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Abstract. At CRYPTO 2015, Minaud and Seurin introduced and stud-
ied the iterated random permutation problem, which is to distinguish the
r-th iterate of a random permutation from a random permutation. In
this paper, we study the closely related iterated random function prob-
lem, and prove the first almost-tight bound in the adaptive setting. More
specifically, we prove that the advantage to distinguish the r-th iterate of
a random function from a random function using q queries is bounded by
O(q2r(log r)3/N), where N is the size of the domain. In previous work,
the best known bound was O(q2r2/N), obtained as a direct result of
interpreting the iterated random function problem as a special case of
CBC-MAC based on a random function. For the iterated random func-
tion problem, the best known attack has an advantage of Ω(q2r/N),
showing that our security bound is tight up to a factor of (log r)3.

Keywords: Iterated random function · Random function · Pseudoran-
dom function · Password hashing · Patarin · H-coefficient technique ·
Provable security

1 Introduction

Take any n-bit hash function h. Assuming that this hash function can be mod-
elled as a random function, the probability that the outputs of h collide given
q � 2n/2 distinct inputs is about q2/2n: the well-known birthday attack.

Now let us consider another hash function g, defined as the r-th iterate of h,
i.e. g(m) = h(h(. . . h(m))), where h is applied r times. For the same number of
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queries q � 2n/2, the birthday attack has about an r times higher probability
to succeed for g than for h (see e.g. Preneel and van Oorschot [18, Lemma 2]).

Iteration is of fundamental importance in many cryptographic constructions.
For example, a “possibly weak” function may be iterated to improve its resistance
against various cryptanalysis attacks, or a password hashing function may be
iterated to slow down dictionary attacks. But quite surprisingly, the security of
iterating a random function is not yet a well-understood problem.

In the aforementioned (non-adaptive) birthday attack, the distinguishing
advantage between a random function and an iterated random function increases
by about a factor r. But what happens if we consider adaptive collision-finding
attacks as well? Or in general, what if we want to consider any adaptive attack,
not necessarily a collision-finding attack? Could there be more efficient attacks
that have not yet been discovered?

Recently at CRYPTO 2015, Minaud and Seurin [15] put this possibility to
rest for the iterated random permutation problem. They proved that the advan-
tage to distinguish an iterated random permutation from a random permutation
using q queries is bounded by O(qr/N), where N is the size of the domain, and
showed that their bound is almost tight by providing a matching attack.

In this paper, we will do the same for the iterated random function problem.
Whereas the best bound in previous work is O(q2r2/N), we will prove a bound
of O(q2r(log r)3/N), where log is the logarithm to the base e. Our bound is tight
up to a factor of about (log r)3, and thereby rules out the possibility of better
attacks.

Note. We will focus on asymptotic bounds for large r, as this is parameter
range where large improvements over the currently best-known bounds can be
achieved. Although our bounds hold for any r ≥ 2, we will apply generous relax-
ations to derive an easy-to-see bound that only improves the currently-known
bounds for larger, but nevertheless practically-relevant values of r. Also, we will
only consider the iteration of a uniformly random function in an information-
theoretic setting. A simple hybrid argument can be used to extend this result
to the pseudorandom function (prf) advantage in a computational setting, as
shown by Minaud and Seurin [15, Theorem 1] for the iterated random permuta-
tion problem.

Applications. In spite of the frequent use of iterated random functions in prac-
tice, this paper is the first to study this problem without relying on the trivial
CBC-MAC bound. The most obvious application of iterated random functions
is in password hashing, where a hash function is iterated in order to slow down
brute force attacks. This idea is used in PKCS #5’s PBKDF1 and PBKDF2.
In typical password-based key derivation functions, the iteration count is often
quite high, ranging from several hundreds of thousands [9], to even ten mil-
lion [19], as suggested by NIST for critical keys. To analyse the effect of iteration
in these constructions, it is common to model the secret low-entropy password
as a random-but-known key [11], or even an adversarially-chosen input [20].
But also small values of r, such as r = 2, appear in practical applications. In
the book “Practical cryptography” [13], Ferguson and Schneier suggest to use
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SHA-256(SHA-256(m)) to avoid length-extension attacks. They use this con-
struction in their RSA encryption implementation, as well as in their Fortuna
random number generator. Interestingly, about 264 evaluations of SHA-256(SHA-
256(m)) are performed every second as part of bitcoin mining [21].

Related Work. The security of an iterated random function was first analysed
by Yao and Yin [22,23], when they analysed the security of the password-based
key derivation functions PBKDF1 and PBKDF2. Their work is parallel to that of
Wagner and Goldberg [20], who analysed the security of an iterated random per-
mutation in the context of the Unix password hashing algorithm. Bellare et al. [4]
extended these results, and also pointed out some problems in the proofs of Yao
and Yin.

As Wagner and Goldberg explain in [20], it is possible to interpret the iterated
random permutation problem as a special case of CBC-MAC where the iteration
count r equals the number of message blocks, and all message blocks except
for the first one are all-zero. The same holds for the iterated random function
problem, except that a random function instead of a random permutation is used
inside the CBC-MAC construction.

A first proof of the security of CBC-MAC was given by Bellare et al. in [1,2].
For CBC-MAC with a random function, they prove that the advantage of an
information-theoretic adversary that makes at most q queries is upper bounded
by 1.5r2q2/N . Using the well-known prp-prf switching lemma [5], they derive
from this an upper bound of 2r2q2/N for CBC-MAC with a random permutation.
The simplicity of CBC-MAC makes it a good test case for various proof tech-
niques. Of particular interest is the short proof of CBC-MAC by Bernstein [7].
For a more detailed proof using the same technique, we refer to Nandi [16].

In [3], Bellare et al. proved a security bound that is linear in r, instead of
quadratic in r as in previous proofs. They point out that their analysis only
applies to CBC-MAC with a random permutation, and not with a random func-
tion: such a bound is ruled out by an attack by Berke [6]. However, Berke’s
attack cannot be translated to the iterated random function problem, as the
number of message blocks for each of the queries in the attack is not constant.

The iterated random function problem is similar to the nested iterated (NI)
construction that Gaži et al. [14] analysed at CRYPTO 2014. However, the
analysis of the NI construction critically relies on the use of two different random
functions, or more precisely on the use of a pseudo-random function (prf) with
two different keys. Our analysis applies to the case where only one random
function is iterated. As we will show, the iterated random function problem will
require a more complicated analysis of collision probabilities, in order to avoid
ending up with a bound that is quadratic in r.

Main Results. The main results of this paper are the proofs of two theo-
rems. Theorem 1 bounds the success probability of a common class of collision
adversaries, and Theorem 2 bounds the advantage of distinguishing an iterated
random function from a random function. In these theorems, the function φ(q, r)
is defined as
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Theorem 1. Let f be a random function, and let A be a collision-finding adver-
sary that makes q queries to fr as follows: every query is either chosen from a
set (of size m ≤ q) of predetermined points, or is the response of a previous
query. Under the assumption that N log r > 90, the following bound holds for
the success probability cpr[q] of A:

cpr[q](A) ≤ φ(q, r).

Theorem 2. Let f be a random function, and let A be an adversary trying
to distinguish fr from f through q queries. Then, under the assumption that
N log r > 90, we have

Advf,fr (q) ≤ q2r

N
+

2q2

N
+ φ(q, r).

