
More Efficient Universal Circuit Constructions

Daniel Günther, Ágnes Kiss(B), and Thomas Schneider

TU Darmstadt, Darmstadt, Germany
guenther@rangar.de, {agnes.kiss,thomas.schneider}@crisp-da.de

Abstract. A universal circuit (UC) can be programmed to simulate
any circuit up to a given size n by specifying its program bits. UCs have
several applications, including private function evaluation (PFE). The
asymptotical lower bound for the size of a UC is proven to be Ω(n log n).
In fact, Valiant (STOC’76) provided two theoretical UC constructions
using so-called 2-way and 4-way constructions, with sizes 5n log2 n and
4.75n log2 n, respectively. The 2-way UC has recently been brought into
practice in concurrent and independent results by Kiss and Schnei-
der (EUROCRYPT’16) and Lipmaa et al. (Eprint 2016/017). Moreover,
the latter work generalized Valiant’s construction to any k-way UC.

In this paper, we revisit Valiant’s UC constructions and the recent
results, and provide a modular and generic embedding algorithm for any
k-way UC. Furthermore, we discuss the possibility for a more efficient
UC based on a 3-way recursive strategy. We show with a counterexam-
ple that even though it is a promising approach, the 3-way UC does not
yield an asymptotically better result than the 4-way UC. We propose a
hybrid approach that combines the 2-way with the 4-way UC in order to
minimize the size of the resulting UC. We elaborate on the concrete size
of all discussed UC constructions and show that our hybrid UC yields on
average 3.65% improvement in size over the 2-way UC. We implement
the 4-way UC in a modular manner based on our proposed embedding
algorithm, and show that our methods for programming the UC can be
generalized for any k-way construction.

Keywords: Universal circuit · Private function evaluation · Function
hiding

1 Introduction

Universal circuits (UCs) are Boolean circuits that can be programmed to simu-
late any Boolean function f(x) up to a given size by specifying a set of program
bits pf . The UC then receives these program bits as input besides the input x to
the functionality, and computes the result as UC(x, pf) = f(x). This means that
the same UC can evaluate multiple Boolean circuits, only the different program
bits are to be specified.

Valiant proposed an asymptotically size-optimal construction in [Val76] with
size Θ(n log n) and depth O(n), where n is the size of the simulated Boolean
circuit description of f(x). He provides two constructions, based on 2-way and
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part II, LNCS 10625, pp. 443–470, 2017.
https://doi.org/10.1007/978-3-319-70697-9_16

444 D. Günther et al.

4-way recursive structures. Recently, optimizations of Valiant’s size-optimized
construction appeared in concurrent and independent works of [KS16]
and [LMS16]. Both works implement Valiant’s 2-way recursive construction.

1.1 Applications of Universal Circuits

Size-optimized universal circuits have many applications. We review some of
them here and refer to [KS16,LMS16] for further details.

Private Function Evaluation (PFE). Secure two-party computation or
secure function evaluation (SFE) provides interactive protocols for evaluating
a public function f(x, y) on two parties’ private inputs x and y. However, in
some scenarios, the function f is a secret input of one of the parties. This set-
ting is called private function evaluation (PFE). PFE of f(x) can be achieved
by running SFE of UC(x, pf), where the UC is a public function and the pro-
gram bits pf – and therefore f – are kept private due to the properties of SFE.
Protocols designed especially for PFE such as [MS13,BBKL17] achieve the same
asymptotic complexity O(n log n) as PFE using UCs, where n is the size of the
function f .1 However, to the best of our knowledge, they have not yet been
implemented, and they are not as generally applicable as PFE with UCs.

UC-based PFE can be easily integrated into any SFE framework and can
directly benefit from recent optimizations. For instance, outsourcing UC-based
PFE is directly possible with outsourced SFE [KR11]. The non-interactive secure
computation protocol of [AMPR14] can also be generalized to obtain a non-
interactive PFE protocol [LMS16].

One of the first applications for PFE was privacy-preserving checking for
credit worthiness [FAZ05], where not only the loanee’s data, but also the loaner’s
function needs to be kept private. PFE allows for running proprietary software on
private data, such as privacy-preserving software diagnosis [BPSW07], medical
programs [BFK+09], or privacy-preserving intrusion detection [NSMS14]. UCs
can be applied to obliviously filter remote streaming data [OI05] and for hiding
queries in private database management systems such as Blind Seer [PKV+14,
FVK+15].

