 1. Let v1 ∈ N
t1 ,v2 ∈ N

t2 be vectors. The function h : Zv1 → Zv2

completely secures every function f : Zv1 → {0, 1} if and only if it is safe.

In order to prove Theorem 1 we first state and prove two lemmas.

Lemma 1. Let v1 ∈ N
t1 and v2 ∈ N

t2 be vectors and σ ∈ St1+t2 . Let a1, a2 ∈
Zv1 , c1, c2 ∈ Zv2 , and

{r1, . . . , rk} = T ⊆ [t1 + t2], r1 < r2 < · · · < rk.

Finally, define a function pT such that for x ∈ Zv1||v2 , pT (x) = xr1xr2 . . . xrk
.

Then

pT (σ(a1||c1)) ∗ pT (σ(a2||c1)) = pT (σ(a1||c2)) ∗ pT (σ(a2||c2))
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Proof. First, note that this lemma holds in general if and only if it holds for
T = [t1 + t2]. So we will simply show that

σ(a1||c1) ∗ σ(a2||c1) = σ(a1||c2) ∗ σ(a2||c2)
which is equivalent to showing that

(a1||c1) ∗ (a2||c1) = (a1||c2) ∗ (a2||c2).
However, this is trivial from the definition of the operation ∗ and the conclusion
follows. ��
Lemma 2. Let v ∈ N

t be a vector and let x1,1, x1,2, x2,1, x2,2 ∈ Zv be given
satisfying x1,1 �= x1,2 and x1,1 �= x2,1 and

x1,1 ∗ x1,2 = x2,1 ∗ x2,2.

Then there exist

σ ∈ St, a1, a2 ∈ Zv1 , c1, c2 ∈ Zv2

with a1 �= a2, c1 �= c2, and σ(v1||v2) = v such that for every i, j ∈ {1, 2},
σ(ai||cj) = xi,j

Proof. Let S be the set of indices j ∈ [t] such that xj
1,1 = xj

1,2 and let D be the
set of indices j ∈ [t] such that xj

1,1 �= xj
1,2. It is clear that S and D partition

the set of indices [t]. Since x1,1 ∗ x1,2 = x2,1 ∗ x2,2, we must have the following
relations:

∀j ∈ S : xj
1,1 = xj

1,2 and xj
2,1 = xj

2,2 (1)

∀j ∈ D : xj
1,1 = xj

2,1 �= xj
1,2 = xj

2,2 (2)

Note that because x1,1 �= x1,2, D must be non-empty. S must also be empty,
otherwise x1,1 ∗ x1,2 = x2,1 ∗ x2,2 would imply that x1,1 = x2,1. So there must
also exist an index r ∈ S such that xr

1,1 = xr
1,2 �= xr

2,1 = xr
2,2.

Now, enumerating S and D as S = {m1, . . . , mk} and D = {n1, . . . , nl} with
k + l = t, we set

ai = xm1
i,1 xm2

i,1 . . . xmk
i,1 = xm1

i,2 xm2
i,2 . . . xmk

i,2

cj = xn1
1,jx

n2
1,j . . . xnk

1,j = xn1
2,jx

n2
2,j . . . xnk

2,j ,

for i, j ∈ {1, 2} where the equalities to the right follow from (1) and (2), a1 �= a2

because of the existence of r as above, and c1 �= c2 from the definition of D.
Letting σ ∈ St be the permutation such that

σ(m1 m2 . . . mk n1 n2 . . . nl) = 1 2 . . . t,

we find that σ(ai||cj) = xi,j for every i, j ∈ {1, 2} and we are done. ��
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Proof (Proof of Theorem 1). Suppose h completely secures every function f and
assume for contradiction that there exist x1,1, x1,2, x2,1, x2,2 ∈ Zv1 with x1,1 �=
x1,2 and x1,1 �= x2,1 such that

x1,1 ∗ x1,2 = x2,1 ∗ x2,2

h(x1,1) ∗ h(x1,2) = h(x2,1) ∗ h(x2,2).

Let f be the function satisfying f(x) = 0 for every x ∈ Zv1 and consider the
function

g(a||b) =

{
f(a), h(a) = b

⊥, h(a) �= b.

