
On the Untapped Potential of Encoding
Predicates by Arithmetic Circuits

and Their Applications

Shuichi Katsumata(B)

National Institute of Advanced Industrial Science and Technology (AIST),
The University of Tokyo, Tokyo, Japan

shuichi katsumata@it.k.u-tokyo.ac.jp

Abstract. Predicates are used in cryptography as a fundamental tool
to control the disclosure of secrets. However, how to embed a particu-
lar predicate into a cryptographic primitive is usually not given much
attention. In this work, we formalize the idea of encoding predicates
as arithmetic circuits and observe that choosing the right encoding of
a predicate may lead to an improvement in many aspects such as the
efficiency of a scheme or the required hardness assumption. In particu-
lar, we develop two predicate encoding schemes with different properties
and construct cryptographic primitives that benefit from these: verifiable
random functions (VRFs) and predicate encryption (PE) schemes.

– We propose two VRFs on bilinear maps. Both of our schemes are
secure under a non-interactive Q-type assumption where Q is only
poly-logarithmic in the security parameter, and they achieve either
a poly-logarithmic verification key size or proof size. This is a sig-
nificant improvement over prior works, where all previous schemes
either require a strong hardness assumption or a large verification
key and proof size.

– We propose a lattice-based PE scheme for the class of multi-
dimensional equality (MultD-Eq) predicates. This class of predicate
is expressive enough to capture many of the appealing applications
that motivates PE schemes. Our scheme achieves the best in terms of
the required approximation factor for LWE (we only require poly(λ))
and the decryption time. In particular, all existing PE schemes that
support the class of MultD-Eq predicates either require a subexpo-
nential LWE assumption or an exponential decryption time (in the
dimension of the MultD-Eq predicates).

1 Introduction

A predicate is a function P : X → {0, 1} that partitions an input domain X into
two distinct sets according to some relation. Due to its natural compatibility with
cryptographic primitives, predicates have been used in many scenarios to control
the disclosure of secrets. This may either come up explicitly during construc-
tion (e.g., attribute-based encryptions [SW05,GPSW06], predicate encryptions
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part III, LNCS 10626, pp. 95–125, 2017.
https://doi.org/10.1007/978-3-319-70700-6_4

96 S. Katsumata

[BW07,SBC+07,KSW08]) or implicitly during security proofs (e.g., in the form
of programmable hashes [HK08,ZCZ16], admissible hashes [BB04a,CHKP10]).
However, how to express predicates as (arithmetic) circuits is usually not given
much attention in these works. Since the way we embed predicates into a cryp-
tographic primitive has a direct effect on the concrete efficiency of the schemes,
it is important to know how efficiently we can embed predicates. In this paper,
we propose an efficient encoding for a specific class of predicates and focus on
two primitives that benefit from this: verifiable random functions (VRFs) and
predicate encryptions (PE) schemes.

Verifiable Random Functions. VRFs introduced by Micali, Rabin and Vad-
han [MRV99] are a special form of pseudorandom functions (PRFs), which addi-
tionally enables a secret key holder to create a non-interactive and publicly verifi-
able proof that validates the output value. An attractive property for the VRF to
have is the notion of all the desired properties coined by [HJ16], which captures
the following features: an exponential-sized input space, adaptive pseudoran-
domness, and security under a non-interactive complexity assumption.

There currently exist two approaches for constructing VRFs with all the
desired properties. The first approach is to use a specific number theory set-
ting (mainly bilinear groups) to handcraft VRFs [HW10,BMR10,ACF14,Jag15,
HJ16,Yam17], and the second approach is to use a more generic approach and
build VRFs from general cryptographic primitives [GHKW17,Bit17,BGJS17].
While the second approach provides us with better insight on VRFs and allows
us to base security on hardness assumptions other than bilinear map based
ones, the major drawback is the need for large verification key/proof sizes or the
need for strong hardness assumptions such as the subexponential Learning with
Errors (LWE) assumption to instantiate the underlying primitives. Concretely,
all generic approaches require general non-interactive witness indistinguishable
proofs (NIWIs) and constrained PRFs for admissible hash friendly functions,
which we currently do not know how to simultaneously construct compactly and
base security under a weak hardness assumption.

The first approach is more successful overall in light of compactness and the
required hardness assumptions, however, they come with their own shortcom-
ings. Notably, [Yam17] presents three constructions where only ω(log λ) group
elements1 are required for either the verification key or the proof. In partic-
ular, in one of their schemes, only sub-linear group elements are required for
both verification key and proof. However, all three schemes require an L-DDH2

assumption where L = Ω̃(λ). In contrast, [Jag15] presents a scheme secure under
a much weaker L-DDH assumption where L = O(log λ) and [HJ16] under the
DLIN assumption. However, these approaches require a linear number of group
elements in the verification key and proof in the security parameter. Therefore,
1 Here, ω(f(λ)) denotes any function that grows asymptotically faster than f(λ), e.g.,

log2 λ = ω(log λ).
2 The L-DDH problem is where we are given (h, g, gα, · · · , gαL

, Ψ) and have to decided
whether Ψ = e(g, h)1/α or a uniform random element.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 97

we currently do not know how to construct VRFs that are both compact and
secure under a weak hardness assumption.

Predicate Encryption. A predicate encryption (PE) scheme [BW07,SBC+07,
KSW08] is a paradigm for public-key encryption that supports searching on
encrypted data. In predicate encryption, ciphertexts are associated with some
attribute X, secret keys are associated with some predicate P , and the decryp-
tion is successful if and only if P (X) = 1. The major difficulty of constructing
predicate encryption schemes stems from the security requirement that enforces
the privacy of the attribute X and the plaintext even amidst multiple secret key
queries.

Some of the motivating applications for predicate encryption schemes that
are often stated in the literatures are: inspection of recorded log files for network
intrusions, credit card fraud investigation and conditional disclosure of patient
records. Notably, all the above applications only require checking whether a sub-
set or range conjunction predicate is satisfied. (For a more thorough discussion,
see [BW07,SBC+07,KSW08].) Therefore, in some sense many of the applications
that motivates for predicate encryption schemes can be implemented by pred-
icate encryption schemes for the class of predicates that are expressive enough
to support subset or range conjunctions.

On the surface, the present situation on lattice-based predicate encryption
schemes seem bright. We have concrete constructions based on LWE for the
class of predicates that supports equality [ABB10,CHKP10], inner-products
[AFV11], multi-dimensional equality (MultD-Eq)3 [GMW15], and all circuits
[GVW15,GKW17,WZ17]4 Therefore, in theory, we can realize all the above
applications in a secure manner, since subset or range conjunctions can be effi-
ciently encoded by any predicate as expressive as the MultD-Eq predicate, i.e.,
the works of [GMW15,GVW15,GKW17,WZ17] are all sufficient for the above
applications. However, all of these schemes may be too inefficient to use in real-
life applications. Namely, the scheme of [GMW15] highly resembles the bilinear
map based construction of [SBC+07] and inherits the same problem; it takes
Ω(2D) decryption time where D roughly corresponds to the number of set ele-
ments specifying the subset predicate or the number of conjunctions used in the
range conjunction predicate. Further, the schemes of [GVW15,GKW17,WZ17]
are powerful and elegant, albeit they all require subexponential LWE assump-
tions. Therefore, aiming at predicate encryption schemes with the above appli-
cations in mind, we currently do not have satisfactorily efficient lattice-based
schemes. In particular, we do not know how to construct efficient lattice-based
PE schemes for the class of MultD-Eq predicates. This is in sharp contrast with

3 The precise definition and discussions of this predicate are given in Sect. 4.2. For the
time being, it is enough to view it as a subset predicate.

4 [GKW17,WZ17] give a generic conversion from ABEs to PEs that uses an obfusca-
tion for a specific program proven secure under the subexponential LWE assump-
tion. Therefore, we have provably secure lattice-based PEs for all circuits using the
lattice-based ABE of [GVW13,BGG+14].

98 S. Katsumata

the bilinear map setting where we know how to obtain efficient schemes for the
above applications [BW07].

1.1 Our Contributions

In this paper, we provide two results: a compact VRF under a weak assumption
and an efficient lattice-based PE scheme for the class of MultD-Eq predicates.
For the time being, it suffices to think of the MultD-Eq predicate as simply a
predicate that supports the subset predicate. Here, although the two results may
seem independent, they are in fact related by a common theme that they both
implicitly or explicitly embed the subset predicates in their constructions.

Our idea is simple. We first detach predicates from cryptographic construc-
tions, and view predicates simply as a function. Then, we introduce the notion of
predicate encoding schemes5, where we encode predicates as simple (arithmetic)
circuits that have different properties fit for the underlying cryptographic appli-
cations. For example, we might not care that a predicate P outputs 0 or 1. We
may only care that P behaves differently on satisfied/non-satisfied inputs, e.g.,
P outputs a value in S0 when it is satisfied and S1 otherwise, where S0, S1 are
disjoint sets. In particular, we provide two predicate encoding schemes PESFP
and PESLin with different properties encoding the MultD-Eq predicates. Then,
based on these encoded MultD-Eq predicates, we construct our VRFs, and PE
schemes for the class of MultD-Eq predicates. The following is a summary of our
two results.

VRF. We propose two VRFs with all the desired properties. The detailed com-
parison between the recent efficient VRF constructions are given in Table 1. Note
that we exclude the recent VRF constructions of [Bit17,BGJS17,GHKW17] from
the table, since their schemes cannot be instantiated efficiently due to the lack
of efficient (general) NIWIs and constrained PRFs.

Our constructions are inspired by the bilinear map based VRFs of [Yam17],
where they noticed that an admissible hash function [BB04b,CHKP10] can be
represented much more compactly by using a subset predicate6. We improve
their works by further noticing that subset predicates, when viewed as simply a
function, can be encoded in various ways into a circuit. In particular, we propose
a more efficient circuit encoding (PESFP) of the subset predicates that is com-
patible with the underlying algebraic structure of the VRF. We note that at the
technical level the constructions are quite different; [Yam17] uses the inversion-
based techniques [DY05,BMR10] whereas we do not. Here, simply using PESFP
already provides us with an improvement over previous schemes, however, by

5 We note that the term “predicate encoding” has already been used in a completely
different context by [Wee14]. See the section of related work for the differences.

6 In particular, our idea is inspired by the VRFs based on the admissible hash function
of [Yam17], Sect. 6. However, the construction is more similar to the VRF based on
the variant of Water’s hash in their Appendix C.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 99

Table 1. Comparison of Recent VRFs with all the desired properties.