A Note on the Setting. We should point out that our results are in an indis-
tinguishability setting. Our goal is to distinguish, in a black-box way, between
an iterated random function and a random function. In the indifferentiability
setting, the adversary also has access to the underlying random function, or
to a simulator that tries to mimic its behaviour. Dodis et al. [12] proved that
indifferentiability for an iterated random function holds only with poor con-
crete security bounds, as they provide a lower bound on the complexity of any
successful simulator.

Outline. Notation and preliminaries are introduced in Sect. 2. We study the
probabilities to find various types of collisions in a random function in Sect. 3.
These results are used in Sect. 4 to bound the probabilities of single-trail attacks
and two-trail collision attacks, and eventually to also bound a more general
collision attack on an iterated random function. The advantage of distinguishing
an iterated random function from a random function is bounded in Sect. 5. For
readability, we defer the technical proof of Lemma 7 of Sect. 4 to Sect. 6. We
conclude the paper in Sect. 7.

2 Notation and Preliminaries

In this section, we will state some simple lemmas without proof. The proofs of
these lemmas can be found in the full version of this paper [8].

Functions. Let f : D → D be a function over a domain D of size N . A collision
for a function f is defined as a pair (x, x′) ∈ D with x �= x′ such that f(x) =
f(x′). A three-way collision is a triple (x, x′, x′′) such that f(x) = f(x′) = f(x′′)
for distinct x, x′ and x′′. For a positive integer r, the r-th iterate fr of a function
f is defined inductively as follows:

f1 = f,

fr = f ◦ fr−1, r > 1.
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By convention, let f0 be the identity function. In the remainder of this paper,
we will assume that r ≥ 2. Let a random function denote a function that is drawn
uniformly at random from the set of all functions of the same domain and range.

Falling Factorial Powers and the β Function. We use the falling fac-
torial powers notation, where for a non-negative integer i ≤ N , N i is defined
as

N i :=
N !

(N − i)!
= N(N − 1) · · · (N − i + 1). (1)

Note that N i denotes the number of permutations of N items taken i at a
time, or the number of ways to choose a sample of size i without replacement
from a population of size N . When i > N , we define N i := 0. We also define a
function β(i) that we will frequently encounter:

β(i) :=
N i

N i
. (2)

Again, we define β(i) := 0 for i > N . We derive below a simple bound on
β(i).

Lemma 1. Let α > 0 be a real number. Then, for i ≥
√

2αN + 1, we have

β(i) ≤ e−α.

Partial Sums of the Harmonic Series. The divergent infinite series

∞∑
i=1

1
i

= 1 +
1
2

+
1
3

+
1
4

+ · · ·

is known as the harmonic series. We will be interested in partial sums of the
series of the form

b∑
i=a+1

1
i

=
1

a + 1
+

1
a + 2

+ · · · +
1

b − 1
+

1
b
.

We will use the following simple bound for this sum. Throughout this paper, let
log denote the natural logarithm, that is the logarithm to the base e.

Lemma 2. For any two positive integers a and b with b ≥ a,

b∑
i=a+1

1
i

≤ log
(

b

a

)

Counting Divisors. For a positive integer a and an integer b we use the nota-
tion a|b to denote a divides b, i.e., ak = b for some integer k. We write a�b when
a does not divide b. The number of divisors of b is denoted d(b). We will use the
following simple bound on d(b).
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Lemma 3. For any positive integer b,

d(b) < 2
√

b.

The σ Function. The function σ(b) defined as

σ(b) :=
∑
a|b

a

denotes the sum of the divisors of b. We will use the following simple lemma
about σ(b).

Lemma 4. For any positive integer b,

∑
a|b

b

a
= σ(b).

A simple bound on σ(b) can be obtained as follows.

Lemma 5. For any positive integer b ≥ 2,

σ(b) < 3b log b.

3 Random Function Collisions

In this section, we look at different approaches to find collisions on a random
function f . We will bound their success probabilities, and use them in Sect. 4 to
get bounds on the success probabilities of collision attacks on an iterated random
function fr.

3.1 Single-Trail Attack

Single-Trail Attack. Let [q] denote the set {1, . . . , q}. The single-trail attack
works by starting with an arbitrary initial point x and producing a trail of points,
hoping to find a collision. A trail is uniquely defined by q queries f i−1(x) for
i ∈ [q], where the i-th query f i−1(x) has response f i(x). We assume that the
attack does not stop when a collision is found, but makes q queries and then
checks for collisions. If a collision is found, it will appear as a rho-shaped trail, as
illustrated in Fig. 1. Therefore, a collision obtained through a single-trail attack
will be called a ρ-collision.

Terminology. Suppose the q-query single-trail attack finds a collision. For
some t, c, suppose it takes t + c queries to find this collision, so that

f t+c(x) = f t(x),

i.e., the output of the (t+c)-th query is identical to the output of the t-th query.
Then, t is called the tail length of the ρ-collision, and c is called the cycle length.
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t

c

x

Fig. 1. Single-trail attack starting from x, resulting in a ρ collision with tail length t
and cycle length c. We call the probability of this collision cpρ(t, c).

For fixed t, c, we want to bound the probability that a q-query single-trail attack
gives a ρ-collision on f with tail length t and cycle length c. Call this probability
cpρ[q](t, c).

Bounding cpρ[q](t, c). To get a ρ-collision on f with tail length t and cycle length
c, we need to call f at t + c distinct values. Thus, if q < t + c, cpρ[q](t, c) = 0.
So suppose q ≥ t + c. Out of these t + c calls to f , the first t + c − 1 give
distinct outputs, and the last coincides with the t-th output. Thus, the number
of different ways this can happen is N t+c−1, out of the total N t+c possible
outcomes for the t + c calls to f . Thus,

cpρ[q](t, c) =
N t+c−1

N t+c
=

β(t + c − 1)
N

.

This is just a function of t and c (since the queries made after the collision
is found are of no consequence), so we will use the simpler notation cpρ(t, c),
with the implicit assumption that q ≥ t + c. For a fixed real α > 0, when
t + c ≥

√
2αN + 2, Lemma 1 gives us the bound

cpρ(t, c) ≤ e−α

N
. (3)

When t + c <
√

2αN + 2, we will simply use the bound

cpρ(t, c) ≤ 1
N

. (4)

3.2 Two-Trail Attack

Two-Trail Attack. In the two-trail attack, we start with two different points
x1 and x2, and produce two trails: the trail f i−1(x1) for i ∈ [q1], and the trail
f i−1(x2) for i ∈ [q2], hoping to find a collision. In total q1 + q2 queries are made,
where the i-th query for i ∈ [q1] is f i−1(x1), with response f i(x1), and the
(q1 + i)-th query for i ∈ [q2] is f i−1(x2), with response f i(x2). If a collision is
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t1 t2

x1 x2

Fig. 2. Two-trail attack starting from x1 and x2, resulting in a λ-collision with foot
lengths t1 and t2, respectively. We call the probability of this collision cpλ(t1, t2).

found, the two trails will form a lambda shape, as illustrated in Fig. 2. Therefore,
a collision obtained through a two-trail attack will be called a λ-collision.

Terminology. Suppose the (q1, q2)-query two-trail attack finds a λ-collision,
regardless of whether a ρ-collisions has occurred on either trail. Suppose that a
λ-collision is found after making t1 queries along the first trail and t2 queries
along the second, i.e.,

f t1(x1) = f t2(x2).

t1 and t2 are called the foot lengths of the λ-collision. For fixed t1, t2, we want
to bound the probability that a (q1, q2)-query two-trail attack finds a λ-collision
with foot lengths t1 and t2. Denote this probability as cpλ[q1, q2](t1, t2).