We clearly have

(x1,1 || h(x1,1)) ∗ (x1,2 || h(x1,2)) = (x2,1 || h(x2,1)) ∗ (x2,2 || h(x2,2))

and thus, by Lemma 2 there exist

σ ∈ St1+t2 , a1, a2 ∈ Zu1 c1, c2 ∈ Zu2

with a1 �= a2, c1 �= c2, and σ(u1||u2) = v1||v2 such that for every i, j ∈ {1, 2},

σ(ai||cj) = xi,j ||h(xi,j).

However, then g(σ(ai||cj)) = 0 for every i, j ∈ {1, 2} which is a contradiction
since g would be input unpartitionable if h completely secured the function f .

Conversely, suppose h is safe and let f : Zv1 → {0, 1} be arbitrary. Define

g(a||b) =

{
f(a), h(a) = b

⊥, h(a) �= b.

and assume for contradiction that there exists an input partition for g of degree
two,

I2
g =

(
σ ∈ St1+t2 , {ai}i∈[k] ⊆ Zu1 , {cj}j∈[k] ⊆ Zu2

)
.

For each i, j ∈ {1, 2}, write σ(ai||cj) = xi,jyi,j with xi,j ∈ Zv1 and yi,j ∈ Zv2

and observe that then h(xi,j) = yi,j . Furthermore, we have

x1,1 ∗ x1,2 = x2,1 ∗ x2,2

y1,1 ∗ y1,2 = y2,1 ∗ y2,2.

by Lemma 1. Since h(xi,j) = yi,j it follows directly from the condition on h that
either x1,1 = x1,2 or x1,1 = x2,1. The two cases are symmetric, so assume without
loss of generality that x1,1 = x1,2. Then y1,1 = y1,2 and we get σ(a1||c1) =
σ(a1||c2). A contradiction as we required c1 �= c2. ��
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4.4 Lower Bound on the Output Size of Safe Functions

An implementation of a safe function h to secure a function f by constructing
the function g of Definition 11 results in an increase in the input size of f and
further this extra input must be checked against the output of h. In the context
of matrix branching programs, the check of the extra input requires a pass over
the input, adding more matrices, which when initialized over multilinear maps is
rather costly. Thus, knowledge about the minimal output size of a safe function
is helpful in determining the costs of securing a function. In this section, we show
that this output size is at least linear in the input size of f .

Theorem 3. Let v1 = (v1
1 , v

2
1 , . . . , v

t1
1 ) ∈ N

t1 and v2 = (v1
2 , v

2
2 , . . . , v

t2
2 ) ∈ N

t2

be vectors and let h : Zv1 → Zv2 be a safe function. If k is such that vk
1 =

min1≤i≤t1(v
i
1) then

t1∏

1≤i≤t1
i�=k

vi
1 ≤

t2∏

i=1

(vi
2(v

i
2 − 1) + 1).

Proof. Assume without loss of generality that k = 1. Recall that the elements of
Zvi

1
are (a, b), a �= b for a, b ∈ Zvi

1
together with the single element consisting of

the ∼-equivalence class {(b, b) | b ∈ Zvi
1
} that we denote by (a, a). Now, consider

the vector

y = ((b, c), (a, a), (a, a), . . . , (a, a)) ∈ Zv1

with b �= c and let T = {(x1, x2) ∈ (Zv1)
2 | x1 ∗ x2 = y}. We have |T | =

∏t1
i=2 vi

1

since for the first index there is only the choice x1
1 = b and x2

2 = c and for index
i > 1 there are vi

1 choices for xi
1 = xi

2. Now, define the function t : T → Zv2 by
t(x1, x2) = h(x1)∗h(x2). By the definition of a safe function, t must be injective.
It follows that

t1∏

i=2

vi
1 = |T | ≤ |Zv2 | =

t2∏

i=1

(vi
2(v

i
2 − 1) + 1).

��
Corollary 1. Let h : {0, 1}t1 → [k]t2 be a safe function. Then

t1 − 1
log2(k(k − 1) + 1)

≤ t2.

Proof. By Theorem 3, we have

2t1−1 ≤ (k(k − 1) + 1)t2 .

Taking the logarithm on both sides of the equation yields the conclusion. ��
We will see in the instantiations of safe functions that while we do not achieve

an optimal construction, all our constructions have output size linear in the
input size of the original function and with fairly small coefficients, so they are
asymptotically optimal.
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5 Instantiations

We now present three instantations for h. We first give two number theoretic
functions which secure any function f , and then we give a combinatorial function
that statistically secures any function f .