Schemes |vk| # G |π| # G Assumption Reduction cost

[Jag15] O(λ) O(λ) O(log(Q/ε))-DDH O(εν+1/Qν)

[HJ16] O(λ) O(λ) DLIN O(εν+1/λQν)

[Yam17]: Sect. 7.1 ω(λ log λ) ω(log λ) ω(λ log λ)-DDH O(εν+1/Qν)

[Yam17]: Sect. 7.3 ω(log λ) ω(
√

λ log λ) ω(λ log λ)-DDH O(εν+1/Qν)

[Yam17]: Appendix C. ω(log λ) poly(λ) poly(λ)-DDH O(ε2/λ2Q)

0.95,0.95,0.95 Ours: Sect. 5.1 ω(log2 λ) ω(λ log2 λ) ω(log2 λ)-DDH O(εν+1/Qν)

0.95,0.95,0.95 Ours: Sect. 5.3 ω(
√

λ log λ) ω(log λ) ω(log2 λ)-DDH O(εν+1/Qν)

To measure the verification key size |vk| and proof size |π|, we count the number of group
elements in G. Q, ε denotes the number of adversarial queries and advantage, respectively. ν
is a constant satisfying c = 1 − 2−1/ν , where c is the relative distance of the underlying error
correcting code C : {0, 1}n → {0, 1}�.

exploiting a special linear structure in PESFP, we can further improve the effi-
ciency using an idea native to our scheme. Namely, we can skip some of the
verification steps required to check the validity of the proof, hence, lowering the
number of group elements in the verification key. Our schemes can be viewed as
combining the best of [Jag15,Yam17]. In the following, to compare the efficiency,
we count the number of group elements of the verification key and proof.

– In our first scheme, the verification key size is ω(log2 λ), the proof size is
ω(λ log2 λ), and the scheme is proven secure under the L-DDH assumption
with L = ω(log2 λ). This is the first scheme that simultaneously achieves a
small verification key size and security under an L-DDH assumption where
L is poly-logarithm in the security parameter.

– Our second scheme is a modification of our first VRF with some additional
ideas; the verification key size is ω(

√
λ log λ), the proof size is ω(log λ), and

the scheme is proven secure under the L-DDH assumption with L = ω(log2 λ).
This achieves the smallest verification key and proof size among all the previ-
ous schemes while also reducing the underlying L of the L-DDH assumption
significantly to poly-logarithm.

PE Schemes for the MultD-Eq Predicates. Based on the predicate encod-
ing scheme PESLin for the MultD-Eq predicates, we propose a lattice-based PE
scheme for the MultD-Eq predicates. Due to the symmetry of the MultD-Eq pred-
icates, we obtain key-policy and ciphertext-policy predicate encryption schemes
for the class of predicates that can be expressed as MultD-Eq, such as sub-
set and range conjunction. The detailed overview and comparison are given in
Table 2. We disculde the generic construction of [GVW15,GKW17,WZ17] from
the table, since our primal goal was to compare the efficiency of the schemes. Our
scheme achieves the best efficiency in terms of decryption time and the required
modulus size q; [GMW15] requires to perform Ω(2D) number of inner prod-
uct operations (between secret key vectors and ciphertext vectors) to decrypt a

100 S. Katsumata

Table 2. Comparison of lattice PEs for MultD-Eq predicates (over Z
D×�
p).

Schemes |mpk| # Z
n×m
q |sk| # Z

2m |ct| # Z
m
q LWE param 1/α Dec. time # IP

[GMW15] O(D�) O(D�) O(D�) Õ(
√

D · n1.5)a O(�D)

Ours: Sect. 6.2 O(D�p) 1 O(D�p) Õ(max{ n2√
D�p

,
√

D�p · n}) 1

To compare (space) efficiency, we measure the master public key size |mpk|, secret key size |sk| and

ciphertext size |ct| by the required number of elements in Z
n×m
q ,Z2m,Zm

q , respectively. We measure

the decryption time as the number of inner products computed between vectors in Z
2m
q .

aFor fairness, we provided a more rigorous analysis for their parameter selections.

ciphertext, and [GVW15,GKW17,WZ17] require subexponential LWE for secu-
rity. Our construction follows very naturally from the predicate encoding scheme
PESLin for the MultD-Eq predicates, and builds upon the proof techniques of
[AFV11,BGG+14].

Other Applications. We also show how to make the identity-based encryption
(IBE) scheme of [Yam17] more efficient by using our predicate encoding scheme
for the MultD-Eq predicate. In particular, we are able to lower the approxima-
tion factor of the LWE problem from Õ(n11) to Õ(n5.5) (with some additional
analysis). Furthermore, we are able to significantly reduce the parallel complex-
ity of the required matrix multiplications during encryption and key generation.
Notably, our construction does not rely on the heavy sequential matrix multi-
plication technique of [GV15] as the IBE scheme of [Yam17]. Finally, we note
that the size of the public matrices and ciphertexts are unchanged. Details are
provided the full version.

1.2 Related Work

The idea of encoding predicates to another form has already been implicitly or
explicitly used in other works. The notion of randomized encoding [IK00,AIK04]
(not specific to predicates) aims to trade the computation of a “complex” func-
tion f(x) for the computation of a “simpler” randomized function f̂(x; r) whose
output distribution on an input x encodes the value for f(x). The notion of pred-
icate encoding [Wee14,CGW15] (and also the related notion of pair encoding
[Att14,Att16]) has already been used previously, in a completely different con-
text, as a generic framework that abstracts the concept of dual system encryption
techniques for bilinear maps, and not as a tool for lowering the circuit complexity
of predicates.

2 Technical Overview

We now give a brief overview of our technical approaches. A formal treatment
is given in the main body. We break our overview in two pieces. First, we give
intuition for our notion of predicate encoding schemes PES and illustrate the
significance of the MultD-Eq predicates. Then, we overview how the different

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 101

types of PES schemes for the MultD-Eq predicates can be used to construct
VRFs, and PE schemes for the MultD-Eq predicates.

Different Ways of Encoding Predicates. Predicates are often times implicit
in cryptographic constructions and in some cases there lies an untapped poten-
tial. To highlight this, we recall the observation of [Yam17]. An admissible hash
function is one of the central tools used to prove adaptive security (e.g., dig-
ital signatures, identity-based encryptions, verifiable random functions). At a
high level, during the security proof, it allows the simulator to secretly partition
the input space into two disjoint sets, so there is a noticeable probability that
the input values submitted by the adversary as challenge queries fall inside the
intended sets. Traditionally, the partition made by the admissible hash function
is viewed as a bit-fixing predicate; a bit-fixing predicate is specified by a string
K ∈ {0, 1,⊥}� where the number of non-⊥ symbols are O(log λ), and the input
space {0, 1}� is partitioned by the rule whether the string x ∈ {0, 1}� matches
the string K on all non-⊥ symbols.

[Yam17] observed that a bit-fixing predicate can be encoded as a subset pred-
icate; an observation not made since the classical works of [BB04b,CHKP10]. In
particular, Yamada observed that K has many meaningless ⊥ symbols and only
has O(log λ) meaningful non-⊥ symbols. Under this observation, he managed to
encode K into a very small set TK (e.g., |TK | = O(log2 �)) where each element
indicates the position of the non-⊥ symbols. Now, the partition of the input
space is done by checking whether the input includes the set TK or not. Since
admissible hash functions are implicitly embedded in the public parameters, this
idea allowed them to significantly reduce the number of public parameters for
identity-based encryption (IBE) schemes and the size of the verification key (or
the proof size) for VRFs.

We take this observation one step further. A predicate defines a function, but
often a function may be represented as a polynomial7 in various ways depending
on what kind of properties we require. This is easiest to explain through an
example. Let us continue with the above example of the subset predicate used
in [Yam17]: PT : 2[2n] → {0, 1}, where PT(S) = 1 iff T ⊆ S. Here, assume
|T| = m and all the inputs to PT have cardinality n. One of the most natural
ways to represent the subset predicate as a polynomial is by its boolean circuit
representation:

m∏

i=1

(
1 −

n∏

j=1

(
1 −

ζ∏

k=1

(
1 − (ti,k − sj,k)2

)

︸ ︷︷ ︸
is ti=sj?

)

︸ ︷︷ ︸
is ti∈S?

)
=

{
1 if T ⊆ S

0 if T �⊆ S
, (1)

where ζ = �log 2n	 + 1, T = {ti}i∈[m],S = {sj}j∈[n] ⊆ [2n] and ti,k, sj,k are the
k-th bit of the binary representation of ti, sj . Here Eq. (1) is the polynomial
7 It might be more precise to state that a predicate is represented by a circuit, however,

in this section we adopt the view of polynomials to better convey the intuition.

102 S. Katsumata

representation of the boolean logic
∧

i∈[m]

∨
j∈[n]

∧
k∈[ζ](ti,k = sj,k). This is

essentially what was used for the lattice-based IBE construction of [Yam17]
with very short public parameters. Observe that this polynomial has degree
2mnζ, which is O(λ log3 λ) if we are considering the subset predicate speci-
fying the admissible hash function, where we have m = O(log2 λ), n = O(λ)
and ζ = O(log λ). However, in general, using a high degree polynomial may be
undesirable for many reasons, even if it is only of degree linear in the security
parameter. For the case of the IBE scheme of [Yam17], due to the highly mul-
tiplicative structure, the encryption and key generation algorithms require to
rely on a linear number of heavy sequentialized matrix multiplication technique
of [GV15]. Therefore, it is a natural question to ask whether we can embed a
predicate into a polynomial with lower degree, and in some cases into a linear
polynomial.

Indeed, we show that it is possible for the above predicate. Namely, we can do
much better by noticing the extra structure of subset predicates; we know there
exists at most one j ∈ [n] that satisfies ti = sj . Therefore, we can equivalently
express Eq. (1) as the following polynomial:

m∏

i=1

n∑

j=1

ζ∏

k=1

(
1 − (ti,k − sj,k)2

)
=

{
1 if T ⊆ S

0 if T �⊆ S
. (2)

This polynomial is now down to degree 2mζ. When this subset predicate specifies
the admissible hash function, Eq. (2) significantly lowers the degree down to
O(log3 λ). Furthermore, if we do not require the output to be exactly 0 or 1, and
only care that the predicate behaves differently on satisfied/non-satisfied inputs,
we can further lower the degree down to 2ζ. In particular, consider the following
polynomial:

m −
m∑

i=1

n∑

j=1

ζ∏

k=1

(
1 − (ti,k − sj,k)2

)
=

{
0 if T ⊆ S

�= 0 if T �⊆ S
, (3)

which follows from the observation that |T| = m. Since, the output of the poly-
nomial is different for the case T ⊆ S and T �⊆ S, Eq. (3) indeed properly encodes
the information of the subset predicate. Using this polynomial instead of Eq. (1)
already allows us to significantly optimize the concrete parameters of the lattice-
based IBE of [Yam17]. In fact, by encoding the inputs T,S in a different way
and with some additional ideas, we can encode the subset predicate into a linear
polynomial.