Applications Beyond PFE. Universal circuits can be applied for pro-
gram obfuscation. Candidates for indistinguishability obfuscation are constructed
using a UC as a building block in [GGH+13a,BOKP15], which can be improved
using Valiant’s UC implementation [KS16]. Direct program obfuscation was pro-
posed in [Zim15], where the circuit is a secret key to a UC. [LMS16] mentions that
UCs can be applied for secure two-party computation in the batch execution set-
ting [HKK+14,LR15]. It can be applied for verifiable computation [FGP14], and
1 There also exist PFE protocols with linear complexity O(n) which are based on

public-key primitives [KM11,MS13,MSS14]. However, the concrete complexity of
these protocols is worse than that of the protocols based on (mostly) symmetric-key
primitives, i.e., the OT-based PFE protocols of [MS13,BBKL17] or PFE using UCs.

More Efficient Universal Circuit Constructions 445

for multi-hop homomorphic encryption [GHV10]. Ciphertext-policy Attribute-
Based Encryption was proposed in [Att14], where the policy circuit is hidden
[GGH+13b].

1.2 Related Work on Universal Circuits

Valiant defined universal circuits in [Val76] and gave two size-optimized construc-
tions. The constructions are based on so-called edge-universal graphs (EUGs)
and utilize either a 2-way or a 4-way recursive structure, also called 2-way
or 4-way UCs. Both achieve the asymptotically optimal size Θ(n log n) [Val76,
Weg87], where n is the size of the simulated circuit. The concrete complexity
of the 4-way UC is ∼4.75n log2 n which is smaller than that of the 2-way UC
of ∼5n log2 n [Val76].

The first modular UC construction was proposed by Kolesnikov and Schnei-
der in [KS08b]. This construction achieves a non-optimal asymptotic complexity
of O(n log2 n), and was the first implementation of UCs. A generalization of UCs
for n-input gates was given in [SS08].

Recently, two independent works have optimized and implemented Valiant’s
2-way UC [KS16,LMS16]. Kiss and Schneider in [KS16] mainly focus on the most
prominent application of UCs, i.e., private function evaluation (PFE). Due to
the free-XOR optimization of [KS08a] in the SFE setting, they optimize the size
of the UC for the number of AND gates in the resulting UC implementation and
provide a framework for PFE using UCs as public function. They also propose
hybrid constructions for circuits with a large number of inputs and outputs,
utilizing efficient building blocks from [KS08b]. Lipmaa et al. in [LMS16] also
provide an (unpublished) implementation of the 2-way UC. While keeping the
number of AND gates minimal, they additionally optimize for the total number
of gates, i.e., include optimizations to also reduce the number of XOR gates.
They adapt the construction to arithmetic circuits and generalize the design to
a k-way construction in a modular manner, for k ≥ 2.

Both papers utilize 2-coloring of the underlying graphs for defining the pro-
gram bits pf for any given functionality f . Generally, 2-coloring can be utilized
for any 2i-way construction. [LMS16] calculate the optimal value for k to be
3.147, and conclude that the two candidates for the most efficient 2i-way con-
structions are the 2-way and 4-way UCs, of which the 4-way construction results
in an asymptotically smaller size.

So far only Valiant’s 2-way UC has been implemented and the not yet imple-
mented 4-way UC was postulated to be the most efficient one.

1.3 Outline and Our Contributions

In summary, we provide the first implementation and detailed evaluation of
Valiant’s 4-way UC and propose an even more efficient hybrid UC. We elaborate
on the size of the generalized k-way UCs for k �= 2 and k �= 4.

After revisiting Valiant’s UC construction [Val76,KS16] and its k-way gen-
eralization [LMS16] in Sect. 2, we provide the following contributions:

446 D. Günther et al.

Our modular programming algorithm (Sect. 3): We detail a modular
algorithm that provides the description of the input function f as program
bits pf to the UC, both for Valiant’s 4-way UC as well as for the k-way UC of
Lipmaa et al. [LMS16].

New universal circuit constructions (Sect. 4): We start with a new 3-way
UC. After providing modular building blocks for this UC, we show that it is
asymptotically larger than Valiant’s UCs. Then, we propose a hybrid UC construc-
tion that can efficiently combine k-way constructions for multiple values of k.2

With this, we combine Valiant’s 2-way and 4-way UCs to achieve the smallest UC
known so far.