5.1 Number Theoretical Functions

By the necessary and sufficient condition of Theorem1 and the definition of
a safe function, it seems that a function will secure every other function if it
is somewhat non-linear everywhere. This is captured in the following corollary,
letting us work with functions over the integers.

Corollary 2. Suppose the function h : {0, 1}n → {0, 1}m satisfies that whenever
x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n satisfy the relations

x1,1 − x1,2 = x2,1 − x2,2

h(x1,1) − h(x1,2) = h(x2,1) − h(x2,2).

where we consider each term as an integer xi,j ∈ [2n − 1] or h(xi,j) ∈ [2m − 1]
then either x1,1 = x1,2 or x1,1 = x2,1. Then h completely secures every function
f : {0, 1}n → {0,⊥}.
Proof. This follows immediately from Theorem 1 since x1,1 ∗ x1,2 = x2,1 ∗ x2,2

implies x1,1 − x1,2 = x2,1 − x2,2 as integers. ��
Intuitively, many functions we know and love would satisfy this as long as

they have sufficient non-linearity. Here we list two examples. In terms of output
size, note that these functions both produce n+1 bits of output, where the min-
imum possible by Corollary 1 is n−1

log2 3 . So the output size of these two functions
is close to optimal.

Proposition 1. Let p be a prime satisfying 2n < p < 2n+1. The function
h : {0, 1}n → {0, 1}n+1 given by h(x) = [x2]p completely secures every function
f : {0, 1}n → {0,⊥}.
Proof. Let x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n be given and suppose x1,1 − x2,1 =
x1,2−x2,2 and h(x1,1)−h(x2,1) = h(x1,2)−h(x2,2). We will show that x1,1 = x1,2

or x1,1 = x2,1, concluding the proof by Corollary 2.
Directly from the conditions on the xi,j , we get

(x1,1 + x2,1)(x1,1 − x2,1) ≡ h(x1,1) − h(x2,1)
= h(x1,2) − h(x2,2)
≡ (x1,2 + x2,2)(x1,2 − x2,2) (mod p).

This yields two cases. If x1,1 − x2,1 = x1,2 − x2,2 = 0 then x1,1 = x2,1 and we
are done. Otherwise x1,1 − x2,1 = x1,2 − x2,2 is invertible modulo p since p > 2n

and we get

x1,1 + x2,1 ≡ x1,2 + x2,2 (mod p).
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Adding x1,1−x2,1 = x1,2−x2,2 to both sides yields 2x1,1 ≡ 2x1,2 (mod p) which
is equivalent to x1,1 ≡ x1,2 (mod p). Hence, x1,1 = x1,2 since p > 2n and we are
done. ��
Proposition 2. Let p be a prime satisfying 2n < p < 2n+1 with primitive root
r. The function h : {0, 1}n → {0, 1}n+1 given by h(x) = [rx]p completely secures
every function f : {0, 1}n → {0, 1}.
Proof. Let x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n be given and suppose x1,1 − x2,1 =
x1,2−x2,2 and h(x1,1)−h(x2,1) = h(x1,2)−h(x2,2). We will show that x1,1 = x1,2

or x1,1 = x2,1, concluding the proof by Corollary 2.
Directly from the conditions on the xi,j , we get

rx1,1(1 − rx2,1−x1,1) ≡ h(x1,1) − h(x2,1)
= h(x1,2) − h(x2,2)

≡ rx1,2(1 − rx2,2−x1,2) (mod p).

Now we have two cases. First, if 1−rx2,1−x1,1 = 1−rx2,2−x1,2 is invertible modulo
p then rx1,1 ≡ rx1,2 (mod p), yielding x1,1 = x1,2 since r has order p − 1 ≥ 2n

modulo p. Second, if 1 − rx2,1−x1,1 = 1 − rx2,2−x1,2 is not invertible modulo p
then clearly 1 − rx2,1−x1,1 ≡ 0 (mod p) and thus, x2,1 − x1,1 = 0 since the order
of r is ≥ 2n. It follows that either x1,1 = x1,2 or x1,1 = x2,1. ��

5.2 Permutation Hash Functions

We now discuss an instantiation which statistically secures functions f , as
opposed to the functions in the previous section which completely secure f .
Number theoretical functions like the ones in the previous section are difficult
and expensive to implement in the setting of matrix branching programs since
these do not generally support operations over a fixed field Zp. However, matrix
branching programs naturally implement operations on the group of permuta-
tions, Sk. The functions we define in this section are defined in terms of randomly
chosen permutations, and turns out to be a much more practical alternative. This
section explains the instantiation and proves statistical security, and Sect. 5.3
describes how to implement it efficiently over CLT13.