To summarize, depending on what we require for the encoding of a predicate
(e.g., preserve the functionality, linearize the encoding) one has the freedom of
choosing how to express a particular predicate. We formalize this idea of a “right
encoding” by introducing the notion of predicate encoding schemes. In the above
we used the subset predicate as an motivating example, however, in our work
we focus on a wider class of predicates called the multi-dimensional equality
MultD-Eq predicates, and propose two encoding schemes PESFP and PESLin with
different applications in mind.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 103

Finally, we state two justifications for why we pursue the construction of pred-
icate encoding schemes for the class of MultD-Eq predicates. First, the MultD-Eq
predicates are expressive enough to encode many useful predicates that come
up in cryptography (e.g., bit-fixing, subset conjunction, range conjunction pred-
icates), that being for constructions of cryptographic primitives or for embedding
secret information during in the security proof. Second, in spite of its expressive-
ness, the MultD-Eq predicates have a simple structure that we can exploit and
offers us plenty of freedom on the types of predicate encoding schemes we can
achieve. The definition and a more detailed discussion on the expressiveness of
MultD-Eq is provided in Sects. 4.2 and 4.3.

Constructing VRFs. Similarly to many of the prior works [BMR10,ACF14,
Jag15,Yam17] on VRFs with all the desired properties, we use admissible hash
functions and base security on the L-DDH assumption, which states that given
(h, g, gα, · · · , gαL

, Ψ) it is hard to distinguish whether Ψ = e(g, h)1/α or a ran-
dom element. Here, we briefly review the core idea used during the security proof
of [Yam17] for the pseudorandomness property of the VRF. We note that many
of the arguments made below are informal for the sake of intuition. Their obser-
vation was that the admissible hash function embedded during simulation can
be stated in the following way using a subset predicate:

FT(X) =

{
0 if T ⊆ S(X)
1 if T �⊆ S(X)

where S(X) = {2i − C(X)i | i ∈ [n]}.

Here, C(·) is a public hash function that maps an input X (of the VRF) to a bit
string {0, 1}n, and T ⊆ [2n] is a set defined as T = {2i − Ki | i ∈ [n],Ki �= ⊥}
where K is the secret string in {0, 1,⊥}n that specifies the partition made by the
admissible hash. Since, the number of non-⊥ symbols in K are O(log2 λ), the
above function can be represented by a set T with cardinality O(log2 λ). During
security proof, by the property and definition of FT, we have

(
T �⊆ S(X(1))

)
∧ · · · ∧

(
T �⊆ S(X(Q))

)
∧

(
T ⊆ S(X∗)

)
,

with non-negligible probability, where X∗ is the challenge input and
X(1), · · · ,X(Q) are the inputs for which the adversary has made evaluation
queries. The construction of [Yam17] is based on previous inversion-based VRFs
[DY05,BMR10]. Here, we ignore the problem of how to add verifiability to the
scheme and overview on how they prove pseudorandomness of the VRF evalua-
tion. Informally, during simulation, the simulator uses the following polynomial
to encode the admissible hash function:

Q(α)
/ (m∏

i=1

n∏

j=1

(α + ti − sj)
)

=

{
const

α + poly(α) if T ⊆ S(X)
poly(α) if T �⊆ S(X)

, (4)

where Q(α) is some fixed polynomial with degree roughly 4n independent of the
input X. Here, recall α ∈ Zp is that of the L-DDH problem, and notice that in

104 S. Katsumata

Eq. (4) the polynomial will have α in the denominator if and only if T ⊆ S(X).
Although this may not seem quite like it, this polynomial is indeed an encoding
of the subset predicate8 since it acts differently depending on T ⊆ S(X) and
T �⊆ S(X). Finally, we note that the output Y of the VRF is obtained by simply
putting the above polynomial in the exponent of e(g, h).

Now, if the simulator is given enough (gαi

)i∈[L] as the L-DDH challenge, it
can create a valid evaluation Y for inputs X such that T �⊆ S(X), since it can
compute terms of the form e(gpoly(α), h) = e(g, h)poly(α). Furthermore, for the
challenge query X∗ it will use Ψ ; if Ψ = e(g, h)1/α it can correctly simulate for
the case T ⊆ S(X∗), otherwise the evaluation Y ∗ of the VRF is independent
of X∗. Therefore, under the hardness of the L-DDH assumption, the output is
proven pseudorandom. Observe that for the simulator to compute e(g, h)poly(α)

from Eq. (4), it needs to have (gαi

)i∈[L] where L = O(n). Then, since n = O(λ),
we need to base this on an L-DDH assumption where L = O(λ).9 To reflect the
above polynomial, the verification keys are set as (h, ĝ, (Wi = ĝwi)) in the actual
construction. During simulation the parameters are (roughly) set as ĝ = gQ(α),
ĝwi = ĝα+ti .

The above construction is rather naive in that it checks whether T ⊆ S(X)
in a brute-force manner (as also noted in [Yam17]). Our idea is to instead use
the polynomial from Eq. (2) to represent the admissible hash function. In other
words, we embed the following polynomial during simulation:

1
α

·
m∏

i=1

n∑

j=1

ζ∏

k=1

(
1 − (α + ti,k − sj,k)2

)
=

{
1
α + poly(α) if T ⊆ S(X)
poly(α) if T �⊆ S(X)

. (5)

We note that in our actual construction, we use an optimized version of Eq. (2)
called PESFP. Similarly to above, we put the above polynomial in the expo-
nent of e(g, h) for the VRF evaluation. The difference is that the degree of
the polynomial in Eq. (5) is significantly lowered down to merely 2mζ, which
is O(log3 λ). Therefore, when the simulator needs to compute e(g, h)poly(α) dur-
ing simulation, we only require (gαi

)i∈[L] for L = O(log3 λ). Hence, we signif-
icantly reduced the required L of the L-DDH assumption to poly-logarithm.
Note that we need to validate the output in a different way now, since the
terms α, ti, sj that appear in the left-hand polynomial are not in the denom-
inator as in Eq. (4). Now, to generate the proof, we take the so called “step
ladder approach” [Lys02,ACF09,HW10], where we publish values of the form
(gθi′)i′∈[m], (gθi,j,k′)(i,j,k′)∈[m]×[n]×[ζ] defined as follows:

θi′ =
i′∏

i=1

n∑

j=1

ζ∏

k=1

(
1 − (wi,k − sj,k)2

)
, θi,j,k′ =

k′∏

k=1

(
1 − (wi,k − sj,k)2

)
,

8 To be strict, this does not exactly fit the definition of predicate encoding we define in
Sect. 4. However, we can do so by appropriately arguing the size of α or by viewing
α as an indeterminate.

9 In the actual construction we require L = ω(λ log λ), since we need to simulate a
higher degree polynomial in the exponent.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 105

where we (roughly) set gwi,k as gα+ti,k during simulation. Although this scheme
achieves a very short verification key, it comes at the cost of a rather long proof
size of O(mnζ) = O(λ log3 λ).

Finally, we describe how to make the proof much shorter, while still main-
taining a sub-linear verification key size. As a first step, we can use the simple
trick used in [Yam17] to make the proof much shorter. Namely, we add helper
components to the verification key so that anyone can compute (θi,j,k′) publicly.
However, as in [Yam17], this leads to a long verification key with size Ω̃(λ).
Interestingly, for our construction, we can do much better and shorten the veri-
fication key by a quadratic factor by in a sense skipping some ladders. The main
observation is the additive structure in (θi′)i′ . In particular, if each θi′ were sim-
ply a large product

∏
i,j,k

(
1 − (wi,k − sj,k)2

)
, we would have to prepare all the

necessary helper components in the verification key that would allow to compute
gθi,j,ζ . This is because in the step ladder approach, after computing gθi,j,ζ , we
have to reuse this as an input to the bilinear map to validate the next term in
the ladder. However, in our case, we only need the ability to publicly compute
e(g, g)θi,j,ζ . Here, we crucially rely on the additive structure in θi′ that allows
us to compute e(g, g)

∑
j∈[n] θi,j,ζ by ourselves; thus the notion of skipping some

ladders. Note that we are not able to publicly compute e(g, g)
∏

j∈[n] θi,j,ζ . Finally,
we continue with the step ladder approach for the outer

∏i′

i=1 products. There-
fore, since we only need the ability to generate e(g, g)θi,j,ζ rather than gθi,j,ζ , we
can reduce quadratically the number of helper components we have to publish
in the verification key.

Constructing PE for the MultD-Eq Predicates. Our proposed predicate
encryption scheme for the MultD-Eq predicates follows the general framework of
[AFV11,BGG+14], which allows us to compute an inner product of a private
attribute vector X associated to a ciphertext and a (public) predicate vector Y
associated to a secret key. To accommodate this framework, we use our proposed
linear predicate encoding scheme PESLin for the MultD-Eq predicates. In the
overview, we continue with our examples with the subset predicate for simplicity.
The core idea is the same for the MultD-Eq predicates. Essentially, PESLin will
allow us to further modify Eq. (3), to the following linear polynomial:

L∑

i=1

aiXi =

{
0 if T ⊆ S

�= 0 if T �⊆ S
, (6)

where (Xi)i∈[L], (ai)i∈[L] ∈ Z
L
q are encodings of the attribute set T and the

predicate set S, respectively.
Following the general framework, the secret key for a user with predicate set

S is a short vector e such that [A|BS]e = u for a random public vector u, where
BS is defined as in Eq. (7) below. Furthermore, we privately embed an attribute
set T into the ciphertext as

[c�
1 | · · · | c�

L] = s�[B1 + X1G | · · · | BL + XLG] + [z�
1 | · · · | z�

L].

106 S. Katsumata

Using the gadget matrix G of [MP12], a user corresponding to the predicate set
S can transform the ciphertext without knowledge of T as follows:

L∑

i=1

c�
i G−1(aiG) = s�

(L∑

i=1

BiG−1(aiG)

︸ ︷︷ ︸
= BS

+
L∑

i=1

aiXi · G
)

+
L∑

i=1

z�
i G−1(aiG)

︸ ︷︷ ︸
= z (noise term)

.