Size ofUCs (Sect. 5): We compare the asymptotic and concrete sizes of Valiant’s
(2-way and 4-way) UCs and that of different k-way UCs. We show that of all k-way
UCs, Valiant’s 4-way UC provides the best results for large circuits. Moreover, our
hybrid UC in most cases improves over the 2-way UC by up to around 4.5% in its
size, and over the 4-way UC by up to 2% (for large input circuits). In Table 1 we
compare the concrete communication of PFE using SFE and our new UC imple-
mentation to the previous works on special-purpose OT-based PFE protocols.

Implementation of Valiant’s 4-way UC and experiments (Sect. 6): We
implement Valiant’s 4-way UC and describe how our implementation can directly
be used in the PFE framework of [KS16]. We experimentally evaluate the perfor-
mance of our UC generation and programming algorithm with a set of example cir-
cuits and compare it on the same platform with the 2-way UC compiler of [KS16].

Table 1. Comparison of overall communication between special-purpose PFE protocols
and UC-based ones for simulated circuits of size n. The numbers are for 128 bit symmet-
ric security. The underlying SFE protocol for UC-based PFE is Yao’s protocol [Yao86]
with the garbled row reduction optimization [NPS99] and X- and Y-switching blocks
are instantiated using free XORs as described in [KS08a]. This yields one ciphertext per
X- and Y-switching block, and three ciphertexts per universal gate.

n Special-purpose PFE UC-based PFE using Yao

[MS13] [BBKL17] 2-way UC [KS16] Our 4-way UC Our hybrid UC

103 3.5 MB 2.0 MB 0.6 MB 0.6 MB 0.6 MB

104 44.8 MB 26.3 MB 8.4 MB 8.4 MB 8.2 MB

105 549.6 MB 324.0 MB 109.6 MB 107.8 MB 106.2 MB

106 6 509.9 MB 3 847.9 MB 1 360.3 MB 1 308.4 MB 1 308.4 MB

107 75 236.5 MB 44 562.1 MB 16 038.8 MB 15 677.7 MB 15 413.7 MB

2 Our hybrid UC is orthogonal to that of [KS16], who combine Valiant’s UC with build-
ing blocks from [KS08b] for the inputs and outputs.

More Efficient Universal Circuit Constructions 447

2 Preliminaries

In this section, we summarize the existing UC constructions. We provide neces-
sary background information in Sect. 2.1, explain Valiant’s construction [Val76] in
Sect. 2.2 and the improvements of [KS16,LMS16] on the 2-way, 4-way and k-way
UCs in Sects. 2.3, 2.4 and 2.5, respectively.

2.1 Preliminaries to Valiant’s UC Constructions

Let G = (V,E) be a directed graph with set of nodes V and edges E ⊆ V ×V . The
number of incoming [outgoing] edges of a node is called its indegree [outdegree]. A
graph has fanin [fanout] d if the indegree [outdegree] of all its nodes is at most d.
In the following, we denote by Γd(n) the set of all acyclic graphs with fanin and
fanout d having n nodes. Similarly, the fanin [fanout] of a circuit can be defined
based on the maximal number of incoming [outgoing] wires of all its gates, inputs
and outputs.

Let G = (V,E) ∈ Γd(n). A mapping ηG : V → {1, . . . , n} is called topological
order if (ai, aj) ∈ E ⇒ ηG(ai) < ηG(aj) and ∀a1, a2 ∈ V : ηG(a1) = ηG(a2) ⇒
a1 = a2. A topological order in G ∈ Γd(n) can be found with computational
complexity O(dn).