Bounding cpλ[q1, q2](t1, t2). To get a λ-collision on f with foot lengths t1 and
t2, we need to call f at t1 distinct values on the first trail and t2 distinct values
on the second trail. Thus, if q1 < t1 or q2 < t2, cpλ[q1, q2](t1, t2) = 0. So we
assume q1 ≥ t1 and q2 ≥ t2. Out of these t1 + t2 queries, the first t1 − 1 in one
trail and the first t2 − 1 in the other trail give distinct outputs, and the last
calls on the two trails coincide on a value distinct from all the earlier ones, i.e.,
the t1 + t2 calls lead to t1 + t2 − 1 distinct outputs, and one collision. Thus, the
number of different ways this can happen is N t1+t2−1, out of the total N t1+t2

possible outcomes for the t1 + t2 calls to f . Thus,

cpλ[q1, q2](t1, t2) =
N t1+t2−1

N t1+t2
=

β(t1 + t2 − 1)
N

.

Again, this is only a function of t1 and t2 (since the queries made after the
collision is found are of no consequence), so we will use the simpler notation
cpλ(t1, t2), with the implicit assumption that q1 ≥ t1 and q2 ≥ t2. For our
purposes it will be enough to use the bound

cpλ(t1, t2) ≤ 1
N

. (5)
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3.3 A λρ-Double-Collision on a Two-Trail Attack

When a two-trail attack leads to two collisions, a double-collision is said to occur.
In Sect. 4, in addition to the above bounds, we also need a bound on the proba-
bility of two closely related double-collisions. We deal with a λρ-double-collision
in this section, and a ρ′-double-collision in the next. A λρ-double-collision takes
place when a two-trail attack leads to a λ-collision, and then the combined trail
becomes the tail of a ρ-collision, as shown in Fig. 3.1

Δt

c

second
collision
point

t1 t2

x1 x2

first col-
lision
point

Fig. 3. Two-trail attack starting from x1 and x2, resulting in a λρ-collision. First,
there is a λ-collision with foot lengths t1 and t2, respectively. Then, the combined trail
continues for Δt queries, and completes a cycle of length c, after which a ρ-collision
occurs. We call the probability of this double-collision cpλρ(t1, t2, Δt, c).

Terminology. We assign four parameters to this collision: the foot lengths t1
and t2 of the λ, the intervening length Δt between the two collisions, and the
cycle length c of the ρ. Note that Δt can be seen as the tail length of the ρ-
collision if we imagine it to have resulted from a single-trail attack beginning
at the point of the λ-collision. For fixed t1, t2,Δt, c we want to find the proba-
bility that a (q1, q2)-query two-trail attack finds a λρ-double-collision with foot
lengths t1 and t2, intervening length Δt and cycle length c. Call this probability
cpλρ[q1, q2](t1, t2,Δt, c).

Bounding cpλρ[q1, q2](t1, t2,Δt, c). To get a λ-collision on f with foot lengths
t1 and t2, we need to call f at t1 distinct values on the first trail, and t2 distinct
values on the second trail; and to get a ρ-collision on f with tail length Δt and

1 Note that we only call it a double-collision if both trails continue up to the point of
second collision.



676 R. Bhaumik et al.

cycle length c, we need to call f at Δt common values on each trail, and a further
c points on the first trail; this adds up to t1 + t2 + Δt + c distinct values in all.
Thus, when q1 < t1 + Δt + c or q2 < t2 + Δt, cpλρ[q1, q2](t1, t2,Δt, c) = 0. So
we assume q1 ≥ t1 + Δt + c and q2 ≥ t2 + Δt. These t1 + t2 + Δt + c calls lead
to t1 + t2 + Δt + c − 2 distinct outputs, and two collisions. Thus, the number of
different ways this can happen is N t1+t2+Δt+c−2, out of the total N t1+t2+Δt+c

possible outcomes for the t1 + t2 + Δt + c calls to f . Thus,

cpλρ[q1, q2](t1, t2,Δt, c) =
N t1+t2+Δt+c−2

N t1+t2+Δt+c
=

β(t1 + t2 + Δt + c − 2)
N2

.

As before, this is only a function of t1, t2,Δt and c (since the queries made
after the ρ collision is found are of no consequence), so we use the simpler
notation cpλρ(t1, t2,Δt, c), with the implicit assumption that q1 ≥ t1 + Δt + c

and q2 ≥ t2 + Δt. For a fixed real α > 0, when t1 + t2 + Δt + c ≥
√

2αN + 3,
Lemma 1 gives us the bound

cpλρ(t1, t2,Δt, c) ≤ e−α

N2
. (6)

When t1 + t2 + Δt + c <
√

2αN + 3, we will simply use the bound

cpλρ(t1, t2,Δt, c) ≤ 1
N2

. (7)

3.4 A ρ′-Double-Collision on a Two-Trail Attack

A ρ′-double-collision takes place when a two-trail attack leads to a ρ with two
tails. This is shown in Fig. 4. We will allow Δt = 0, in which case a three-way
collision occurs.

Terminology. As before, we assign four parameters to this collision: the tail
lengths t1 and t2 of the ρ, the intervening length Δt between the two collisions,
and the cycle length c of the ρ. For fixed t1, t2,Δt, c we want to find the prob-
ability that a two-trail attack with sufficiently many queries finds a ρ′-double-
collision with tail lengths t1 and t2, intervening length Δt, and cycle length c.
Call this probability cpρ′ [q1, q2](t1, t2,Δt, c).

Bounding cpρ′ [q1, q2](t1, t2,Δt, c). The bounding of cpρ′ [q1, q2](t1, t2,Δt, c) is
almost identical to that of cpλρ[q1, q2](t1, t2,Δt, c). To get a ρ′-double-collision
with tail lengths t1 and t2, intervening length Δt, and cycle length c, we need to
call f at t1+c−Δt distinct values on the first trail, t2 distinct values on the second
trail, and Δt common values on each trail, resulting in calls at t1+ t2+c distinct
values in all. Thus, when q1 < t1 +c or q2 < t2 +Δt, cpρ′ [q1, q2](t1, t2,Δt, c) = 0.
So we assume q1 ≥ t1 + c and q2 ≥ t2 + Δt. These t1 + t2 + c calls lead to
t1+t2+c−2 distinct outputs. Thus, the number of different ways this can happen
is N t1+t2+c−2, out of the total N t1+t2+c possible outcomes for the t1 + t2 + c
calls to f . Thus,

cpρ′ [q1, q2](t1, t2,Δt, c) =
N t1+t2+c−2

N t1+t2+c
=

β(t1 + t2 + c − 2)
N2

.
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t1

c

x1

first
collision
point

Δt

t2

x2

second
collision
point

Fig. 4. Two-trail attack starting from x1 and x2, resulting in a ρ′-collision with tail
lengths t1 and t2, intervening length Δt, and cycle length c. We will allow Δt = 0, in
which case a three-way collision occurs. We call the probability of this double-collision
cpρ′(t1, t2, Δt, c).

As before, this is only a function of t1, t2,Δt and c (since the queries made
after the ρ collision is found are of no consequence), so we use the simpler
notation cpλρ(t1, t2,Δt, c), with the implicit assumption that q1 ≥ t1 + Δt + c
and q2 ≥ t1 + Δt. Recalling that

cpλρ(t1, t2, 0, c) =
β(t1 + t2 + c − 2)

N2
,

we conclude that
cpρ′(t1, t2,Δt, c) = cpλρ(t1, t2, 0, c). (8)

4 Iterated Random Function Collisions

In this section we revisit the two types of collision attacks described in Sect. 3,
and analyse their success probabilities when applied to fr. The main proof in
this paper relies heavily on the results obtained in this section.