(7)

Observe the matrix BS is defined independently of X (i.e., the attribute set S).
By Eq. (6) and the correctness of the predicate encoding scheme PESLin, we have∑

i∈[L] aiXi = 0 when the subset predicate is satisfied, as required for decryption.
To prove security, we set the matrices (Bi)i∈[L] as Bi = ARi−X∗

i ·G, where A is
from the problem instance of LWE, Ri is a random matrix with small coefficients
and (X∗

i)i∈[L] is the encoding of the challenge attribute set T∗. During simulation
we have

BS = ARS −
L∑

i=1

aiX
∗ · G, where RS =

L∑

i=1

RiG−1(aiG).

for any set S. Here, we have
∑

i∈[L] aiX
∗ �= 0 iff T∗ �⊆ S. Therefore, for the key

extraction queries for S such that T∗ �⊆ S, we can use RS as the G-trapdoor
[MP12] for the matrix [A |BS] to simulate the secret keys. We are able to gen-
erate the challenge ciphertext for the subset T∗ by computing

(s�A+ z′�)
︸ ︷︷ ︸

LWE Problem

[I |R1| · · · |RL] = s�[A |B1 + X∗
1G| · · · |BL + X∗

LG] + z′�[I |R1| · · · |RL]
︸ ︷︷ ︸

simulation noise term

A subtle point here is that the simulation noise term is not distributed cor-
rectly as in Eq. (7). However, this can be resolved by the noise rerandomization
technique of [KY16].

Finally, we propose a technique to finer analyze the growth of the noise term
z =

∑
i∈[L] z

�
i G−1(aiG) and the G-trapdoor RS =

∑
i∈[L] RiG−1(aiG) used

during simulation. This allows us to choose narrower Gaussian parameters and
let us base security on a weaker LWE assumption. The main observation is that
G−1(aiG) ∈ {0, 1}nk×nk is a block-diagonal matrix with n square matrices with
size k along its diagonals where n = O(λ) and k = O(log λ). Exploiting this
additional block-diagonal structure, we are able to finer control the growth of
‖v‖2 and s1(RS) (i.e., the largest singular value of RS). We believe this technique
to be useful for obtaining tighter analysis on other lattice-based constructions.

3 Preliminaries

Notation. We use {·} to denote sets and use (·) to denote a finite ordered list
of elements. When we use notations such as (wi,j)(i,j)∈[n]×[m] for n,m ∈ N, we
assume the elements are sorted in the lexicographical order. For n,m ∈ N with
n ≤ m, denote [n] as the set {1, · · · , n} and [n,m] as the set {n, · · · ,m − 1,m}.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 107

3.1 Verifiable Random Functions

We define a verifiable random function VRF = (Gen,Eval,Verify) as a tuple of
three probabilistic polynomial time algorithms [MRV99].

Gen(1λ) → (vk, sk): The key generation algorithm takes as input the security
parameter 1λ and outputs a verification key vk and a secret key sk.

Eval(sk,X) → (Y, π): The evaluation algorithm takes as input the secret key sk
and an input X ∈ {0, 1}n, and outputs a value Y ∈ Y and a proof π, where
Y is some finite set.

Verify(vk,X, (Y, π)) → 0/1: The verification algorithm takes as input the verifi-
cation key vk, X ∈ {0, 1}n, Y ∈ Y and a proof π, and outputs a bit.

Definition 1. We say a tuple of polynomial time algorithms VRF = (Gen,
Eval,Verify) is a verifiable random function if all of the following requirements
hold:
Correctness. For all λ ∈ N, all (vk, sk) ← Gen(1λ) and all X ∈ {0, 1}n, if
(Y, π) ← Eval(sk,X) then Verify(vk,X, (Y, π)).
Uniqueness. For an arbitrary string vk ∈ {0, 1}∗ (not necessarily generated by
Gen) and all X ∈ {0, 1}n, there exists at most a single Y ∈ Y for which there
exists an accepting proof π.
Pseudorandomness. This security notion is defined by the following game
between a challenger and an adversary A.

Setup. The challenger runs (vk, sk) ← Gen(1λ) and gives vk to A.
Phase 1. A adaptively submits an evaluation query X ∈ {0, 1}n to the chal-
lenger, and the challenger returns (Y, π) ← Eval(sk,X).
Challenge Query. At any point, A may submit a challenge input X∗ ∈
{0, 1}n. Here, we require that A has not submitted X∗ as an evaluation query
in Phase 1. The challenger picks a random coin coin ← {0, 1}. Then it runs
(Y ∗

0 , π∗
0) ← Eval(sk,X∗) and picks Y ∗

1 ← Y. Finally it returns Y ∗
coin to A.

Phase 2. A may continue on submitting evaluation queries as in Phase 1
with the added restriction that X �= X∗.
Guess. Finally, A outputs a guess ĉoin for coin.

The advantage of A is defined as |Pr[ĉoin = coin] − 1
2 |. We say that the VRF

satisfies (adaptive) pseudorandomness if the advantage of any probabilistic poly-
nomial time algorithm A is negligible.

3.2 Predicate Encryption

We use the standard syntax of predicate encryption (PE) schemes [BW07,
KSW08,AFV11], where P (X) = 1 signifies the ability to decrypt. We briefly
recall the security notion of PE schemes and refer the exact definition to the
full version. In our paper, we define the notion of selectively secure and weakly
attribute hiding using a standard game-based security formalization. The former
notion requires the challenge ciphertext to leak no information on the message,

108 S. Katsumata

given the challenge attribute at the outset of the game. The latter notion also
requires that the challenge ciphertext leaks no information on the attribute,
if the adversary is only allowed to obtain secret keys that do no decrypt the
challenge ciphertext.

3.3 Background on Lattices

For an integer m > 0, let DZm,σ be the discrete Gaussian distribution over Z
m

with parameter σ > 0. Other lattice notions are defined in the standard way.

Hardness Assumption. We define the Learning with Errors (LWE) problem
introduced by Regev [Reg05].

Definition 2 (Learning with Errors). For integers n,m, a prime q > 2, an
error distribution over χ over Z, and a PPT algorithm A, an advantage for the
learning with errors problem LWEn,m,q,χ of A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣∣∣ Pr

[A(
A,A�s + z

)
= 1

] − Pr
[A(

A,w + z
)

= 1
]∣∣∣

where A ← Z
n×m
q , s ← Z

n
q , w ← Z

m
q , z ← χ. We say that the LWE assumption

holds if AdvLWEn,m,q,χ

A is negligible for all PPT A.

The (decisional) LWEn,m,q,DZ,αq
for αq > 2

√
n has been shown by Regev

[Reg05] to be as hard as approximating the worst-case SIVP and GapSVP
problems to within Õ(n/α) factors in the �2-norm in the worst case. In the
subsequent works, (partial) dequantumization of the reduction were achieved
[Pei09,BLP+13].

Gadget Matrix. We use the gadget matrix G ∈ Z
n×m
q defined in [MP12].

Here, G is a full rank matrix such that the lattice Λ⊥(G) has a publicly known
basis TG with ‖TG‖GS ≤ √

5. Further properties on G can be found in [MP12]
or the full version.

Sampling Algorithms. The following lemma states useful algorithms for sam-
pling short vectors from lattices.

Lemma 1 [GPV08,ABB10,CHKP10,MP12]. Let n,m, q > 0 be integers with
m > 2n�log q�.
– TrapGen(1n, 1m, q) → (A,TA): There exists a randomized algorithm that

outputs a matrix A ∈ Z
n×m
q and a full-rank matrix TA ∈ Z

m×m, where
TA is a basis for Λ⊥(A), A is statistically close to uniform and ‖TA‖GS =
O(

√
n log q).

– SampleLeft(A,B,u,TA, σ) → e: There exists a randomized algorithm that,
given matrices A,B ∈ Z

n×m
q , a vector u ∈ Z

n
q , a basis TA ∈ Z

m×m for
Λ⊥(A), and a Gaussian parameter σ > ‖TA‖GS ·ω(

√
log m), outputs a vector

e ∈ Z
2m sampled from a distribution which is negl(n)-close to DΛ⊥

u ([A|B]),σ.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 109

3.4 Background on Bilinear Maps

We define certified bilinear group generators following [HJ16]. We require that
there is an efficient bilinear group generator algorithm GrpGen that on input
1λ outputs a description Π of bilinear groups G,GT with prime order p and
a map e : G × G → GT . We require GrpGen to be certified in the sense that
there is an efficient algorithm GrpVfy that on input a description of the bilinear
groups, outputs the validity of the description. Furthermore, we require that each
group element has a unique encoding, which can be efficiently recognized. For
the precise definition, we refer [HJ16]. The following is the hardness assumption
we use in our scheme.

Definition 3 (L-Diffie-Hellman Assumption). For a PPT algorithm A, an
advantage for the decisional L-Diffie-Hellman problem L-DDH of A with respect
to GrpGen is defined as follows:

AdvL-DDH
A = |Pr[A(Π, g, h, gα, gα2

, · · · , gαL

, Ψ0) → 1]

− Pr[A(Π, g, h, gα, gα2
, · · · , gαL

, Ψ1) → 1]|,
where Π ← GrpGen(1λ), α ← Z

∗
p, g, h ← G, Ψ0 = e(g, h)1/α and Ψ1 ← GT . We

say that L-DDH assumption holds if AdvL-DDH
A is negligible for all PPT A.

4 Encoding Predicates with Arithmetic Circuits

In this section, we formalize the intuition outlined in the introduction on how
to encode predicates as circuits. Here, we view predicates as simply a function
P : X → {0, 1} over some domain X with image {0, 1}. Furthermore, to capture
the algebraic properties of arithmetic circuits, we adapt the view of treating
circuits as polynomials and vice versa.

4.1 Predicate Encoding Scheme

We formalize our main tool: predicate encoding scheme.

Definition 4 (Predicate Encoding Scheme). Let P = {Pλ}λ∈N be a family
of set of efficiently computable predicates where Pλ is a set of predicates of the
form P : Xλ → {0, 1} for some input space Xλ, and let R = {Rλ}λ∈N be a
family of rings. We define a predicate encoding scheme over a family of rings R
for a family of set of predicates P, as a tuple of deterministic polynomial time
algorithms PES = (EncInpt,EncPred) such that

– EncInpt(1λ, x) → x̂ : The input encoding algorithm takes as inputs the security
parameter 1λ and input x ∈ Xλ, and outputs an encoding x̂ ∈ {0Rλ

, 1Rλ
}t ⊆

Rt
λ, where t = t(λ) is an integer valued polynomial and 0Rλ

, 1Rλ
denote the

zero and identity element of the ring Rλ, respectively.
– EncPred(1λ, P) → Ĉ : The predicate encoding algorithm takes as inputs the

security parameter 1λ and a predicate P ∈ Pλ, and outputs a polynomial
representation of an arithmetic circuit Ĉ : Rt

λ → Rλ. We denote Ĉλ as the
set of arithmetic circuits {Ĉ | Ĉ ← EncPred(1λ, P),∀P ∈ Pλ}.