Definition 16. A k-Permutation Hash Function of input size n is a func-
tion h : {0, 1}n → [k] randomly drawn as follows. Select permutations

{πi,b}i∈[n],b∈{0,1}
$←− S2n

k uniformly at random. For an input x ∈ {0, 1}n let

σx =
n∏

i=1

πi,xi
.

Then h(x) = σx(1).
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Lemma 3. Let x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n be given such that

x1,1 ∗ x1,2 = x2,1 ∗ x2,2,

x1,1 �= x1,2, and x1,1 �= x2,1. Then

Pr
h

$←S2n
k

[h(x1,1) ∗ h(x1,2) = h(x2,1) ∗ h(x2,2)] ≤ k

(k − 1)2
.

Proof. Write u = x1,1∗x1,2 = x2,1∗x2,2 and denote by xi
a,b the ith bit of xa,b and

by ui the ith entry of u. Let Sd ⊂ [n], d ∈ Z2 be the set of indices i ∈ [n] such
that ui = d, where we recall that the elements of Z2 are the equivalence classes
(0, 1), (1, 0), (0, 0) ∼ (1, 1). We will denote the equivalence class containing (0, 0)
and (1, 1) by (a, a). Thus, the set of indices [n] is partitioned into [n] = S(0,1) ·∪
S(1,0) ·∪ S(a,a).

Now, it must be the case that there is a j ∈ S(a,a) such that xj
1,1 = xj

1,2 �=
xj
2,1 = xj

2,2. To see this, note that x1,1 and x2,1 are identical at the indices of
S(0,1) and S(1,0) and if x1,1 and x2,1 also are identical at the indices of S(a,a) then
x1,1 = x2,1 contrary to assumption. Choose j to be maximal. We can assume
without loss of generality that there is an l ∈ S(0,1) ∪ S(1,0) such that l > j as
follows. Suppose that this is not the case. Then xi

1,1 = xi
1,2 = xi

2,1 = xi
2,2 for

every i > j since j was maximal and we must have i ∈ S(a,a) whenever i > j.
Now, consider the equation u′ = x1,1 ∗ x2,1 = x1,2 ∗ x2,2 where we simply swap
x1,2 and x2,1 from our original expression. Let S′

d ⊂ [n], d ∈ Z2 be the set of
indices i ∈ [n] such that u′

i = d. In this dual situation, j ∈ [n] \ S′
(a,a) and still

xi
1,1 = xi

1,2 = xi
2,1 = xi

2,2 for every i > j. Further, we can find a new maximal

j′ ∈ S′
(a,a) with j′ < j such that xj′

1,1 �= xj′
1,2. Thus, in the dual situation j is the

l that we were seeking in the original case. From this it follows that we without
loss of generality can choose l > j as above.

Define the following permutations, noting that xi
1,1 = xi

2,1 and xi
1,2 = xi

2,2

for i > j.

τ =
n∏

i=j+1

πi,xi
1,1

σ =
n∏

i=j+1

πi,xi
1,2

γb,c =
j−1∏

i=1

πi,xi
b,c

, b, c ∈ {1, 2}.

Then letting b = xj
1,1 = xj

1,2 we get

h(x1,1) = γ1,1 ◦ πj,b ◦ τ(1), h(x2,1) = γ2,1 ◦ πj,1−b ◦ τ(1)
h(x1,2) = γ1,2 ◦ πj,b ◦ σ(1), h(x2,2) = γ2,2 ◦ πj,1−b ◦ σ(1).
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Now, since xl
1,1 = xl

2,1 �= xl
1,2 = xl

2,2, the permutations πl,xl
1,1

= πl,xl
2,1

and
πl,xl

1,2
= πl,xl

2,2
are chosen independently of each other. Thus, it follows from

l > j that over the choice of {πi,b} the permutation τ and the permutation σ are
independently and uniformly distributed. Writing (a, b) = (τ(1), σ(1)) ∈ Zk×Zk,
this means that (a, b) will be uniformly distributed in Zk × Zk over the choice
of {πi,b}. Thus, with probability k−1

k we have a �= b. We will assume that from
now on. The above equations now become

h(x1,1) = γ1,1 ◦ πi,b(a), h(x2,1) = γ2,1 ◦ πi,1−b(a)
h(x1,2) = γ1,2 ◦ πi,b(b), h(x2,2) = γ2,2 ◦ πi,1−b(b).