A Cautionary Note. At first glance, this section may appear to be similarly
organised as Sect. 3. It is important to keep in mind that we are now interested in
something entirely different. In Sect. 3, we looked at the probabilities of specific
ρ- and λ-collisions with fixed parameters. In this section, instead, we focus on
the probabilities that single-trail attacks and two-trail attacks of some specified
number of queries succeed in finding collisions on fr. By reducing these colli-
sions to collisions on f , we can use the union bound on the bounds obtained in
Sect. 3 to get the desired bounds. To distinguish from the collision probabilities
on f , which we denoted cp[·], we now use the notation cpr[·] for the collision
probabilities on fr.
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4.1 Single-Trail Attack

We want to bound the probability that a q-query single-trail attack finds a
collision on fr. Call this probability cpr

ρ[q].

Reducing to Collision on f . Suppose the q-query single-trail attack finds a
ρ-collision on fr with tail length t′ and cycle length c′. Observe that this collision
necessarily arises out of a ρ-collision on f , with tail length t and cycle length c
for some t, c. This can happen in two ways:

– Direct Collision. This happens when r divides c. Then, define k such that
rk is the first multiple of r that is not less than t, i.e.,

k :=
⌈

t

r

⌉
,

then rk + c is also a multiple of r, and since f t+c(x) = f t(x), and rk ≥ t, we
also have

frk+c(x) = frk(x).

Writing
k′ =

c

r
,

we have
(fr)k+k′

(x) = (fr)k(x),

our ρ-collision on fr. Note that according to this notation,

t′ = k =
⌈

t

r

⌉
, c′ = k′ =

c

r
.

Loosely speaking, in a direct collision, the first collision on f arrives in phase
with r, i.e.,

t = t + c mod r,

so that this first collision on f leads immediately to a collision on fr at the
next multiple of r.

– Delayed Collision. A delayed collision occurs when r does not divide c,
i.e., the first collision arrives out of phase. Then we need to keep cycling
about the ρ of f till the phase is adjusted, and only then we arrive at the
next multiple of r and find a collision on fr. Suppose it cycles around η times.
For the phase to be adjusted, cη should be a multiple of r. The smallest value
of η that satisfies this is

η =
r

d

where d = gcd(c, r) is the greatest common divisor of c and r. Let k =
⌈

t
r

⌉
as before, and let

k′ =
c

d
.
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As before, since we have f t+cη(x) = f t(x), and rk ≥ t, we have

frk+cη(x) = frk(x),

which gives us the ρ-collision

(fr)k+k′
(x) = (fr)k(x),

as before. Again, according to this notation,

t′ = k =
⌈

t

r

⌉
, c′ = k′ =

c

d
.

Required Conditions. Observing that a direct collision can be seen as a spe-
cial case of delayed collision, where d = gcd(c, r) = r, we can summarise the
above as follows: a ρ-collision on f with tail length t and cycle length c eventu-
ally leads to a ρ-collision on fr with tail length t′ and cycle length c′ where

t′ = k =
⌈

t

r

⌉
, c′ = k′ =

c

d
,

with d = gcd(c, r) as before. Thus, for a ρ-collision on f to result in a ρ-collision
on fr, the only required condition is that q is sufficiently large, i.e.,

t′ + c′ ≤ q.

In terms of t and c, this becomes
⌈

t

r

⌉
+

c

d
≤ q.

Recall that we are trying to bound the probability cpr
ρ[q] of finding a ρ-collision

on fr in q queries. This is equivalent to the probability of finding a ρ-collision
on f with the parameters t and c satisfying the above condition. Recall that in
Sect. 3, we bounded this probability for a fixed (t, c), which we called cpρ(t, c).
We can now use the union bound to get a bound on cpr

ρ[q].

Using the Union Bound on cpr
ρ[q]. Let S be the set of (t, c) values that satisfy

the requirement ⌈
t

r

⌉
+

c

gcd(c, r)
≤ q.

For a fixed α > 0, we can split S into two parts:

S+[α] :=
{

(t, c) ∈ S | t + c ≥
√

2αN + 2
}

,

S−[α] :=
{

(t, c) ∈ S | t + c <
√

2αN + 2
}

.
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Applying the union bound with bounds (3) and (4) obtained for cpρ(t, c) gives

cpr
ρ[q] ≤

∑
S

cpρ(t, c)

=
∑

S+[α]

cpρ(t, c) +
∑

S−[α]

cpρ(t, c)

≤
∑

S+[α]

e−α

N
+

∑
S−[α]

1
N

= #S+[α] · e−α

N
+ #S−[α] · 1

N
(9)

Bounding #S−[α]. We observe that whenever (t, c) ∈ S−[α],

t <
√

2αN + 2,

and
c < q · gcd(c, r).

If we count the number of (t, c) satisfying these conditions, it will give us an
upper bound on #S−[α]. There are at most

√
2αN + 2 values of t satisfying

t <
√

2αN + 2. For a fixed d = gcd(c, r), c has to be a multiple of d not
exceeding qd. The number of such values of c is q. Since d must be a factor of r,
we get the total number of values of c satisfying c < q · gcd(c, r) to be at most
q · d(r). Putting it all together we get

#S−[α] ≤ (
√

2αN + 2) · q · d(r). (10)

Bounding #S+[α]. For (t, c) ∈ S+[α], it will be enough for our purposes to
consider the bounds

t ≤ qr,

and
c < q · gcd(c, r).

Using the same reasoning as before, the number of values of c that satisfy c <
q · gcd(c, r) is at most q · d(r). For t there are now at most qr values. Thus, we
obtain the bound

#S+[α] ≤ q2r · d(r). (11)

Final Bound for cpr
ρ[q]. We can now plug (10) and (11) into (9):

cpr
ρ[q] ≤ #S+[α] · e−α

N
+ #S−[α] · 1

N

≤ q2r · d(r) · e−α

N
+ (

√
2αN + 2) · q · d(r) · 1

N
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for any real α > 0. We will simplify it by plugging in a suitable value of α.

Simplifying the Bound. We know from Lemma 3 that

d(r) < 2
√

r.

We put α = log r. Then we have
√

2αN =
√

2N log r,

and
e−α =

1
r
.

When N log r ≥ 16, we have
√

2αN + 2 =
√

2N log r + 2

= 2
√

N log r −
[
(2 −

√
2) ·

√
N log r − 2

]

≤ 2
√

N log r −
[
(2 −

√
2) · 4 − 2

]

= 2
√

N log r −
[
6 −

√
2
]

< 2
√

N log r.

Thus,

cpr
ρ[q] ≤ 2 ·

(
q2

√
r

N

)
+ 2 ·

√
q2r log r

N
.

This gives us a bound for the success probability of a q-query single-trail attack
on fr. We state the result as a lemma.

Lemma 6. Under the assumption that N log r ≥ 16, we have

cpr
ρ[q] ≤ 2 ·

(
q2

√
r

N

)
+ 2 ·

√
q2r log r

N
.

4.2 Two-Trail Attack

We want to bound the probability that a (q1, q2)-query two-trail attack finds a
λ-collision on fr. Call this probability cpr

λ[q1, q2].