110 S. Katsumata

Correctness. We require a predicate encoding scheme over a family of rings R
for a family of set of predicates P to satisfy the following: for all λ ∈ N there
exist disjoint subsets Sλ,0, Sλ,1 ⊂ Rλ (i.e., Sλ,0 ∩ Sλ,1 = φ), such that for all
predicates P ∈ Pλ, all inputs x ∈ Xλ if P (x) = b then Ĉ(x̂) ∈ Sλ,b, where
x̂ ← EncInpt(1λ,x), Ĉ ← EncPred(1λ, P), and b ∈ {0, 1}.

Degree. We say that a predicate encoding scheme PES is of degree d = d(λ) if
the maximal degree of the circuits in Ĉλ (in their polynomial representation) is
d. In case d = 1, we say PES is linear.

In the following, we will be more loose in our use of notations. For simplicity,
we omit the subscripts expressing the domain or the security parameter such as
0R, Sλ,b,R� when it is clear from context. We also omit the expression family
and simply state that it is a predicate encoding scheme over a ring R for a
set of predicates P . Finally, in the following we assume that the algorithms
EncInpt(1λ, ·),EncPred(1λ, ·) will implicitly take the security parameter 1λ as
input and omit it unless stated otherwise.

4.2 Encoding Multi-dimensional Equality Predicates

Here, we propose two predicate encoding schemes for the multi-dimensional
equality predicate10 (MultD-Eq) whose constructions are motivated by differ-
ent applications. As we show later, the multi-dimensional equality predicate is
expressive enough to encode many useful predicates that come up in cryptog-
raphy (e.g., bit-fixing, subset conjunction, range conjunction predicates), that
being for constructions of cryptographic primitives or for embedding secret infor-
mation during in the security proof.

We first define the domains on which the multi-dimensional equality predi-
cates MultD-Eq are defined over, and then formally define what they are.

Definition 5 (Compatible Domains for MultD-Eq). Let p,D, � be positive
integers. We call a pair of domains (X ,Y) ⊆ Z

D×�
p ×Z

D×�
p to be compatible with

the multi-dimensional equality predicates if it satisfies the following:
For all X ∈ X ,Y ∈ Y and for all i ∈ [D], there exists at most one j ∈ [�]

such that Xi,j = Yi,j, where Xi,j and Yi,j denote the (i, j)-th element of X and
Y respectively.

Definition 6 (MultD-Eq Predicates). Let p,D, � be positive integers and let
(X ,Y) ⊆ Z

D×�
p × Z

D×�
p be any compatible domains for MultD-Eq. Then, for all

Y ∈ Y, the multi-dimensional equality predicate MultD-EqY : X → {0, 1} is
defined as follows:
10 This predicate is presented in the works of [GMW15] as the AND-OR-EQ predicate

satisfying the so called “at most one” promise. The conceptual differences between
their formalization and ours is that, they view predicates as functions on both vari-
ables X and Y, whereas we view only X as a variable and treat Y as a constant.
(Compare [GMW15] Sect. 3.1 and our Definition 6).

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 111

MultD-EqY(X) =

{
1 if ∀i ∈ [D], ∃unique j ∈ [�] suchthat Xi,j = Yi,j

0 otherwise
,

where Xi,j and Yi,j denote the (i, j)-th element of X and Y respectively.

Note that MultD-EqY(X) is satisfied only if for each i ∈ [D], there exists
exactly one j ∈ [�] such that Xi,j = Yi,j . Furthermore, since we restrict (X,Y)
to be over the compatible domains (X ,Y) for MultD-Eq, for all i ∈ [D] we will
never have Xi,j = Yi,j and Xi,j′ = Yi,j′ for distinct j, j′ ∈ [�]. This restriction may
appear contrived and inflexible at first, however, this proves to be very useful
for constructing predicate encoding schemes with nice qualities, and in fact does
not seem to lose much generality in light of expressiveness of the predicate.
In particular, by appropriately instantiating the compatible domains, we can
embed many useful predicates into the MultD-Eq predicate. Further discussions
are given in Sect. 4.3.

We now present two types of predicate encoding schemes for the MultD-Eq
predicate. The correctness of the two schemes are provided in the full version.

Functionality Preserving Encoding Scheme PESFP. Our first predicate
encoding scheme preserves the functionality of the multi-dimensional equality
predicate and can be viewed as an efficient polynomial representation of the
circuit computing MultD-EqY. This encoding scheme will be used for our VRF
construction in Sect. 5.

Lemma 2. Let q = q(λ), p = p(λ),D = D(λ), � = �(λ) be positive integers and
let (X ,Y) ⊆ Z

D×�
p ×Z

D×�
p be any compatible domains for the MultD-Eq predicate.

Further, let P = {MultD-EqY : X → {0, 1} | Y ∈ Y} be a set of MultD-Eq
predicates. Then the following algorithms PESFP = (EncInptFP,EncPredFP) is a
predicate encoding scheme over the ring Zq with degree d = Dζ where ζ =
�log p	 + 1:

– EncInptFP(X) → X̂ : It takes as input X ∈ X , and outputs an encoding X̂ ∈
{0, 1}D�ζ as follows:

X̂ = (Xi,j,k)(i,j,k)∈[D]×[�]×[ζ],

where Xi,j,k is the k-th bit of the binary representation of the (i, j)-th element
of X. Here, the output tuple (Xi,j,k) is sorted in the lexicographical order.

– EncPredFP(MultD-EqY) → ĈY : It takes as input a predicate MultD-EqY ∈ P,
and outputs the following polynomial representation of an arithmetic circuit
ĈY : ZD�ζ

q → Zq:

ĈY(X̂) =
D∏

i=1

�∑

j=1

ζ∏

k=1

(
(1 − Ŷi,j,k) + (−1 + 2Ŷi,j,k) · X̂i,j,k

)
,

where X̂, Ŷ ∈ {0, 1}D�ζ are encodings of X,Y respectively.

112 S. Katsumata

The correctness of PESFP holds for the two disjoint subsets S0 = {0}, S1 =
{1} ⊂ Zq.

Linear Encoding Scheme. PESLin. Our second construction is a linear pred-
icate encoding scheme. It achieves linearity by increasing the length of the
encoded input X̂ and takes advantage of the fact that we can change the func-
tionality of the encoded arithmetic circuit Ĉ; the output of Ĉ can be values
other than 0 or 1, whereas outputs of predicates are defined to be in {0, 1}. This
encoding scheme will be used for our lattice-based PE scheme for the MultD-Eq
predicate in Sect. 6.

Lemma 3. Let q = q(λ), p = p(λ),D = D(λ), � = �(λ) be positive integers
such that q > D and let (X ,Y) ⊆ Z

D×�
p × Z

D×�
p be any compatible domains

for the MultD-Eq predicate. Further, let P = {MultD-EqY : X → {0, 1} | Y ∈
Y} be a set of MultD-Eq predicates. Then the following algorithms PESLin =
(EncInptLin,EncPredLin) is a predicate encoding scheme over the ring Zq with
degree d = 1, i.e., a linear scheme, where we set L = 2ζ and ζ = �log p	 + 1
below.

– EncInptLin(X) → X̂ : It takes as input X ∈ X , and outputs an encoding X̂ ∈
{0, 1}D�L defined as follows:

X̂ =
(ζ∏

k=1

(
Xi,j,k

)wk
)

(i,j,w)∈[D]×[�]×[L]
,

where wk and Xi,j,k is the k-th bit of the binary representation of w − 111

and the (i, j)-th element of X, respectively. In case Xi,j,k = wk = 0, we define
(Xi,j,k)wk to be 1.

– EncPredLin(MultD-EqY) → ĈY : It takes as input a predicate MultD-EqY ∈ P,
and outputs the following polynomial representation of an arithmetic circuit
ĈY : ZD�L

q → Zq:

ĈY(X̂) = D −
D∑

i=1

�∑

j=1

L∑

w=1

ai,j,w · X̂i,j,w,

where ai,j,w ∈ {−1, 0, 1} ⊂ Zq is the coefficient for the term X̂i,j,w =∏ζ
k=1(Xi,j,k)wk of the polynomial

ζ∏

k=1

(
(1 − Yi,j,k) + (−1 + 2Yi,j,k) · Xi,j,k

)
.

Here we treat Y as a constant.
11 This inconvenient notion is due to the fact that the bit length of p and L may differ

by one in case p = 2n − 1 for n ∈ N.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 113

The correctness of PESLin holds for the two disjoint subsets S0 =
{1, · · · ,D}, S1 = {0} ⊂ Zq.

Remark 1. In some applications, the compatible domains (X ,Y) for MultD-Eq
will have some additional structures that we can exploit to obtain more efficient
encoding schemes. For example, in some case for all X ∈ X , all of the rows of X
will be equal, i.e., Xi = Xi′ for all i, i′ ∈ [D] where Xi denotes the i-th row of
X. In this case, we can reduce the output length of EncInpt by a factor of D by
discarding the redundant terms.

4.3 Expressiveness of Multi-dimensional Equality Predicates

Here we comment on the expressiveness of the multi-dimensional equality pred-
icates MultD-Eq. Notably, many predicates that come up in cryptography (e.g.,
bit-fixing, subset conjunction, range conjunction predicates) can be expressed as
the multi-dimensional equality predicate instantiated with appropriate compat-
ible domains (X ,Y). Combining this with the result of the previous section, we
obtain a functionality preserving (PESFP) or a linear (PESLin) encoding scheme
for all those predicates. We provide a thorough discussion in the full version.

5 Verifiable Random Functions

Modified Admissible Hash Functions. In this work, we use the modified
admissible hash function of [Yam17] to prove security of our VRF. This allows
us to use the same techniques employed by admissible hash functions, while
providing for a more compact representation. The following is obtained by the
results of [Jag15,Yam17].

Definition 7 (Modified Admissible Hash Function). Let n = n(λ), � = �(λ)
and η = η(λ) be an integer-valued function of λ such that n, � = Θ(λ) and
η = ω(log λ), and {Cn : {0, 1}n → {0, 1}�}n∈N be a family of error correcting
codes with minimal distance c · � for a constant c ∈ (0, 1/2). Let

KMAH = {T ⊆ [2�] | |T| < η} and XMAH = {0, 1}n.

Then, we define the modified admissible hash function FMAH : KMAH × XMAH →
{0, 1} as

FMAH(T,X) =

{
0, if T ⊆ S(X)
1, otherwise

where S(X) = {2i − C(X)i | i ∈ [�]}.

(8)

In the above, C(X)i is the i-th bit of C(X) ∈ {0, 1}�.