A circuit Ck∗
u,v with u inputs, k∗ gates and v outputs and fanin or fanout d > 2

can be reduced to a circuit with fanin and fanout 2. Shannon’s expansion the-
orem [Sha49,Sch08] describes how gates with larger fanin can be reduced to
gates with two inputs by adding additional gates. [Val76,KS16] describe adding
copy gates in order to eliminate larger fanout and elaborate on the implied over-
head (k ≤ 2k∗ +v). [KS08b,KS16] implement these methods and we thus assume
that our input Boolean circuit Ck

u,v has fanin and fanout 2 for all its u inputs,
k gates and v outputs. We transform Ck

u,v into a Γ2(n) graph G with n = u+v+k
by creating a node for each input, gate and output, and an edge for each wire
in Ck

u,v.
Edge-embedding is a mapping from graph G = (V,E) into G′ = (V ′, E′)

with V ⊆ V ′ and E′ containing a path for each e ∈ E, such that the paths are
pairwise edge-disjoint. A graph Un(Γd) = (VU , EU) is an Edge-Universal Graph
(EUG) for Γd(n) if every graph G ∈ Γd(n) can be edge-embedded into Un(Γd).3

Un(Γd) has distinguished nodes called poles {p1, . . . , pn} ⊆ VU where each
node a ∈ V is mapped to exactly one pole with a mapping ϕ, such that every node
in G has a corresponding pole in Un(Γd). This mapping is defined by a concrete
topological order ηG of the original graph G, i.e., ϕ : V → VU with ϕ(a) = pηG(a).
Besides the poles, Un(Γd) might have additional nodes that enable the edge-
embedding. For each edge (ai, aj) ∈ E we then define a disjoint path between
the corresponding poles (ϕ(ai), . . . , ϕ(aj)) = (pηG(ai), . . . , pηG(aj)) in Un(Γd), i.e.,
without using any edge in Un(Γd) in more than one path.

Let Un(Γ1) be an EUG for graphs in Γ1(n) with poles P = {p1, . . . , pn}. The
poles have fanin and fanout 1, while all other nodes have fanin and fanout 2. An

3 For the sake of simplicity, we denote this graph with Un(Γd) instead of U(Γd(n)).

448 D. Günther et al.

Fig. 1. (a) shows an example Γ2(5) graph G. (b)–(c) show the edge-embedding of G into
two U5(Γ1) instances with poles (p1, . . . , p5). (d) shows the edge-embedding of G into
one U5(Γ2) graph.

EUG Un(Γd) for d ≥ 2 can be created by taking d instances of Un(Γ1) EUGs,
and merging each pole pi with its multiple instances, allowing the poles to have
fanin-fanout d. Let Un(Γd) = (V ′

U , E′
U) be an EUG with fanin and fanout d, with

Un(Γ1)1 = (V1, E1), . . . , Un(Γ1)d = (Vd, Ed). P contains the merged poles and
V ′

U = P ∪d
i=1 Vi\Pi and E′

U = ∪d
i=1Ei.

We give an example for better understanding. Let G = (V,E) be the graph
with 5 nodes in Fig. 1a. Our aim is to edge-embed G into EUG U5(Γ2). There-
fore, we use two instances of U5(Γ1): U5(Γ1)1 in Fig. 1b and U5(Γ1)2 in Fig. 1c.
The edges (a1, a4), (a2, a3) and (a3, a5) are embedded in U5(Γ1)1, and the edges
(a1, a3) and (a3, a4) in U5(Γ1)2. Merging the poles of U5(Γ1)1 and U5(Γ1)2 pro-
duces U5(Γ2) shown in Fig. 1d.

2.2 Valiant’s UC Constructions

The size of a function f represented by a circuit Ck
u,v with fanin and fanout 2 is

n = u + v + k. In the following, we describe Valiant’s UC construction [Val76,
Weg87] that can be programmed to evaluate any function of size n. Circuit Ck

u,v

is represented as a graph G ∈ Γ2(n) (cf. Sect. 2.1).
Valiant’s UC is based on an EUG Un(Γ2) = (VU , EU) with fanin and

fanout 2, which can be transformed to a Boolean circuit. P ⊆ VU contains the
poles of Un(Γ2) (cf. Sect. 2.1). Poles {1, . . . , u} correspond to the inputs, {(u +
1), . . . , (u + k)} to the gates, {(u + k + 1), . . . , n} to the outputs of Ck

u,v. The
edges of the graph of the circuit G = (V,E) have to be embedded into Un(Γ2).
After the transformations described in Sect. 2.1, every node in G has fanin and

More Efficient Universal Circuit Constructions 449

fanout 2, and we denote a topological order on V by ηG. We briefly describe the
edge-embedding process in Sects. 2.3 and 3.