Reducing to Collision on f . Suppose the (q1, q2)-query two-trail attack finds
a λ-collision on fr with foot lengths t′1 and t′2. As in the case of the ρ-collision
on fr, this can only arise from a λ-collision on f , say with foot lengths t1 and
t2, which can again happen in two ways:

– Direct Collision. A direct collision takes place when the two f -trails collide
in phase, i.e.,

t1 = t2 mod r.
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When this happens, the two trails continue till the next multiple of r, where
they give a λ-collision on fr. This collision takes place at

t′1 =
⌈

t1
r

⌉
, t′2 =

⌈
t2
r

⌉
.

– Delayed Collision. A delayed collision takes place when the two f -trails
collide out of phase, i.e.,

t1 �= t2 mod r.

If one of the trails results in a ρ-collision on fr, this implies that a successful
single-trail attack has been carried out on fr. Here, we will only focus on the
scenario where a λ-collision on fr can still happen. But then one of the two
f -trails must have entered into a cycle, otherwise both f -trails will remain out
of phase. This can only happen in one of two ways:

• After the λ-collision on f , the combined trail forms the tail of a ρ collision
on f , that is, they form a λρ-collision on f as in Fig. 3. One of the trails, say
the one from x1, cycles around the ρ enough number of times to adjust the
phase, and then the two f -trails continue to the next multiple of r, giving a
λ-collision on fr;2

• After the λ-collision on f , one of the two f -trails, say the one from x1, con-
tinues and collides with the trail from x2, that is, they form a ρ′-collision on
f as in Fig. 4. When Δt = 0, a three-way collision on f occurs. The trail from
x1 cycles around the ρ enough number of times to adjust the phase, giving a
λ-collision on fr.

In our calculations, we assume that it is the trail from x1 that cycles multiple
times, while the one from x2 waits for the collision on fr to happen. We obtain a
bound which is symmetric over q1 and q2, and thus also holds for the case when
the two trails reverse roles. Let τ1 and τ2 be the respective lengths of the two
trails till the point of waiting, i.e., the point of ρ-collision of the trail from x1.
Calling Δt the distance between the two collision points, we simply have

τ1 = t1 + Δt, τ2 = t2 + Δt

for the λρ-collision, and
τ1 = t1, τ2 = t2 + Δt

for the ρ′-collision. Let the cycle length of this ρ be c (note that its tail length
is τ1 with respect to this trail). Suppose this trail cycles η times about the ρ in
order to adjust the phase difference. Then η is the smallest number that satisfies

τ1 + cη = τ2 mod r.

Suppose k is such that
τ1 + cη = τ2 + rk.

2 This is indeed a (delayed) λ-collision on fr: from the point of view of fr, neither of
the two trails could be seen to enter into a cycle.
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Also, let
k2 =

⌈τ2
r

⌉
.

From our definition of τ1 and τ2, we have that

fτ1(x1) = fτ2(x2),

and from the ρ-collision fτ1+c(x1) = fτ1(x1), it follows that

fτ1+cη(x1) = fτ1(x1).

From these two we get
fτ1+cη(x1) = fτ2(x2).

From the definition of k we have

fτ2+rk(x1) = fτ2(x2).

Continuing on to rk2, we get a λ-collision on fr as

(fr)k+k2(x1) = (fr)k2(x2).

According to this notation we have a λ-collision on fr with foot lengths t′1 and
t′2, such that

t′1 = k + k2 =
⌈

τ1 + cη

r

⌉
, t′2 = k2 =

⌈τ2
r

⌉
.

When this comes from a λρ-collision, we have

t′1 =
⌈

t1 + Δt + cη

r

⌉
, t′2 =

⌈
t2 + Δt

r

⌉
.

When this comes from a ρ′-collision, we have

t′1 =
⌈

t1 + cη

r

⌉
, t′2 =

⌈
t2 + Δt

r

⌉
.

We will treat these two cases separately, even though they are closely related.

Required Conditions. Again, we observe that the direct collision is a spe-
cial case of the delayed collision with Δt = 0 and η = 0. However, there is an
important difference. For the delayed λ-collision, we require two collisions on f ,
unlike all other collisions we have seen so far, which need only one. This case
corresponds to the λρ-double-collision and the ρ′-double-collision from Sect. 3,
and requires some special treatment, as we will see in the course of our calcu-
lations. The condition needed here is that both trails continue long enough for
the collision to happen, i.e.,

t′1 ≤ q1, t
′
2 ≤ q2.
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In terms of t1, t2,Δt, c, η, this translates to
⌈

t1 + Δt + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2

for the λρ-double-collision and
⌈

t1 + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2

for the ρ′-double-collision. Recall that we are trying to calculate cpr
λ[q1, q2], the

probability of getting a λ-collision on fr with a (q1, q2)-query two-trail attack
starting from x1 and x2. Based on our observations above, this can happen in
two ways:

– A Direct λ-collision on f . This is the direct collision scenario, where the
collision is in phase. The foot lengths t1 and t2 have the constraints

⌈
t1
r

⌉
≤ q1,

⌈
t2
r

⌉
≤ q2, t1 = t2 mod r.

For fixed t1, t2, we recall that the probability of this collision is cpλ(t1, t2).
– A λρ-double-collision on f . This is the first case of the delayed collision

scenario, where the collision is out of phase. Here, t1 and t2 are the foot
lengths of the λ, Δt is the distance between the two collision points, c is the
cycle length of the ρ, and η is the number of cycles necessary around the ρ.
Recall that one of the trails circles around the ρ, while the other waits for the
λ-collision on fr to happen. We continue with our assumption that the one
from x1 does the cycling and the one from x2 waits, since we will eventually
count over all pairs of trails. Now t1, t2,Δt, c, η have the constraints

⌈
t1 + Δt + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2, t1 + cη = t2 mod r.

For fixed t1, t2,Δt, c, η, we recall that the probability of this λρ-double-
collision is cpλρ(t1, t2,Δt, c).

– A ρ′
-double-collision on f . This is the second case of the delayed collision

scenario. Here, t1 and t2 are the lengths of the two tails of the ρ, Δt is the
distance between the two collision points, c is the cycle length of the ρ, and
η is the number of cycles necessary around the ρ. Again, the trail from x1

circles around the ρ, while the trail from x2 waits for the λ-collision on fr to
happen. Thus, t1, t2,Δt, c, η have the constraints

⌈
t1 + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2, t1 + cη = t2 + Δt mod r.

Our strategy for bounding cpr
λ[q1, q2] will be similar to the one we

used for bounding cpr
ρ[q]: to take the bounds on cpλ(t1, t2) for fixed t1, t2,
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cpλρ(t1, t2,Δt, c) for fixed t1, t2,Δt, c and cpρ′(t1, t2,Δt, c) for fixed t1, t2,Δt, c
obtained in Sect. 3, and then use the union bound over all possible values these
parameters can take.

Applying the Union Bound to cpr
λ[q1, q2]. Let S1 be the set of (t1, t2) values

that satisfy the constraints⌈
t1
r

⌉
≤ q1,

⌈
t2
r

⌉
≤ q2, t1 = t2 mod r,

and let
p1 :=

∑
S1

cpλ(t1, t2).

Let S2 be the set of (t1, t2,Δt, c, η) values that satisfy the constraints⌈
t1 + Δt + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2, t1 + cη = t2 mod r,

and let
p2 :=

∑
S2

cpλρ(t1, t2,Δt, c).

Let S3 be the set of (t1, t2,Δt, c, η) values that satisfy the constraints⌈
t1 + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2, t1 + cη = t2 + Δt mod r,

and let
p3 :=

∑
S3

cpρ′(t1, t2,Δt, c).