We also need the notion of partitioning functions as introduced in [Yam17]
to prove security of our VRF. Informally, there exists a PPT algorithm PrtSmp
called the partitioning function that given some polynomial function Q(λ) and a
noticeable function ε0(λ), outputs a set T ∈ KMAH such that for all X∗, {Xi}Q

i=1 ∈
XMAH the probability of FMAH(T,X∗) = 0∧∧Q

i=1 FMAH(T,X(i)) = 1 is noticeable.
The concrete definition can be found in [Yam17] or in the full version.

114 S. Katsumata

5.1 Construction

Below, n, �, η,S(·) are the parameters and function specified by the modified
admissible hash function and ζ is set as �log p	 + 1. Note that n, � = Θ(λ) and
η = ω(log λ).

Gen(1λ): On input 1λ, it runs Π ← GrpGen(1λ) to obtain a group description.
It then chooses random generators g, h ← G

∗ and w0, wi,k ← Zp for (i, k) ∈
[η] × [ζ]. Finally, it outputs

vk =
(
Π, g, h, g0 = gw0 ,

(
gi,k = gwi,k

)
(i,k)∈[η]×[ζ]

)
,

sk =
(
w0, (wi,k)(i,k)∈[η]×[ζ]

)
.

Eval(sk,X): On input X ∈ {0, 1}n, it first computes S(X) = {s1, · · · , s�} ∈ [2�].
In the following, let sj,k be the k-th bit of the binary representation of sj ,
where k ∈ [ζ]. It then computes

⎧
⎨

⎩
θi′ =

∏i′

i=1

∑�
j=1

∏ζ
k=1

(
(1 − sj,k) + (−1 + 2sj,k) · wi,k

)

θi,j,k′ =
∏k′

k=1

(
(1 − sj,k) + (−1 + 2sj,k) · wi,k

) ,

for i′ ∈ [η] and (i, j, k′) ∈ [η]× [�]× [ζ], and defines θ := θη. Finally, it outputs

Y = e(g, h)θ/w0

π =
(
π0 := gθ/w0 ,

(
πi′ := gθi′)

i′∈[η]
,
(
πi,j,k′ := gθi,j,k′)

(i,j,k′)∈[η]×[�]×[ζ]

)
.

Verify(vk,X, (Y, π)): First, it checks the validity of vk. It outputs 0 if any of the
following properties are not satisfied.

1. vk is of the form
(
Π, g, h, g0,

(
gi,k

)
(i,k)∈[η]×[ζ]

)
.

2. GrpVfy(Π) = 1 and GrpVfy(Π, s) = 1 for all s ∈ (g, h, g0) ∪ (gi,k)(i,k)∈[η]×[ζ].
Then, it checks the validity of X,Y and π. In doing so, it first prepares the
terms Φi′ , ḡi,j,k′ for all i′ ∈ [η], (i, j, k′) ∈ [η] × [�] × [ζ] defined as

Φi′ :=
�∏

j=1

πi′,j,ζ , and ḡi,j,k′ := g1−sj,k′ · (gi,k′)−1+2sj,k′ .

It outputs 0 if any of the following properties are not satisfied.
3. X ∈ {0, 1}n, Y ∈ GT , π is of the above form
4. It holds that for all i′ ∈ [η − 1] and (i, j, k′) ∈ [η] × [�] × [ζ − 1],

e(π1, g) = e(Φ1, g), e(πi,j,1, g) = e(ḡi,j,1, g),
e(πi′+1, g) = e(Φi′+1, πi′), e(πi,j,k′+1, g) = e(ḡi,j,k′+1, πi,j,k′).

5. It holds that e(πη, g) = e(π0, g0) and e(π0, h) = Y .

If all the above checks are passed, it outputs 1.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 115

5.2 Correctness, Unique Provability, and Pseudorandomness

Correctness and unique provability for the above scheme can be shown by simple
calculation. The proof is provided in the full version. The following theorem
addresses the pseudorandomness of the scheme.

Theorem 1 (Pseudorandomness). Our scheme satisfies pseudorandomness
assuming L-DDH with L = ηζ = ω(log2 λ).

Proof. Let A be a PPT adversary that breaks the pseudorandomness of the
scheme with non-negligible advantage. Let ε = ε(λ) be its advantage and Q =
Q(λ) be the upper bound on the number of evaluation queries it makes. Here,
since A is a valid adversary, Q is a polynomially bounded function and there
exists a noticeable function ε0 = ε0(λ) such that ε(λ) ≥ ε0(λ) holds for infinitely
many λ. Then, by the definition of partitioning functions for the admissible
hash function, if we run T ← PrtSmpMAH(1λ, Q(λ), ε0(λ)), we have T ⊆ [2�] and
|T| < η with probability 1 for all sufficiently large λ. Therefore, in the following,
we assume this condition always holds. We show security of the scheme through
a sequence of games. In each game, a value coin′ ∈ {0, 1} is defined. While it
is set coin′ = ĉoin in the first game, these values may be different in the later
games. In the following we define Ei to be the event that coin′ = coin in Gamei.

Game0: This is the actual security game. Since Y = GT , when coin = 1, a
random element Y ∗

1 ← GT is returned to A as the challenge query. At the
end of the game, A outputs a guess ĉoin for coin. Finally, the challenger sets
coin′ = ĉoin. By assumption on the adversary A, we have

∣∣Pr[E0] − 1
2

∣∣ =
∣∣Pr[coin′ = coin] − 1

2

∣∣ =
∣∣∣Pr[ĉoin = coin] − 1

2

∣∣∣ = ε.

Game1: In this game, we change Game0 so that the challenger performs an addi-
tional step at the end of the game. Namely, the challenger first runs the
partitioning function T ← PrtSmpMAH(1λ, Q(λ), ε0(λ)). As noted earlier, we
have |T| ⊆ [2�] and |T| < η. Then, it checks whether the following condition
holds:

FMAH(T,X(1)) = 1 ∧ · · · = ∧ FMAH(T,X(Q)) = 1 ∧ FMAH(T,X∗) = 0

⇐⇒
(
T �⊆ S(X(1))

)
∧ · · · ∧

(
T �⊆ S(X(Q))

)
∧

(
T ⊆ S(X∗)

)
(9)

where X∗ is the challenge input and {X(i)}i∈[Q] are the inputs for which A
has queried the evaluation of the function. If it does not hold, the challenger
ignores the output ĉoin of A and sets coin′ ← {0, 1}. In this case, we say that
the challenger aborts. If condition (9) holds, the challenger sets coin′ = ĉoin.
By the property of the partitioning function we have |Pr[E1] − 1/2| ≥ τ for
infinitely many λ, where τ = τ(λ) is a noticeable function. See the full version
for a formal treatment concerning the partitioning function.

Game2 : In this game, we change the way w0, (wi,k)(i,k)∈[η]×[ζ] are chosen. First,
at the beginning of the game, the challenger picks T ← PrtSmpMAH(1λ, Q(λ),

116 S. Katsumata

ε0(λ)) and parses it as T = {t1, · · · , tη′} ⊂ [2�]. Note that changing the time
on which the adversary runs the algorithm is only conceptual. Now, recalling
that by our assumption η′ < η, it sets ti = 0 for i ∈ [η′+1, η]. Next, it samples
α ← Z

∗
p and w̃0, w̃i,k ← Zp for (i, k) ∈ [η] × [ζ]. Finally, the challenger sets

w0 = w̃0 · α, wi,k = w̃i,k · α + ti,k for (i, k) ∈ [η] × [ζ], (10)

where ti,k is the k-th bit of the binary representation of ti. The rest of the
game is identical to Game1. Here, the statistical distance of the distributions
of w0, (wi,k)(i,k)∈[η]×[ζ] in Game1 and Game2 is at most (ηζ + 1)/p, which is
negligible. Therefore, we have |Pr[E1] − Pr[E2]| = negl(λ).

Before, getting into Game3, we introduce polynomials (associated with each
input X) that implicitly embeds the information on the partitioning function
FMAH(T,X), i.e., the form of the polynomials depend on whether T ⊆ S(X) or
not. For any T ⊆ [2�] with |T| = η′ < η and X ∈ {0, 1}n (i.e., for any S(X)), we
define the polynomial PT⊆S(X)(Z) : Zp → Zp as

PT⊆S(X)(Z) =
η∏

i=1

�∑

j=1

ζ∏

k=1

(
(1 − sj,k) + (−1 + 2sj,k) · (w̃i,kZ + ti,k)

)
, (11)

where {sj,k}(j,k)∈[�]×[ζ] and {ti,k}(i,k)∈[η]×[ζ] are defined as in Game2. Note that
PT⊆S(X)(α) = θ. Our security proof is built upon the following lemma on the
partitioning function.

Lemma 4. There exists RT⊆S(X)(Z) : Zp → Zp such that

PT⊆S(X)(Z) =

{
1 + Z · RT⊆S(X)(Z), if FMAH(T,X) = 0
Z · RT⊆S(X)(Z), if FMAH(T,X) = 1

.

In other words, PT⊆S(X)(Z) is not divisible by Z if and only if T ⊆ S(X).

This can be checked by the property of the functionality preserving encoding
scheme PESFP scheme. We omit the proof of this lemma to the full version. With
an abuse of notation, for all X ∈ {0, 1}n, we define the following polynomials
that map Zp to Zp, which are defined analogously to the values computed during
the Eval algorithm:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θX
i′ (Z) =

i′∏

i=1

�∑

j=1

ζ∏

k=1

(
(1 − sj,k) + (−1 + 2sj,k)(w̃i,kZ + ti,k)

)

θX
i,j,k′(Z) =

k′∏

k=1

(
(1 − sj,k) + (−1 + 2sj,k)(w̃i,kZ + ti,k)

)
,

for i′ ∈ [η] and (i, j, k′) ∈ [η] × [�] × [ζ], and define θX(Z) := θX
η (Z). Note that

we have PT⊆S(X)(Z) = θX(Z), θi′ = θX
i′ (α), θi,j,k′ = θX

i,j,k′(α), and θ = θX(α).

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 117

Game3: Recall that in the previous game, the challenger aborts at the end of the
game if condition (9) is not satisfied. In this game, we change the game so
that the challenger aborts as soon as the abort condition becomes true. Since
this is only a conceptual change, we have Pr[E2] = Pr[E3].

Game4: In this game, we change the way the evaluation queries are answered.
When the adversary A queries an input X to be evaluated, it first checks
whether FMAH(T,X) = 1, i.e., it checks if condition (9) is satisfied. If it
does not hold, it aborts as in Game3. Otherwise, it computes the polynomial
RT⊆S(X)(Z) ∈ Zp[Z] such that PT⊆S(X)(Z) = Z · RT⊆S(X)(Z), and returns

Y = e(gRT⊆S(X)(α)/w̃0 , h),

π =
(
π0 = gRT⊆S(X)(α)/w̃0 ,

(
πi′ = gθX

i′ (α)
)
i′∈[η]

,
(
πi,j,k′ = gθX

i,j,k′ (α))
(i,j,k′)∈[η]×[�]×[ζ]

)
.