Noting that πi,b and πi,1−b are chosen independently we get that for some
(q, r), (s, t) ∈ T for T = Zk × Zk \ {(a, a) | a ∈ Zk} which are independent
of each other and each uniformly distributed over T over the choice of {πi,b}, we
have

h(x1,1) = γ1,1(q), h(x2,1) = γ2,1(s)
h(x1,2) = γ1,2(r), h(x2,2) = γ2,2(t).

The γs are chosen independently of the other permutations, so even condi-
tional on the particular choice of the γs the distribution of (q, r) and (s, t)
are independent and uniformly distributed across T . This means that the
pairs (h(x1,1), h(x1,2)) and (h(x2,1, h(x2,2)) are independent of each other and
are uniformly distributed over subsets U1, U2 ⊂ [k] × [k], respectively, of size
|T | = k(k − 1).

Now, taking into account the case we disregarded in the beginning where
a = b which has probability 1

k , we can write

Pr
h

$←S2n
k

[h(x1,1) ∗ h(x1,2) = h(x2,1) ∗ h(x2,2)] ≤ 1
k

+ Pr
(α,β) $←U1

(γ,δ)
$←U2

[(α, β) ∼ (γ, δ)]

=
1
k

+
1

k(k − 1)

∑

(α,β)∈U1

Pr
(γ,δ)

$←U2

[(α, β) ∼ (γ, δ)]

=
1
k

+
R

k(k − 1)

Splitting in the case when α = β and α �= β, where we know that the former
happens in at most k cases, we can calculate

R =
∑

(α,β)∈U1

Pr
(γ,δ)

$←U2

[(α, β) ∼ (γ, δ)]

≤
∑

(α,β)∈U1
α=β

Pr
(γ,δ)

$←U2

[γ = δ] +
∑

(α,β)∈U1
α�=β

Pr
(γ,δ)

$←U2

[α = γ and β = δ)]

≤ k · 1
k − 1

+ k(k − 1) · 1
k(k − 1)

=
2k − 1
k − 1

.
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It follows that

Pr
{πi,b}

[h(x2,1 ∗ h(x2,2) = h(x1,1) ∗ h(x1,2)] ≤ 1
k

+
2k − 1

k(k − 1)2
=

k

(k − 1)2
.

��
Lemma 4. Draw k-permutation hash functions on n input bits, h1, . . . , ht inde-
pendently at random. Then the probability that there exists {xb,c}b,c∈{1,2} ⊆
{0, 1}n with x1,1 �= x1,2, x1,1 �= x2,1, x1,1 ∗ x1,2 = x2,1 ∗ x2,2, and hi(x1,1) ∗
hi(x1,2) = hi(x2,1) ∗ hi(x2,2) for every i ∈ [t] is strictly less than kt·6n

(k−1)2t .

Proof. Let u ∈ (Z2)n be given and let s be the number of entries of u that are
(a, a), denoting the equivalence classes of Z2 as before by (0, 1), (1, 0), and (a, a).
The number of choices for {xb,c}b,c∈{1,2} ⊆ {0, 1}n such that u = x1,1 ∗ x1,2 =
∗x2,1 ∗ x2,2 is 22s since for all entries i ∈ [n] such that ui = (0, 1) or ui = (1, 0),
xi
1,1 = xi

2,1 and xi
1,2 = xi

2,2 are fixed and for all entries i ∈ [n] such that ui =
(a, a) we have xi

1,1 = xi
2,1 and xi

1,2 = xi
2,2, but they are not fixed. Now, note

that the number of u ∈ (Z2)n with exactly s (a, a)-entries is 2n−s
(
n
s

)
. Summing

over all possible u we get the total number of choices {xb,c}b,c∈{1,2} ⊆ {0, 1}n

with x1,1 ∗ x1,2 = x2,1 ∗ x2,2 to be
n∑

s=0

2n−s

(
n

s

)
22s = 2n

n∑

s=0

2s

(
n

s

)
= 6n.