Translating a Un(Γ2) into a Universal Circuit. Every node w ∈ VU fulfills a
task when Un(Γ2) is translated to a UC. Programming the UC means specifying
its control bits along the paths defined by the edge-embedding and by the gates
of circuit Ck

u,v. Depending on the number of incoming and outgoing edges and its
type, a node is translated to:

G1. If w is a pole and corresponds to an input or output in G, then w is an input
or output in Un(Γ2) as well.

G2. If w is a pole and corresponds to a gate in G, w is programmed as a universal
gate (UG). A 2-input UG supports any of the 16 possible gate types represented
by the 4 control bits of the gate table (c1, c2, c3, c4). It implements function ug:
{0, 1}2 × {0, 1}4 → {0, 1} that computes:

ug(x1, x2, c1, c2, c3, c4) = x1x2c1 + x1x2c2 + x1x2c3 + x1x2c4. (1)

Generally, a UG can be implemented with 3 AND and 6 XOR gates (resp. with
a two-input gate when using Yao’s protocol for SFE) [KS16].

G3. If w is no pole and has indegree and outdegree 2, w is programmed as
an X-switching block, that computes fX : {0, 1}2 × {0, 1} → {0, 1}2 with
fX((x1, x2), c) = (x1+c, x2−c). This block can be implemented with 1 AND
and 3 XORs (resp. a one-input gate with Yao) [KS08a].

G4. If w is no pole and has indegree 2 and outdegree 1, w is programmed
as a Y-switching block that computes fY : {0, 1}2 × {0, 1} → {0, 1}
with fY ((x1, x2), c) = x1+c. This block can be implemented with 1 AND and
2 XORs (resp. a one-input gate with Yao) [KS08a].

G5. If w is no pole and has indegree 1 and outdegree 2, it has been placed to copy
its input to its two outputs. Therefore, when translated to a UC, w is replaced
by multiple outgoing wires in the parent node [KS16], since the UC itself does
not have the fanout 2 restriction. In Un(Γ2), w is added due to the fanout 2
restriction in the EUG.

G6. If w is no pole and has indegree and outdegree 1, w is removed and replaced
by a wire between its parent and child nodes.

The nodes programmed as UG (G2), X-switching block (G3) or Y-switching
block (G4) are so-called programmable blocks. This means that a programming
bit or vector is necessary besides the two inputs to define their behavior as
described above. These programming bits and vectors that build up the program-
ming of the UC pf are defined by the paths in the edge-embedding of G (the graph
of circuit Ck

u,v describing f) into Un(Γ2).

Recursion Base. Valiant’s construction is recursive, and the recursion base is
reached when the number of poles is between 1 and 6. These recursion base graphs
are shown in [Val76,KS16]. U1(Γ1) is a single pole, U2(Γ1) and U3(Γ1) are two and
three connected poles, respectively. U4(Γ1), U5(Γ1) and U6(Γ1) are constructed
with 3, 7 and 9 additional nodes, respectively.

450 D. Günther et al.

Fig. 2. (a) shows Valiant’s 2-way EUG U
(2)
n (Γ1) [Val76]. (c) shows the corresponding

head block, (b) and (d)–(e) show body and tail blocks, respectively, for different numbers
of poles.

2.3 Valiant’s 2-Way UC Construction

We described in Sect. 2.1 that a Un(Γd) EUG can be constructed of d instances
of Un(Γ1) EUGs. Therefore, Valiant provides an EUG for Γ1(n) graphs, two of
which can build an EUG for Γ2(n) graphs. Let P = {p1, . . . , pn} be the set of poles
in U

(2)
n (Γ1) that have indegree and outdegree 1. Valiant’s 2-way EUG construction

for Γ1(n) graphs of size ∼2.5n log2 n is shown in Fig. 2, where we emphasize the
poles as large circles and the additional nodes as small circles or rectangles. The
corresponding UC has twice the size ∼5n log2 n, since it corresponds to the EUG
for Γ2(n) graphs.

The rectangles are special nodes that build the set of poles in the next recursion
step, i.e., R1

�n
2 −1� = {r11, . . . , r

1
� n

2 −1�}, R2
�n

2 −1� = {r21, . . . r2�n
2 −1�}. Another EUG

is built with these poles which produces new subgraphs with size � �n
2 −1�
2 − 1, s.t.

we have four subgraphs at this level.
This construction is called the 2-way EUG or UC construction. An open-source

implementation of this construction optimized for PFE is provided in [KS16].
Independently, [LMS16] also implemented this 2-way UC, additionally optimiz-
ing for the total number of gates.