In addition, for the case where the trails reverse roles, we define S4 as the set of
(t1, t2,Δt, c, η) values that satisfy the constraints⌈

t1 + Δt

r

⌉
≤ q1,

⌈
t2 + Δt + cη

r

⌉
≤ q2, t1 = t2 + cη mod r,

and
p4 :=

∑
S4

cpλρ(t1, t2,Δt, c).

Similarly, we define S5 as the set of (t1, t2,Δt, c, η) values that satisfy the con-
straints ⌈

t1 + Δt

r

⌉
≤ q1,

⌈
t2 + cη

r

⌉
≤ q2, t1 + Δt = t2 + cη mod r,

and
p5 :=

∑
S5

cpρ′(t1, t2,Δt, c).

We state here the following bounds on p1, p2, p3, the proof of which we defer to
Sect. 6:
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Lemma 7. Under the assumption that N log r > 90,

p1 ≤ q1q2r

N
,

p2 ≤ 8 · (log r)2 ·
(q1q2r

N

)2

+ 24 · (log r)3 ·
(q1q2r

N

)
,

p3 ≤ 8 · (log r)2 ·
(q1q2r

N

)2

+ 24 · (log r)3 ·
(q1q2r

N

)
.

Final Bound for cpr
λ[q1, q2]. We observe that the bounds for p2 and p3 in

Lemma 7 are symmetric over q1 and q2. Thus, we have

p4 ≤ 8 · (log r)2 ·
(q1q2r

N

)2

+ 24 · (log r)3 ·
(q1q2r

N

)
,

p5 ≤ 8 · (log r)2 ·
(q1q2r

N

)2

+ 24 · (log r)3 ·
(q1q2r

N

)
.

Using the union bound, we get

cpr
λ[q1, q2] ≤ p1 + p2 + p3 + p4 + p5.

This gives us the required bound, which we state next in the form of a lemma.

Lemma 8. When N log r > 90,

cpr
λ[q1, q2] ≤ 32 ·

(
q1q2r log r

N

)2

+ 97 · (log r)2 ·
(

q1q2r log r

N

)
.

Proof. As r ≥ 2, we can relax the bound of p1 as

p1 ≤ q1q2r

N
≤ q1q2r

N
· (log r)3.

The rest follows from Lemma 7. 
�

4.3 A More General Collision Attack

Previously, we looked at two main approaches for a collision attack: the single-
trail attack and the two-trail attack, and we bounded their success probabilities.
Now, we will bound the success probability of a more general collision attack.
More specifically, we consider collision attack subject to the restriction that is
given in the statement of Theorem 1 in Sect. 1: every query is either chosen from
a set of size m (with m ≤ q) of predetermined starting points, or is the response
of a previous query. First, let us introduce the notion of a transcript.

Transcript. Let us consider any adversary A that interacts with an oracle O.
This interaction can be represented as a transcript, that is, as a list of queries
made and answers returned. Let the transcript tr be defined as the q-tuple of
input-output pairs tr = ((x1, y1), (x2, y2), . . . , (xq, yq)). Without loss of general-
ity, we do not consider adversaries here that repeat the same query, i.e., all q
queries are distinct.
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Sources and Trails. For j, j′ ∈ [q], j �= j′, we say that xj′ is a predecessor of
xj if

f(xj′) = xj .

We call xj a source if it does not have a predecessor. If there exists a non-
empty subset of the queries for which every query has a predecessor that is in
the same subset, and no query has a predecessor outside the set, we call this
subset a permutation cycle. Note that a permutation cycle forms a rho-shape
with a tail of length zero. For a permutation cycle, we define the query xj of the
permutation cycle with the smallest index j to be a source.

Suppose that there are m sources along the q queries, which we call z1, . . . , zm.
Then we can see the attack as an m-trail attack, with the m trails starting from
z1, . . . , zm and of lengths q1, . . . , qm respectively. Thus, each point that is not a
source must be on one of these m trails.

If the collision attack is successful, then for some i, i′ ∈ [q] with i �= i′, we
have

f(xi) = f(xi′).

In that case, one of the following must hold:

– xi and xi′ are on the same trail, say the one from zp – in this case, a successful
qp-query single-trail attack starting from zp has occurred;

– xi and xi′ are on different trails, say the ones from zp and zp′ respectively –
in this case, a successful (qp, qp′)-query two-trail attack starting from (zp, zp′)
has occurred.

A Word on the Choice of q1, . . . , qm. We note here that since we are allowing
the trails to collide and merge with each other, the trail lengths q1, . . . , qm are
not necessarily unique, since the queries on the merged trail can be counted on
either trail, or both. We can get around this by choosing to count each merged
trail as part of any one of the pre-merging trails, while the other is thought to
stop at the point of collision. This way, we ensure that

∑m
j=1 qj = q.

To bound the success probability of this more general collision attack, we
can use the previously obtained bounds on the success probabilities of single-
trail attacks and two-trail attacks along with the union bound. With notation
as above we recall the following bounds:

– Single-Trail Attack. For a q-query single-trail attack, Lemma 6 gives us
the bound

cpr
ρ[q] ≤ 2 ·

(
q2

√
r

N

)
+ 2 ·

√
q2r log r

N
.

– Two-Trail Attack. For a (q1, q2)-query two-trail attack, Lemma 8 gives
us the bound

cpr
λ[q1, q2] ≤ 32 ·

(
q1q2r log r

N

)2

+ 97 · (log r)2 ·
(

q1q2r log r

N

)
.



688 R. Bhaumik et al.

Let cpr[q](A) denote the probability that the collision adversary A making q
queries finds a collision on fr. For q1, . . . , qm, with

m∑
i=1

qi = q,

and let cpr[q](q1, . . . , qm) denote the probability that a collision attack with m
trails of lengths q1, . . . , qm finds a collision on fr. Thus,

cpr[q](A) ≤ max∑
qi=q

cpr[q](q1, . . . , qm).

By the union bound, we have

cpr[q](q1, . . . , qm) ≤
m∑

i=1

cpr
ρ[qi] +

m−1∑
i=1

m∑
j=i+1

cpr
λ[qi, qj ].

We bound the two terms separately.
m∑

i=1

cpr
ρ[qi] =

m∑
i=1

[
2 ·

(
q2i

√
r

N

)
+ 2 ·

√
q2i r log r

N

]

= 2 ·
(√

r

N

)
·

m∑
i=1

q2i + 2 ·
√

r log r

N
·

m∑
i=1

qi

≤ 2 ·
(√

r

N

)
· q2 + 2 ·

√
r log r

N
· q

= 2 ·
(

q2
√

r

N

)
+ 2 ·

√
q2r log r

N
;

m−1∑
i=1

m∑
j=i+1

cpr
λ[qi, qj ] =

m−1∑
i=1

m∑
j=i+1

[
32 ·

(
qiqjr log r

N

)2

+ 97 · (log r)2 ·
(

qiqjr log r

N

) ]

= 32 ·
(

r log r

N

)2

·
m−1∑
i=1

m∑
j=i+1

q2i q2j

+ 97 · (log r)2 ·
(

r log r

N

)
·

m−1∑
i=1

m∑
j=i+1

qiqj

≤ 16 ·
(

r log r

N

)2

· q4 + 49 · (log r)2 ·
(

r log r

N

)
· q2

= 16 ·
(

q2r log r

N

)2

+ 49 · (log r)2 ·
(

q2r log r

N

)
.