By Lemma 3 the probability that any single choice of {xb,c}b,c∈{1,2} ⊆ {0, 1}n

such that x1,1 �= x1,2, x1,1 �= x2,1 and x1,1 ∗ x1,2 = x2,1 ∗ x2,2 satisfies hi(x1,1) ∗
hi(x1,2) = hi(x2,1) ∗ hi(x2,2) for all i ∈ [t] is strictly less than

(
k

(k−1)2

)t

. Thus,
our conclusion follows immediately by the union bound. ��

For the next theorem we define a function that combines several permutation
hash functions into one. Choose k-permutation hash functions h1, . . . , ht as dis-
cussed above, and define the main hash function h(x) = h1(x)||h2(x)|| . . . ||ht(x).

Theorem 4. Let k ≥ 3. If t ≥ (1+log2(3))n+λ
2 log2(k−1)−log2(k)

then the function h as defined
above statistically secures every function f : {0, 1}n → {0, 1}.
Proof. Fix k ≥ 3 and n. By Lemma 4, h statistically secures every function if

kt · 6n

(k − 1)2t
≤ 2−λ.

Taking logarithms on both sides, this is equivalent to

log2(k)t + (1 + log2(3))n − 2t log2(k − 1) ≤ −λ.

Rearranging, this yields that h statistically secures every function for

t ≥ (1 + log2(3))n + λ

2 log2(k − 1) − log2(k)
.

��
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5.3 Implementing Permutation Hash Functions over CLT13

We now describe how to efficiently secure a branching program over CLT using
permutation hash functions. We first describe how to construct a branching
program that takes an input u||v and checks whether v = hi(u) for a single hash
function hi from the previous section. We then describe a technique that allows
evaluating branching programs in parallel as long as they have the same input
function. Finally, we use this technique to efficiently add a securing permutation
hash function to any matrix branching program over CLT13.

Implementing One Permutation Hash Function Check. Assume we are
given a k-permutation hash function h = hi of input size n as in the previous
section, with the corresponding permutations {πi,b}i,b. We construct a branching
program BPh over some R ∼= Zp that works over inputs in Zv, where v =
[2, . . . , 2, k] ∈ Z

n+1. This branching program will compute h over the first n bits
in the input and then check if the result matches the final piece of input.

In the following sections we denote a branching program of length l that
works over inputs in Zv by the tuple (mat,M0,Ml+1, inp), where mat(i) is an
indexed family {Mi,c}c∈Zvi

for all i ∈ [l]. M0 and Ml+1 are “bookend” vectors.
This branching program is evaluated over an input x ∈ Zv by computing the
following product:

M0 ×
n∏

i=1

Mi,xinp(i) × Ml+1.

For a k-permutation hash function h, let

BPh = (math,Mh
0 ,Mh

n+2, inp
h).

The components of BPh are defined as follows:

1. math(1) = {Mh
1,c}c∈Zk

, where Mh
1,c ∈ Mk(R) is the permutation matrix cor-

responding to the transposition (1 c).
2. math(i) = {Mh

i,b}b∈{0,1} for 2 ≤ i ≤ n + 1, where Mh
i,b ∈ Mk(R) is the

permutation matrix corresponding to πi−1,b.
3. Mh

0 = [1, 0, . . . , 0] ∈ Rk.
4. Mh

n+2 = [0, 1, . . . , 1]T ∈ Rk.

5. inph(i) =

{
n + 1 i = 1
i − 1 2 ≤ i ≤ n + 1.

Consider an evaluation of the branching program BPh over an input u||v,
where u ∈ {0, 1}n and v ∈ Zk. The result is of the form

Mh
0 × Mh

1,v ×
n+1∏

i=2

Mh
i,ui−1

× Mh
n+2. (3)
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The product
∏n+1

i=2 Mh
i,ui−1

× Mh
n+2 results in a column vector with a 0 at posi-

tion h(u) and 1 s in every other position. The product of this result with Mh
1,v

produces [0, 1, . . . , 1]T if and only if h(u) = v and otherwise produces a vector
with a 0 in a position other than the first and 1 s everywhere else. Multiplying
by Mh

0 thus produces 0 if and only if h(u) = v. In conclusion, evaluating BPh

on input u||v outputs 0 if and only if h(u) = v.