2.4 Valiant’s 4-Way UC Construction

Valiant provides another, so-called 4-way EUG or UC construction [Val76].
U

(4)
n (Γ1) has a 4-way recursive structure, i.e., nodes in special sets R1

�n
4 −1�,

R2
�n

4 −1�, R3
�n

4 −1� and R4
�n

4 −1� are the poles in the next recursion step (cf. Fig. 4a).
The recursion base is the same as in Sect. 2.2. This construction results in UCs of

More Efficient Universal Circuit Constructions 451

Fig. 3. k-way EUG construction U
(k)
n (Γ1) [LMS16].

smaller size ∼4.75n log2 n but has not been implemented before due to its more
complicated structure.

2.5 Lipmaa et al.’s Generalized k-Way UC Construction

In [LMS16], Lipmaa et al. generalize Valiant’s approach by providing a UC with
any number of recursion points k, the so-called k-way EUGorUC construction. We
note that their construction slightly differs from Valiant’s EUG construction, since
they do not consider the restriction on the fanout of the poles, i.e., the nodes in the
EUG that correspond to universal gates or inputs (cf. Sect. 2.2). This optimization
has also been included in [KS16] when translating an EUG to a UC, but including
it in the block design leads to better sizes for the number of XOR gates.

The idea is to split n = u + v + k in m = �n
k blocks as shown in Fig. 3.

Every block i consists of k inputs r1i , r2i , . . . , rk
i and k outputs r1i+1, r

2
i+1, . . . , r

k
i+1

as well as k poles, except for the last block which has a number of poles depending
on n mod k. For every j ≤ k, the list of all rj

i builds the poles of the jth subgraph of
the next recursion step, i.e. we have k subgraphs. Additionally, every block begins
and ends with a Waksman permutation network [Wak68] such that the inputs and
outputs can be permuted to every pole. A Y-switching block is placed in front of
every pole pi which is connected to the ith output of the permutation network as
well as the ith output of a block-intern EUG Uk(Γ1). Thus, [LMS16] reduce the
problem of finding an efficient k-way EUG U

(k)
n (Γ2) to the problem of finding the

smallest EUG Uk(Γ1). Their solution is to build the block-intern EUG with the
UC construction of [KS08b], which was claimed to be more efficient for smaller cir-
cuits than [Val76]. However, they calculate the optimal k value to be around 3.147,
which implies that the best solutions are found using small EUGs, for which
Valiant provides hand-optimized solutions (i.e., for k = 2, 3, 4, 5, 6) [Val76].

3 Our Modular Edge-Embedding Algorithm

The detailed embedding algorithm and the open-source UC implementation
of [KS16] was specifically built for the 2-way UC, dealing with the whole UC skele-
ton as one block. In contrast, based on the modular design of [LMS16], we mod-
ularize the edge-embedding task into multiple sub-tasks and describe how they

452 D. Günther et al.

can be performed separately. In this section, we detail this modular approach for
edge-embedding a graph into Valiant’s 4-way EUG: the edge-embedding can be
split into two parts, which are then combined. In Sect. 3.1, we describe our mod-
ular approach based on the edge-embedding algorithm of [KS16] for Valiant’s 2-
way EUG. This can be generalized to any 2i-way EUG construction. Moreover,
the same algorithm can be applied with a few modifications for Lipmaa et al.’s
k-way recursive generalization [LMS16], which we describe in Sect. 3.2.

3.1 Edge-Embedding in Valiant’s 4-Way UC

Similar to the 2-way EUG construction (cf. Sect. 2.3), Valiant provides a 4-way
EUG construction for Γ1(n) graphs which can be extended to an EUG for Γ2(n)
graphs by utilizing two instances U

(4)
n (Γ1)1 and U

(4)
n (Γ1)2 as described in Sect. 2.1.