Since these bounds are free of q1, . . . , qm, this proves Theorem 1 of the paper.
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5 Bounding the Advantage of Distinguishing f and fr

5.1 Security Game

The Setup. An oracle O imitating a function g takes q queries {xi | i ∈ [q]}
and returns

{yi = g(xi) | i ∈ [q]} .

The q-tuple of input-output pairs of the oracle is called the transcript, denoted
as

tr = ((x1, y1), (x2, y2), . . . , (xq, yq)).

Both the real oracle OREAL and the ideal oracle OIDEAL will initially select a
uniformly random function f . Then, OREAL goes on to imitate fr, while OIDEAL

imitates f itself. For any adversary A, we want to bound its advantage, defined
as

Advf,fr (q) =
∣∣∣∣Pr

[
AOIDEAL(q) → 1

]
− Pr

[
AOREAL(q) → 1

] ∣∣∣∣.
As in the collision attack of Sect. 4.3, we can view the transcript tr as m trails
of lengths q1, . . . , qm with sources z1, . . . , zm, possibly with collisions, such that
no query is counted in more than one trail, and hence

m∑
j=1

qj = q.

For i ∈ [m], we shall use the notation

zi,1 := O(zi),
zi,j := O(zi,j−1), 2 ≤ j ≤ qi.

Good and Bad Transcripts. We partition the set of attainable transcripts
into a set Tgood of good transcripts, and a set Tbad of bad transcripts. We say
tr ∈ Tbad if either of the following holds:

– For some i ∈ [m],
zi,qi = zi,

that is, the i-th trail forms a permutation cycle. Note that, by our construction
of the trails, zi1,j cannot equal zi2 unless i1 = i2.

– For some i1, i2 ∈ [m], j1 ∈ [qi1 ], j2 ∈ [qi2 ] with (i1, j1) �= (i2, j2), we have

zi1,j1 = zi2,j2 ,

that is, there is a ρ-collision on one of the trails (i1 = i2), or there is a
λ-collision on two of the trails (i1 �= i2).
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5.2 Applying the H-Coefficient Technique

Let us denote the probability distribution of the transcripts in the real world
by PrOREAL

, and in the ideal world by PrOIDEAL
. Our proof will use Patarin’s

H-coefficient technique [17].

Lemma 9 (H-Coefficient Technique). Let A be an adversary, and let T =
Tgood ∪ Tbad be a partition of the set of attainable transcripts. Let ε1 be such that
for all tr ∈ Tgood:

PrOREAL
[tr ]

PrOIDEAL
[tr ]

≥ 1 − ε1.

Furthermore, let ε2 = PrOIDEAL
[tr ∈ Tbad]. Then Advf,fr (q) ≤ ε1 + ε2.

Proof. For a proof and a detailed explanation of this technique, see Chen and
Steinberger [10]. 
�

Probability of Bad Transcripts in Ideal Model. We can easily bound
the probability that a transcript tr from the ideal oracle OIDEAL is in Tbad.
Suppose all of the q responses lie outside {zi | i ∈ [m]}, and there is no collision
between any of the responses. When this happens, tr cannot be in Tbad. The

probability of this is at least 1 − 2q2

N
: two responses collide with probability at

most
q2

N
; and a response collides with a zi with probability at most

q2

N
, since

there are m different values of zi, and m ≤ q. Thus,

ε2 := PrOIDEAL
[tr ∈ Tbad] ≤ 2q2

N
.

Probability of Good Transcripts. We now focus only on transcripts in
Tgood. Let us consider a good and attainable transcript tr ∈ Tgood. For the ideal
oracle, as the number of distinct inputs is q, we have

PrOIDEAL
[tr] =

1
Nq

.

Now we bound PrOREAL
[tr] for tr ∈ Tgood. Consider a (q1, . . . , qm)-query m-trail

collision attack on fr, with sources z1, . . . , zm respectively. Theorem 1 tells us
that this attack fails with probability at least 1 − φ(q, r), where

φ(q, r) := 2
(

q2
√

r

N

)
+ 2

√
q2r log r

N
+ 16

(
q2r log r

N

)2

+ 49(log r)2
(

q2r log r

N

)
.

We now observe that when this attack fails, the attack transcript is either iso-
morphic as a graph to tr, or contains a permutation cycle.3 A permutation cycle
3 Note that the graph isomorphism follows from a simple relabeling of inputs and

outputs, starting with the sources of every trail. This is possible because exclud-
ing collisions and permutation cycles means that no two inputs will have the same
output, and outputs never correspond to a source.
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occurs when queries of fr collide with a source zi, which has probability at

most
q2r

N
, since there are m different values of zi and m ≤ q. Thus, the attack

transcript is isomorphic to tr with probability at least

1 − φ(q, r) − q2r

N
.

Now the graph of this attack transcript has q+m nodes, all distinct. Of these,
the m sources are already fixed. The rest can take values in Nq ways. Now all of
these Nq graphs are equally likely to occur in the scenario described above, i.e.,
when the m-trail attack fails and does not contain a permutation cycle. One of
the equally likely Nq graphs is the graph of tr. Thus,

PrOREAL
[tr] ≥

(
1 − φ(q, r) − q2r

N

)
· 1
Nq .

Applying the H-Coefficient Technique. Let R(tr) be the ratio of the prob-

abilities of tr ∈ Tgood under OREAL and OIDEAL respectively. Then we have shown
above that

R(tr) ≥
(

1 − φ(q, r) − q2r

N

)
· 1
β(q)

.

From Lemma 1, we have
β(q) ≤ 1.

Thus,
R(tr) ≥ 1 − ε1

where

ε1 := φ(q, r) +
q2r

N
.

Hence, by the H-coefficient technique of Lemma 9, we have

Advf,fr(q) ≤ ε1 + ε2.

This proves Theorem 2 of the paper.

6 Proof of Lemma 7

Recalling the Setup. In Sect. 4 we defined three sets S1, S2, and S3. S1 is
the set of (t1, t2) values that satisfy the constraints

⌈
t1
r

⌉
≤ q1,

⌈
t2
r

⌉
≤ q2, t1 = t2 mod r;

S2 is the set of (t1, t2,Δt, c, η) values that satisfy the constraints
⌈

t1 + Δt + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2, t1 + cη = t2 mod r,
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S3 is the set of (t1, t2,Δt, c, η) values that satisfy the constraints⌈
t1 + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2, t1 + cη = t2 + Δt mod r.

We further defined the following:

p1 =
∑
S1

cpλ(t1, t2);

p2 =
∑
S2

cpλρ(t1, t2,Δt, c);

p3 =
∑
S3

cpρ′(t1, t2,Δt, c).

Lemma 7 claimed the following bounds for p1, p2 and p3 (as long as N log r > 90):

p1 ≤ q1q2r

N
,

p2 ≤ 6 · (log r)2 ·
(q1q2r

N

)2

+ 18 · (log r)3 ·
(q1q2r

N

)
,

p3 ≤ 6 · (log r)2 ·
(q1q2r

N

)2

+ 18 · (log r)3 ·
(q1q2r

N

)
.

In this section, we establish these bounds.

Bounding p1. For this we need to bound #S1. This case is very simple. We
observe the t1 ≤ q1r, so there are at most q1r choices for t1. Once t1 is fixed,
given the constraints t1 = t2 mod r and t2 ≤ q2r, there are at most q2 choices
for t2. Thus, we have

#S1 ≤ q1q2r,

which, using (5), gives the bound

p1 =
∑
S1

cpλ(t1, t2) ≤ #S1 · 1
N

≤ q1q2r

N
.