Parallel Branching Programs. The CLT13 multilinear map uses a ring of
composite order, which allows for a certain type of parallel branching program
computation. Namely, we can construct a branching program where each step
actuality encodes steps for several branching programs, and the parent branching
program evaluates to zero if and only if all of its underlying branching programs
do. In this section, we describe how to construct such a parallel computation.

Let n be the dimension chosen by the CLT13 instantiation based on the
security parameter. This number is the number of prime factors of the ring order.
(We assume it is squarefree.) Let BP1,BP2, . . . ,BPn be the set of branching
programs we want to evaluate in parallel. Following [GLW14], we will work over
a CLT13 instantiation of dimension n2. Recall that the plaintext ring for a CLT13
instantation is of the form Zg

∼= ⊕n
i=1 Zgi

for primes gi. In our case we think
of the ring as being Zg

∼= ⊕n
i=1 ZGi

, where each Gi is the product of n primes
gi,j . We will perform the evaluation of each branching program in a different
component ZGi

. This variant of CLT13 is described in Section B6 of [GLW14].
We make several assumptions restricting the types of branching programs

that we can execute in parallel. First, assume they are all of the same length
l and all take inputs from Zv. Second, assume the matrices of BPi are defined
over the ring ZGi

for all i. We also assume the matrices of all the BPi are of
the same size, which is without loss of generality since we can pad them with
identity matrices. Finally, assume every BPi has the same input function inp.

Let BPi = (mati,Mi,0,Mi,l+1, inp), where mati(j) = {Mi,j,c}c∈Zvinp(j)
. We

construct a new branching program BP′ = (mat′,M ′
0,M

′
l+1, inp) over the ring

Zg, where mat′(j) = {M ′
j,c}c∈Zvinp(j)

with M ′
j,c ≡ Mi,j,c (mod Gi) for all i ∈ [n],

j ∈ [l], and c ∈ Zvj
, and additionally M ′

0 ≡ Mi,0 (mod Gi) and M ′
l+1 ≡ Mi,l+1

(mod Gi) for all i ∈ [n]. If we evaluate the branching program BP′ on x ∈ Zv as
the product

M ′
0 ×

l∏

j=1

M ′
j,xinp(j)

× M ′
l+1 (mod g),

the result, BP′(x), is zero if and only if

Mi,0 ×
l∏

j=1

Mi,j,xinp(j) × Mi,l+1 ≡ 0 (mod Gi)

for all i ∈ [n].
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Securing an Arbitrary Branching Program. Assume we have a branching
program BP = (mat,M0,Ml+1, inp), mat(j) = {Mj,b}b∈{0,1} over {0, 1}n which
we would like to secure. We need to construct a new branching program BP′

which computes BP but also requires an additional section of input which should
be a hash of the first part. BP′ must check whether the hash is valid and must
always return a nonzero value if it is not.

More formally, let u be an input to BP. Let h1, . . . , ht be k-permutation hash
functions on |u| bits. BP′ takes input u||v and checks whether vi = hi(u) for all
i ∈ [t]. If so BP′ returns BP(u), and if not BP′ returns some nonzero value.

Let hi be implemented by the branching program

BPhi = (mathi ,Mhi

b1
,Mhi

b2
, inphi),

where mathi(1) = {Mhi
1,c}c∈Zk

and mathi(j) = {Mhi

j,b}b∈{0,1} for 2 ≤ i ≤ n + 1.
We need to modify this branching program so that instead of taking an input
u||v ∈ Z[2,...,2,k] of length n + 1, it takes an input u||v ∈ Z[2,...,2,k,...,k] of length
n + t and checks whether vi = hi(u). We can do this by altering the input
function inphi to set inphi(1) = n + i, but this would result in the branching
programs BPhi having different input functions for different values of i, which
is not compatible with parallel branching program evaluation. So instead we
pad the branching program so that the first t entries are all the identity matrix
except for the i’th entry which is {Mhi

1,c}c∈Zk
. Then the input function can be

set to be the same for all i. Specifically, we redefine mathi as follows:

– mathi(i) = {Mhi
1,c}c∈Zk

– mathi(j) = {Ik}c∈Zk
for all 1 ≤ j ≤ t, j �= i

– mathi(j) = {Mhi

j−t+1,b}b∈{0,1} for all t + 1 ≤ j ≤ t + n

and we redefine inphi as follows:

inphi(j) = inph(j) =

{
n + j 1 ≤ j ≤ t

j − t t + 1 ≤ j ≤ t + n.