The construction with our optimizations is visualized in Fig. 4. Valiant offers the
main, so-called Body Block (Fig. 4a) consisting of 4 poles (large circles), 15 nodes
(small circles) as well as 8 recursion points (squares). These body blocks are con-
nected such that the 4 top [bottom] recursion points of one block are the 4 bottom
[top] recursion points of the next block. Similarly to the 2-way EUG, 4 sets are
created for n nodes, i.e., R1

�n
4 −1� = {r11, . . . , r

1
� n

4 −1�}, R2
�n

4 −1� = {r21, . . . , r
2
� n

4 −1�},
R3

�n
4 −1� = {r31, . . . , r

3
� n

4 −1�}, and R4
�n

4 −1� = {r41, . . . , r
4
� n

4 −1�} which are the poles
of 4 U�n

2 �−1(Γ1) EUGs in the next recursion step. Then, these also create 4 sub-
graphs until the recursion base is reached, cf. Sect. 2.2.

We note that the top [bottom] block does not need the upper [lower] recursion
points since its poles are the inputs [outputs] in the block. Therefore, we provide
so-called Head and Tail Blocks. A Head Block occurs at the top of a chain of blocks
(cf. Fig. 4e), it has 4 poles, no inputs, 4 output recursion points and 10 nodes, of
which the first one (denoted by a filled circle) has one input and therefore trans-
lates to wires in the UC.

As a counterpart, Tail Blocks occur at the bottom of a chain of blocks, have at
most 4 poles, 4 input recursion points, no outputs and at most 10 nodes depending
on the number of poles. The 4 tail block constructions are depicted in Figs. 4f–i
and are used, based on the remainder of n modulo 4, with the respective body or
head blocks when n ∈ {5, 6, 7}, the lower parts of which are shown in Figs. 4a–d.

Block Edge-Embedding. In this first part of the edge-embedding process, we
consider the 4 top [bottom] recursion points of the block as intermediate nodes
where the inputs [outputs] of the block enter [leave]. The blocks are built s.t. any
of these inputs can be forwarded to exactly one of the 4 poles of the block and the
output of any pole can be forwarded to exactly one output or another pole having
a higher topological order.

We formalize this behaviour as follows: In U
(4)
n (Γ1) = (VU , EU), let B be the

block visualized in Fig. 4a with poles p4i+1, . . . , p4i+4. Let mapping ηU : VU → N
+

denote a topological order of VU . Then, the nodes r1i , . . . , r4i and r1i+1, . . . , r
4
i+1

denote the input and output recursion points of block B. Additionally, let in =

More Efficient Universal Circuit Constructions 453

Fig. 4. (a) shows Valiant’s 4-way EUG U
(4)
n (Γ1) [Val76]. (e) shows our head block con-

struction, (a)–(d) and (f)–(i) show our body and tail block constructions, respectively,
for different numbers of poles.

454 D. Günther et al.

(in1, . . . , in4) ∈ {0, . . . , 4}4 and out = (out1, . . . , out4) ∈ {0, . . . , 7}4 denote the
input and output vectors of B. The value 0 of the input and output vectors is a
dummy value which is used if an input [a pole] is not forwarded to any pole [output]
of B. The output vector has a larger value range, since a pole can be forwarded to
another pole or an output recursion point. Therefore, we use values 1, 2 and 3 for
poles p2, p3 and p4 and values 4, 5, 6 and 7 for the output recursion points. Pole p1
cannot be a destination for a path in B, since ηU (p1) is less than the topological
order of any other pole in B. Additionally, the values of in and out need to be
pairwise different or 0. Every combination of input and output vector covering
the conditions formalized below in Eqs. 2–6 are valid for B. A pair (rl

i, pj) ∈ P
or (pj , r

l
i+1) ∈ P is a path from rl

i to pj or pj to rl
i in the set of all paths P in B.

Then, PB ⊆ P denote the paths that are to be edge-embedded (cf. Sect. 6.1).

∀l ∈ {1, . . . , 4} : inl �= 0 →(rl
i, pinl

) ∈ PB , (2)

outl �= 0 ∧ outl < 4 →(pj , p1+outl) ∈ PB ∧ ηU (pj) < ηU (p1+outl) (3)

outl > 3 →(pj , r
l−3
i+1) ∈ PB . (4)

∀ini, inj ∈ in : i �= j →ini = 0 ∨ ini �= inj . (5)
∀outi, outj ∈ out : i �= j →outi = 0 ∨ outi �= outj . (6)

Recursion Point Edge-Embedding. The block edge-embedding covers only
the programming of the nodes within a block. Another task left is to program
the recursion points. We use the supergraph construction of [KS16] which, in
every step, splits a Γ2(n) graph in two Γ1(n) graphs, which are merged to
two Γ2(�n

2 − 1) graphs. [KS16] use this for defining the paths in Valiant’s 2-way
EUG. For Valiant’s 4-way EUG, we use every second step of their algorithm with
a minor modification.