Note that existence of such a polynomial PT⊆S(X)(Z) is guaranteed by
Lemma 4. By the definition of θX

i′ (Z) and θX
i,j,k′(Z), the components πi′ and

πi,j,k′ are correctly generated. Furthermore, we have

RT⊆S(X)(α)
w̃0

=
α · RT⊆S(X)(α)

α · w̃0
=

PT⊆S(X)(α)
w0

=
θ

w0
.

Therefore, Y and π0 are also correctly generated, and the challenger simulates
the evaluation queries perfectly. Hence, Pr[E3] = Pr[E4].

Game5: In this game, we change the way the challenge ciphertext is created
when coin = 0. Recall in the previous games when coin = 0, we created a
valid Y ∗

0 = Eval(sk,X∗) as in the real scheme. If coin = 0 and FMAH(X∗) = 0
(i.e., if it does not abort), to create Y ∗

0 , the challenger first computes the
polynomial RT⊆S(X∗)(Z) ∈ Zp[X] such that PT⊆S(X∗)(Z) = 1+Z·RT⊆S(X∗)(Z),
whose existence is guaranteed by Lemma 4. It then sets,

Y ∗
0 =

(
e(g, h)1/α · e(g, h)RT⊆S(X∗)(α)

)1/w̃0

and returns it to A. Here, the above term can be written equivalently as

(
e(g, h)1/α · e(g, h)RT⊆S(X∗)(α)

)1/w̃0

= e(g(1+αRT⊆S(X∗)(α))/αw̃0 , h)

= e(gPT⊆S(X∗)(α)/w0 , h) = e(gθ/w0 , h).

Therefore, the view of the adversary in unchanged. Hence, Pr[E4] = Pr[E5].
Game6: In this game, we change the challenge value to be a random value in

GT regardless of whether coin = 0 of coin = 1. Namely, the challenger sets
Y ∗ ← GT . We show in the full version that assuming L-DDH is hard for
L = ηζ, we have | Pr[E5] = Pr[E6] |= negl(λ).

118 S. Katsumata

Analysis. From the above, we have |Pr[E6] − 1/2| = |Pr[E1] − 1/2 +∑5
i=1(Pr[Ei+1] −Pr[Ei])| ≥ |Pr[E1] − 1/2| − ∑5

i=1 |Pr[Ei+1] − Pr[Ei]| ≥ τ(λ) −
negl(λ), for infinitely many λ. Since Pr[E6] = 1/2, this implies τ(λ) ≤ negl(λ)
for infinitely many λ, which is a contradiction.

5.3 Achieving Smaller Proof Size

In this section, we propose a variant of the VRF presented in Sect. 5.1 with a
much shorter proof size. In particular, using the idea outlined in the technical
overview, we obtain a VRF with proof size |π| = ω(log λ) and verification key
size |vk| = ω(

√
λ log λ).

Preparation. To make the presentation more clean, we define the notion of
power tuples. We define power tuples P(W) for a tuple W , analogously to
power sets. Namely, we create a tuple that contains all the subsequence of W
in lexicographical order, i.e., P(W) = (w1, w2, w3, w1w2, w1w3, w2w3, w1w2w3)
for W = (w1, w2, w3). Here, we do not consider the empty string as a sub-
sequence of W . For a group element g ∈ G or GT and a tuple W with ele-
ments in Zp, we denote gP(W) as the tuple (gw | w ∈ P(W)). Furthermore, for
tuples W,W ′ with elements in Zp we define e(gP(W), gP(W ′)) to be the tuple
(e(g, g)ww′ | w ∈ W,w′ ∈ W ′). Assume all the tuples are sorted in the lexico-
graphical order.

Construction. Below, we provide a VRF with small proof size.

Gen(1λ): On input 1λ, it runs Π ← GrpGen(1λ) to obtain a group description. It
then chooses random generators g, h ← G

∗, w0, wi,k ← Zp for (i, k) ∈ [η]× [ζ]
and sets Li = (wi,k)k∈[
ζ/2�] and Ri = (wi,k)k∈[
ζ/2�+1,ζ]. Finally, it outputs

vk =
(
Π, g, h, g0 := gw0 , (gP(Li), gP(Ri))i∈[η]

)
, sk =

(
w0, (wi,k)(i,k)∈[η]×[ζ]

)
.

Note that we have e(gP(Li), gP(Ri)) = e(g, g)P(Wi) where Wi = (wi,k)k∈[ζ].
Eval(sk,X): On input X ∈ {0, 1}n, it first computes S(X) = {s1, · · · , s�} ∈ [2�].

In the following, let sj,k be the k-th bit of the binary representation of sj ,
where k ∈ [ζ]. It then computes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θi =
�∑

j=1

ζ∏

k=1

(
(1 − sj,k) + (−1 + 2sj,k) · wi,k

)

θ[1:i′] =
i′∏

i=1

�∑

j=1

ζ∏

k=1

(
(1 − sj,k) + (−1 + 2sj,k) · wi,k

)
,

for i ∈ [η], i′ ∈ [2, η] and sets θ := θ[1:η]. Note that we do not require i′ = 1
since θ1 = θ[1:1]. Finally, it outputs

Y = e(g, h)θ/w0 , π =
(
π0 := gθ/w0 ,

(
πi := gθi

)
i∈[η]

,
(
π[1:i′] := gθ[1:i′]

)
i′∈[2,η]

)
.

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 119

Verify(vk,X, (Y, π)): First, it checks the validity of vk. It outputs 0 if any of the
following properties are not satisfied.
1. vk is of the form

(
Π, g, h, g0, (gP(Li), gP(Ri))i∈[η]

)
.

2. GrpVfy(Π) = GrpVfy(Π, s) = 1 for all s ∈ (g, h, g0) ∪ (gP(Li), gP(Ri))i∈[η].

Then, it checks the validity of X,Y and π. In doing so, it first computes the
coefficients (αS)S⊆[ζ] of the multi-variate polynomial

p(Z1, · · · ,Zζ) =
�∑

j=1

ζ∏

k=1

(
(1 − sj,k) + (−1 + 2sj,k) · Zk

)
=

∑

S⊆[ζ]

αS

∏

k∈S

Zk.

Next, for all i ∈ [η] and S ⊆ [ζ], it sets LS = S ∩ [�ζ/2] and RS = S ∩
[�ζ/2	 + 1, ζ], and computes Φi,S as

Φi,S = e(g
∏

k∈LS
wi,k , g

∏
k∈RS

wi,k).

Here, in case LS = φ (resp. RS = φ), we define
∏

k∈LS
wi,k (resp.

∏
k∈RS

wi,k)
to be 1. Note that these values can be computed efficiently, since gP(Li), gP(Ri)

are given as part of the verification key. It outputs 0 if any of the following
properties are not satisfied.
3. X ∈ {0, 1}n, Y ∈ GT , π is of the form π = (π0, (πi)i∈[η], (π[1:i′])i′∈[2,η]).
4. It holds that for all i ∈ [η] and i′ ∈ [3, η],

e(πi, g) =
∏

S⊆[ζ]

ΦαS

i,S , e(π[1:2], g) = e(π1, π2), e(π[1:i′], g) = e(π[1:i′−1], πi′).

5. It holds that e(π[1:η], g) = e(π0, g0) and e(π0, h) = Y .
If all the above checks are passed, it outputs 1.

The correctness, unique provability and pseudorandomness of the above VRF
can be proven in a similar manner to the VRF in Sect. 5.1. The proof is provided
in the full version.

6 Predicate Encryption for MultD-Eq Predicates

In this section, we show how to construct a predicate encryption scheme for the
multi-dimensional equality predicates MultD-Eq. This directly yields predicate
encryption schemes for all the predicates presented in Sect. 4.3. Due to the sym-
metry of the MultD-Eq predicate and the compatible domains (X ,Y), we obtain
both key-policy and ciphertext-policy predicate encryption schemes.

120 S. Katsumata

6.1 Embedding Predicate Encoding Schemes into Matrices

The following definition gives a sufficient condition for constructing predicate
encryption schemes. For discussions and comparisons with the related definition
of [BGG+14] for attribute-based encryption schemes are given in the full version.

Definition 8. We say the deterministic algorithms (Evalpk,Evalct-priv,Evalsim)
are αC-predicate encryption (PE) enabling for a family of arithmetic circuits
C = {C : Zt

q → Zq} if they are efficient and satisfy the following properties:

– Evalpk

(
C ∈ C, B0,

(
Bi

)
i∈[t]

∈ Z
n×m
q

) → BC ∈ Z
n×m
q

– Evalct-priv

(
C ∈ C, c0,

(
ci

)
i∈[t]

∈ Z
n
q

)
→ cC ∈ Z

m
q

– Evalsim
(
C ∈ C, R0,

(
Ri

)
i∈[t]

∈ Z
m×m

)
→ RC ∈ Z

m×m

We further require that the following holds:

1. Evalpk(C, (AR0 − G), (ARi − xiG)i∈[t]) = A · Evalsim(C,R0, (Ri)i∈[t]) −
C(x)G for any x = (x1, · · · , xt) ∈ {0, 1}t.

2. If c0 = (B0 + G)�s + z0 and ci = (Bi + xiG)�s + zi for some s ∈ Z
n
q , and

z0, zi ← DZm,β , xi ∈ {0, 1} for all i ∈ [t], then ‖cC − (BC + C(x)G)�s‖2 <
αC · β

√
m with all but negligible probability.

3. If Ri ← {−1, 1}m×m for all i ∈ [0, t], then s1(RC) < αC with all but negligible
probability.

The linear predicate encoding scheme PESLin for the MultD-Eq predicates
(Sect. 4.2, Lemma 3) provides us with a family of arithmetic circuits Ĉ that allows
for αĈ-PE enabling algorithms (Evalpk,Evalct-priv,Evalsim). In particular we have
the following lemma, which we provide the proof in the full version.

Lemma 5. There exist αĈ-PE enabling algorithms for the family of arithmetic
circuits Ĉ defined by the predicate encoding scheme PESLin for the MultD-Eq
predicates defined over Z

D×�
p , where αĈ = C · max{m

√
m/n,

√
D�pm} for some

absolute constant C > 0.

6.2 Construction

Given αĈ-PE enabling algorithms (Evalpk,Evalct-priv,Evalsim) for a family of arith-
metic circuits defined by the predicate encoding scheme PESLin = (EncInptLin,
EncPredLin) for theMultD-Eq predicates with compatible domains (X ,Y), we build
a predicate encryption scheme for the same family of predicates.