We are now ready to use parallel branching program evaluation to combine
the hash function checks with the original branching program functionality. We
use t + 1 branching programs, one of which is a modified version of BP and the
others are modified versions of the BPhi . Every modified branching program will
have length t + l and will share the same input function inp′, so as to facilitate
parallel evaluation.

We first define the new input function:

inp′(j) =

{
n + j 1 ≤ j ≤ t

inp(j − t) t + 1 ≤ j ≤ t + n

The reasoning for this definition will become clear shortly. We modify BP =
(mat,M0,Ml+1, inp) by padding the branching program with identity matrices
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at the beginning while leaving the rest of the program unchanged. So mat(j) = I
for 1 ≤ i ≤ t, and mat(j) = {Mj−t,b}b∈{0,1} for t + 1 ≤ j ≤ t + l. Note that BP
should now be evaluated using the input function inp′.

Finally, we describe how we modify BPhi to work with the input function
inp′. The problem with the definition of BPhi given above is that the input
function during the latter part of the branching program, where j > t, does
not match the input function of BP. We could fix this by padding BP with
more identity matrices so that the computation of the hi and the computation
of BP would happen sequentially, but this would add to the total length of the
resulting parallel branching program. Instead, we make an observation about the
computation of hi which allows for some flexibility in how we define the input
function to the program. We will use these observations to rearrange BPhi so
that it matches inp′ exactly.

We observe that changing the order in which we read the input does not
affect whether h = h1|| . . . ||ht secures a function or not since this is equivalent
to for each hi to permute the order of composition of the permutations of hi.
Since each of the permutations of hi are chosen uniformly at random, this does
not affect the distribution of hi.

Given this observation, we can redefine mathi
as follows without changing

its functionality. Let fj be the smallest r such that inp(r) = j (we assume that
BP reads all of its input at some point such that this is well-defined). Then we
set

– mathi(t + fj) = {Mhi

j+1,b}b∈{0,1} for all 1 ≤ j ≤ n.
– mathi(t + r) = {I}b∈{0,1} for all r ∈ [l] \ {fj}j∈[n].
– mathi(i) = {Mhi

1,c}c∈Zk
.

– mathi(j) = {Ik}c∈Zk
for all 1 ≤ j ≤ t, j �= i.

Thus we have t + 1 branching programs which now share the same input
function, and evaluating the branching programs in parallel as described above
achieves the functionality of BP′ as desired.

Incurred Overhead. There are three ways in which our technique for securing
obfuscation against CLT zeroizing attacks can increase the size of the program.
We explain and address each of these below.

First, the parallelization requires more primes in the CLT instantiation. As
described above, we use a variant of CLT13 from [GLW14] where there is an
incurred increase in the dimension. This is to allow secure parallel branching
program execution. We note, however, that the number of parallel executions
needed, t, is less than the dimension n needed for security in the original CLT13
construction for every interesting branching program (e.g. every branching pro-
gram that reads every bit of its input).

Second, checking the result of the permutation hash functions requires mak-
ing the branching program longer by t matrices. This increases the degrees of
multilinearity by t.
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Third, if the original branching program had breadth q, i.e. each matrix of the
branching program was a q by q matrix, then our procedure yields a branching
program of breadth max{q, k}. So having a large choice of k might increase the
size of the branching program. Note that Theorem 4 implies a tradeoff between
t and k.

We explore this further with a concrete example. Let us assume that the BP
takes 5 passes over its input and that BP has breadth 5. Setting the parameter
k, there is a trade-off between the number of encodings needed and the levels of
multilinearity. The latter decides the size of each encoding. If we simply set k = 5
then the breadth of the branching program stays the same and we get roughly
2n extra levels of multilinearity. In our concrete example, this leads to a 40%
increase in multilinearity and a 7 factor increase in the number of encodings. If
instead we let k = 210, we see a mere 7% increase in the levels of multilinearity.
The number of encodings increases drastically since the breadth of the branching
program becomes about 210. However, the most efficient current obfuscation
implementation [BISW17] Boneh et al. uses branching programs with breadth
in excess of 210. Thus, for practical implementation this is not unreasonable.
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