Towards Bounding p2: Counting over t1, t2 and Δt. This is the most
involved part of the calculations. For simplicity of notation we define the function

ζ(α) := (
√

2αN + 3)2 = 2αN + 6
√

2αN + 9.

Recall that S2 is the set of all (t1, t2,Δt, c, η) satisfying⌈
t1 + Δt + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2, t1 + cη = t2 mod r.

We begin by fixing a choice of c and η. We want to bound the number of choices
for (t1, t2,Δt). For this we relax the constraints a little. Let S ′

2 = S ′
2(c, η) be the

set of values for (t1, t2,Δt) satisfying

t1 ≤ q1r,Δt ≤ q2r, t2 ≤ q2r, t1 + cη = t2 mod r.
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Now we fix a real number α > 0, and split S ′
2 into two disjoint sets:

S ′+
2 [α] :=

{
(t1, t2,Δt) ∈ S ′

2 | max(t1,Δt) ≥
√

2αN + 3
}

,

S ′−
2 [α] :=

{
(t1, t2,Δt) ∈ S ′

2 | max(t1,Δt) <
√

2αN + 3
}

.

For S ′+
2 [α], there are at most q1r choices for t1 and at most q2r choices for Δt,

and for each of these choices, we have at most q2 choices for t2. Thus,

#S ′+
2 [α] ≤ q1q

2
2r

2.

For S ′−
2 [α], there are at most

√
2αN + 3 choices for t1 and at most

√
2αN + 3

choices for Δt, and for each of these choices, since choosing t1 also fixes t2 mod r,
we have at most q2 choices for t2. Thus,

#S ′−
2 [α] ≤ (

√
2αN + 3)2 · q2 = ζ(α) · q2.

When (t1, t2,Δt) ∈ S ′+
2 [α],

t1 + t2 + Δt + cη ≥
√

2αN + 3,

so that according to (6):

cpλρ(t1, t2,Δt, c) ≤ e−α

N2
.

When (t1, t2,Δt) ∈ S ′−
2 [α], (7) gives us

cpλρ(t1, t2,Δt, c) ≤ 1
N2

.

Let

p2(c, η) :=
∑
S′
2

cpλρ(t1, t2,Δt, c)

=
∑

S′+
2 [α]

cpλρ(t1, t2,Δt, c) +
∑

S′−
2 [α]

cpλρ(t1, t2,Δt, c)

≤ q1q
2
2r

2 · e−α

N2
+ ζ(α) · q2 · 1

N2

=
q2
N2

·
[
q1q2r

2 · e−α + ζ(α)
]
.

Towards Bounding p2: Counting over c and η. We next bound the number
of choices for (c, η) that satisfy the constraints. Again, we relax the constraints
a little. Let T be the set of (c, η) values such that

cη ≤ q1r.

Next we fix d = gcd(c, r). Let T [d] denote the set

{(c, η) ∈ T | gcd(c, r) = d} .

c now takes values over multiples of d. We split the counting into two parts:
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– When c ≤ q1d, we recall that η is defined as the smallest solution to t1 + cη =
t2 mod r. From elementary number theory, we have η ≤ r

d
. Thus, there are

q1 choices of c and for each there are
r

d
choices for η, so in all there are

q1r

d
such choices for η and c.

– When c > q1d, we use the bounds c ≤ q1r and η ≤ q1r

c
. Let z =

c

d
. Thus, as

c runs over all multiples of d from (q1 +1) · d to q1r, z takes all integer values
from q1 + 1 to

q1r

d
. Thus, the number of choices for η and c with c > q1d is

q1r
d∑

z=q1+1

q1r

zd
=

q1r

d
·

q1r
d∑

z=q1+1

1
z

≤ q1r

d
· log

( r

d

)
,

the last step following from Lemma 2.

Putting these two together, we get

#T [d] ≤ q1r

d
·
(
1 + log

( r

d

))
.

Now, d can take values over all factors of r, so we have

#T =
∑
d|r

#T [d] ≤
∑
d|r

q1r

d
·
(
1 + log

( r

d

))

≤
∑
d|r

q1r

d
· (1 + log r) ≤ q1 · (1 + log r)

∑
d|r

r

d

≤ q1 · (1 + log r) · σ(r),

the last step coming from Lemma 4.
Finally, we observe that whenever (t1, t2,Δt, c, η) ∈ S2, we have (t1, t2,Δt) ∈

S ′
2(c, η), and (c, η) ∈ T . Hence,

p2 =
∑
S2

cpλρ(t1, t2,Δt, c) ≤
∑
T

∑
S′
2

cpλρ(t1, t2,Δt, c) =
∑
T

p2(c, η).

This gives us the bound

p2 ≤ q1q2
N2

· (1 + log r) · σ(r) ·
[
q1q2r

2 · e−α + ζ(α)
]
. (12)

Bounding p3. Recall that S3 is the set of all (t1, t2,Δt, c, η) satisfying
⌈

t1 + cη

r

⌉
≤ q1,

⌈
t2 + Δt

r

⌉
≤ q2, t1 + cη = t2 + Δt mod r.
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The set S3 is almost identical to the set S2. However, the counting arguments
are identical to those for p2, as the relaxation of the constraints is valid for p2
as well as p3. Combined with (8), we have

p3 =
∑
S3

cpρ′(t1, t2,Δt, c) =
∑
S3

cpλρ(t1, t2, 0, c) ≤
∑
T

∑
S′
2

cpλρ(t1, t2, 0, c).

Thus, we have

p3 ≤ q1q2
N2

· (1 + log r) · σ(r) ·
[
q1q2r

2 · e−α + ζ(α)
]
.

Simplifying the Bounds. Now we make a series of generous relaxations to get
a simple easy-to-see bound for p2 and p3. Under the assumption that

√
2αN+3 ≤√

3αN , we have ζ(α) ≤ 3αN. The assumption can be written as

(
√

3 −
√

2).
√

αN ≥ 3.

In other words,
αN ≥ 9(

√
3 +

√
2)2 = 9(5 + 2

√
6).

Now, 2
√

6 < 5, so a sufficient condition to ensure this is αN ≥ 90. We now put
α = log r, and observe in passing that the ensuing assumption that N log r ≥ 90
is quite reasonable. For this choice of α, we have

ζ(α) ≤ 3N log r, (13)

and
e−α =

1
r
. (14)

Since (5/3) · log r ≥ 1 for r ≥ 2, we have

1 + log r <
5
3

log r + log r =
8
3

log r. (15)

Finally, to bound σ(r), we use Lemma 5, which gives us

σ(r) < 3r log r. (16)

Plugging (13)–(16) into (12), we have

p2 ≤ q1q2
N2

· 3r log r · 8
3

log r · (q1q2r2 · 1
r

+ 3N log r)

= 8 · (log r)2 ·
(q1q2r

N

)2

+ 24 · (log r)3 ·
(q1q2r

N

)
.

Similarly,

p3 ≤ 8 · (log r)2 ·
(q1q2r

N

)2

+ 24 · (log r)3 ·
(q1q2r

N

)
.

This completes the proof of Lemma 7.
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7 Conclusion and Future Work

We studied the iterated random function problem, and proved the first bound in
this setting that is tight up to a factor of (log r)3. In previous work, the iterated
random function problem was seen as a special case of CBC-MAC based on a
random function f . We obtained our bound by analysing the probability of a
common class of collision attacks, and applying Patarin’s H-coefficient technique
to bound the advantage of distinguishing fr from f . Trying to improve the
(log r)3 factor in the security bound is an interesting topic for future work.
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