Parameters. In the following, let n,m, q, p,D, � be positive integers such that
q is a prime and q > D, and let σ, α, α′ be positive reals denoting the Gaussian
parameters. Furthermore, let (X ,Y) ∈ Z

D×�
p ×Z

D×�
p be any compatible domains

for the MultD-Eq predicates, let P = {MultD-EqY : X → {0, 1} | Y ∈ Y}
be the set of multi-dimensional predicates and Ĉ = {ĈY | ĈY ← EncPred

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 121

(MultD-EqY),∀MultD-EqY ∈ P} be the set of polynomials representing the multi-
dimensional predicates. Finally, let ζ = �log p	 + 1 and L = 2ζ . Here, we assume
that all of the parameters are a function of the security parameter λ ∈ N. We
provide a concrete parameter selection of the scheme in the full version. The
following is our PE scheme.

Setup(1λ): It first runs (A,TA) ← TrapGen(1n, 1m, q) to obtain A ∈ Z
n×m
q

and TA ∈ Z
m×m. It also picks u ← Z

n
q , B0,Bi,j,w ← Z

n×m
q for (i, j, w) ∈

[D] × [�] × [L] and outputs

mpk =
(
A,B0,

(
Bi,j,w

)
(i,j,w)∈[D]×[�]×[L]

,u
)

and msk = TA.

KeyGen(mpk,msk,MultD-EqY): Given a predicate MultD-EqY ∈ P for Y ∈ Z
D×�
p

as input, it runs ĈY ← EncPredLin(MultD-EqY) and computes

Evalpk

(
ĈY,B0,

(
Bi,j,w

)
(i,j,w)∈[D]×[�]×[L]

)
→ BY ∈ Z

n×m
q .

Then, it runs SampleLeft(A,BY,u,TA, σ) → e, where [A|BY]e = u mod q,
and finally returns skY = e ∈ Z

2m.
Enc(mpk,X,M): Given an attribute X ∈ Z

D×�
p as input, it first runs X̂ ←

EncInptLin(X) where X̂ ∈ {0, 1}D�L. Then it samples s ← Z
n
q , z ← DZ,αq,

z, z0, zi,j,w ← DZm,α′q for (i, j, w) ∈ [D] × [�] × [L], and computes

cX =

⎧
⎪⎪⎨

⎪⎪⎩

c = u�s + z + M · �q/2�,
c = A�s + z,
c0 = (B0 + G)�s + z0,

ci,j,w =
(
Bi,j,w + X̂i,j,wG

)�
s + zi,j,w for (i, j, w) ∈ [D] × [�] × [L],

where X̂i,j,w is the (i, j, w)-th element of X̂. Finally, it returns the ciphertext
cX ∈ Zq × (Zm

q)D�L+2.
Dec(mpk, (ĈY, skY), cX): To decrypt the ciphertext cX = (c, c, c0, (ci,j,w)) given

a predicate and a secret key (ĈY, skY), it computes

Evalct-priv

(
ĈY, c0,

(
ci,j,w

)
(i,j,w)∈[D]×[�]×[L]

)
→ c̄ ∈ Zqm .

Then using the secret key skY = e ∈ Z
2m, it computes d = c−[c�|c̄�]�e ∈ Zq.

Finally, it returns |d − �q/2�| < q/4 and 0 otherwise.

Correctness and Parameter Selection. We omit the correctness of our
scheme and a candidate parameter selection to the full version. We note that we
can chose the modulus size as small as q =

√
m · (

√
D�p)−1 · α2

Ĉ
· ω(log m). In

particular, we can base security on the polynomial LWE assumption.

122 S. Katsumata

Security Proof. The following theorem addresses the security of the scheme.

Theorem 2. Given PE enabling algorithms (Evalpk,Evalct-priv,Evalsim) for the
family of arithmetic circuits Ĉ defined above, our predicate encryption scheme
is selectively secure and weakly attribute hiding with respect to the MultD-Eq
predicates, assuming the hardness of LWEn,m+1,q,DZ,αq

.

Acknowledgement. We would like to thank the anonymous reviewers of Asiacrypt
2016 for insightful comments. In particular, we are grateful for Takahiro Matsuda and
Shota Yamada for precious comments on the earlier version of this work. We also thank
Atsushi Takayasu, Jacob Schuldt and Nuttapong Attrapadung for helpful comments
on the draft. The research was partially supported by JST CREST Grant Number
JPMJCR1302 and JSPS KAKENHI Grant Number 17J05603.

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard
model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
553–572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 28

[ACF09] Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from
identity-based key encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 554–571. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 32

[ACF14] Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: relations
to identity-based key encapsulation and new constructions. J. Cryptol.
27(3), 544–593 (2014)

[AFV11] Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption
for inner product predicates from learning with errors. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-25385-0 2

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In:
FOCS, pp. 166–175 (2004)

[Att14] Attrapadung, N.: Dual system encryption via doubly selective secu-
rity: framework, fully secure functional encryption for regular languages,
and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 31

[Att16] Attrapadung, N.: Dual system encryption framework in prime-order
groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53890-6 20

[BB04a] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 14

[BB04b] Boneh, D., Boyen, X.: Secure identity based encryption without random
oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–
459. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 27

http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-01001-9_32
http://dx.doi.org/10.1007/978-3-642-01001-9_32
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/978-3-642-55220-5_31
http://dx.doi.org/10.1007/978-3-642-55220-5_31
http://dx.doi.org/10.1007/978-3-662-53890-6_20
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-28628-8_27

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 123

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryp-
tion, arithmetic circuit abe and compact garbled circuits. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 30

[BGJS17] Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: A note on VRFs
from verifiable functional encryption. Cryptology ePrint Archive, Report
2017/051 (2017). https://eprint.iacr.org/2017/051.pdf

[Bit17] Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. Cryptology ePrint Archive, Report 2017/18
(2017). https://eprint.iacr.org/2017/018.pdf

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: STOC, pp. 575–584 (2013)

[BMR10] Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudoran-
dom functions with improved efficiency from the augmented cascade. In:
CCS, pp. 131–140. ACM (2010)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on
encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
535–554. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

[CGW15] Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order
groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46803-6 20

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how
to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 27

[DY05] Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs
and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-30580-4 28

[GHKW17] Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to
constructing and proving verifiable random functions. Cryptology ePrint
Archive, Report 2017/021 (2017). https://eprint.iacr.org/2017/021.pdf

[GKW17] Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. Cryptology
ePrint Archive, Report 2017/274, to appear in FOCS 2017. https://eprint.
iacr.org/2017/274.pdf

[GMW15] Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional
range queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 752–776. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 34

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: CCS, pp. 89–98. ACM
(2006)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

[GV15] Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE
for branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 23

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: STOC, pp. 545–554. ACM (2013)

http://dx.doi.org/10.1007/978-3-642-55220-5_30
https://eprint.iacr.org/2017/051.pdf
https://eprint.iacr.org/2017/018.pdf
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/978-3-540-30580-4_28
https://eprint.iacr.org/2017/021.pdf
https://eprint.iacr.org/2017/274.pdf
https://eprint.iacr.org/2017/274.pdf
http://dx.doi.org/10.1007/978-3-662-46447-2_34
http://dx.doi.org/10.1007/978-3-662-46447-2_34
http://dx.doi.org/10.1007/978-3-662-48797-6_23
http://dx.doi.org/10.1007/978-3-662-48797-6_23

124 S. Katsumata

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for cir-
cuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 25

[HJ16] Hofheinz, D., Jager, T.: Verifiable random functions from standard
assumptions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 336–362. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49096-9 14

[HK08] Hofheinz, D., Kiltz, E.: Programmable hash functions and their applica-
tions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 2

[HW10] Hohenberger, S., Waters, B.: Constructing verifiable random functions
with large input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 656–672. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 33

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: FOCS (2000)

[Jag15] Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46497-7 5

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78967-3 9

[KY16] Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial func-
tions: more compact IBEs from ideal lattices and bilinear maps. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6 23

[Lys02] Lysyanskaya, A.: Unique signatures and verifiable random functions
from the DH-DDH separation. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 597–612. Springer, Heidelberg (2002). doi:10.1007/
3-540-45708-9 38

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 41

[MRV99] Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS,
pp. 120–130. IEEE (1999)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem. In: STOC, pp. 333–342. ACM (2009)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93. ACM Press (2005)

[SBC+07] Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-
dimensional range query over encrypted data. In: S&P, pp. 350–364. IEEE
(2007)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). doi:10.1007/11426639 27

[Wee14] Wee, H.: Dual system encryption via predicate encodings. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54242-8 26

http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-662-49096-9_14
http://dx.doi.org/10.1007/978-3-662-49096-9_14
http://dx.doi.org/10.1007/978-3-540-85174-5_2
http://dx.doi.org/10.1007/978-3-642-13190-5_33
http://dx.doi.org/10.1007/978-3-642-13190-5_33
http://dx.doi.org/10.1007/978-3-662-46497-7_5
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-662-53890-6_23
http://dx.doi.org/10.1007/3-540-45708-9_38
http://dx.doi.org/10.1007/3-540-45708-9_38
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-54242-8_26

On the Untapped Potential of Encoding Predicates by Arithmetic Circuits 125

[WZ17] Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs
under LWE. Cryptology ePrint Archive, Report 2017/276, to appear in
FOCS 2017. http://eprint.iacr.org/2017/276

[Yam17] Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and
verifiable random functions via generalized partitioning techniques. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 161–
193. Springer, Cham (2017). doi:10.1007/978-3-319-63697-9 6

[ZCZ16] Zhang, J., Chen, Y., Zhang, Z.: Programmable hash functions from lat-
tices: short signatures and IBEs with small key sizes. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 303–332. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53015-3 11

http://eprint.iacr.org/2017/276
http://dx.doi.org/10.1007/978-3-319-63697-9_6
http://dx.doi.org/10.1007/978-3-662-53015-3_11

	On the Untapped Potential of Encoding Predicates by Arithmetic Circuits and Their Applications
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	3 Preliminaries
	3.1 Verifiable Random Functions
	3.2 Predicate Encryption
	3.3 Background on Lattices
	3.4 Background on Bilinear Maps

	4 Encoding Predicates with Arithmetic Circuits
	4.1 Predicate Encoding Scheme
	4.2 Encoding Multi-dimensional Equality Predicates
	4.3 Expressiveness of Multi-dimensional Equality Predicates

	5 Verifiable Random Functions
	5.1 Construction
	5.2 Correctness, Unique Provability, and Pseudorandomness
	5.3 Achieving Smaller Proof Size

	6 Predicate Encryption for MultD-Eq Predicates
	6.1 Embedding Predicate Encoding Schemes into Matrices
	6.2 Construction

	References