Let Ck
u,v be the Boolean circuit computing function f that our UC needs to

compute, and G ∈ Γ2(n) its graph representation (cf. Sect. 2.2).

1. Splitting G ∈ Γ2(n) in two Γ1(n) graphs G1 and G2: As described in Sect. 2.1,
Valiant’s UC is derived from an EUG for Γ2(n) graphs, which consists of
two EUGs for Γ1(n) graphs merged by their poles. Therefore, G is split into
two Γ1(n) graphs G1 and G2. G1 and G2 then need to be edge-embedded into
EUGs (U (4)

n (Γ1))1 and (U (4)
n (Γ1))2, respectively. G = (V,E) ∈ Γ2(n) is split by

2-coloring its edges as described in [Val76,KS16], which can always be done due
to Kőnig’s theorem [Kő31,LP09]. After 2-coloring, E is divided to sets E1 and
E2, using which we build G1 = (V,E1) and G2 = (V,E2), with the following
conditions:

∀e ∈ E :(e ∈ E1 ∨ e ∈ E2) ∧ ¬(e ∈ E1 ∧ e ∈ E2). (7)
∀e = (v1, v2) ∈ E1 :¬∃e′ = (v3, v4) ∈ E1 : v2 = v4 ∨ v1 = v3. (8)
∀e = (v1, v2) ∈ E2 :¬∃e′ = (v3, v4) ∈ E2 : v2 = v4 ∨ v1 = v3. (9)

2. Merging a Γ1(n) graph into a Γ2(�n
2 − 1) graph: In an EUG, the num-

ber of poles decreases in each recursion step and therefore, merging a Γ1(n)

More Efficient Universal Circuit Constructions 455

graph into a Γ2(�n
2 − 1) graph provides information about the paths to be

taken. Let G1 = (V,E) ∈ Γ1(n) be a topologically ordered graph and
Gm = (V ′, E′) ∈ Γ2(�n

2) be a graph with nodes v′
1, . . . , v

′
� n

2 �. We define two
labellings ηin and ηout on Gm with ηin(vi) = i and ηout(vi) = ηin(vi) − 1 =
i − 1. Additionally, we define a mapping θV that maps a node vi ∈ V to a
node vj ∈ V ′ with θV (vi) = v′

� i
2 �. That means two nodes in G1 are mapped

to one node in Gm. At last, we define a mapping θE that maps an edge ei =
(vi, vj) ∈ E to an edge ej ∈ E′ with θE((vi, vj)) = (vηin(θV (vi)), vηout(θV (vj))).
That means every edge in G1 is mapped to an edge in Gm as follows: e =
(vi, vj) ∈ E is mapped to e′ = (v′

k, v′
l) ∈ E′, s.t. v′

k = θV (vi), but v′
l is not

the new node of vj in Gm but v′
l+1. Gm is built as follows: V ′ = {v′

1, . . . , v
′
�n

2 �}
and E′ =

⋃
e∈E θE(e). Then for all e = (v′

i, v
′
j) ∈ E′ and j < i, e is removed

from E′, along with the last node v�n
2 � (due to the definition of θE , it does not

have any incoming edges). The resulting Gm is a topologically ordered graph
in Γ2(�n

2 − 1).
3. The supergraph for Valiant’s 4-way EUG construction: In the first step, G is

split to two Γ1(n) graphs G1 and G2. G1 and G2 contain all the edges that
should be embedded as paths between poles in the first and second EUGs for
Γ1(n), respectively. We now explain how to edge-embed the Γ1(n) graph G1

into an EUG U
(4)
n (Γ1) (for G2 it is the same).

For embedding in a 2-way UC, G1 is firstly merged to a Γ2(�n
2) graph Gm. Gm

is then 2-colored and split into two Γ1(�n
2) graphs G1

1 and G2
1 [KS16]. These get

merged to two Γ2(� �n
2 −1�
2 − 1) graphs G1

m and G2
m. G1

1 is the first and G2
1 is the

second subgraph of G1. Then Gψ◦1
1 and Gψ◦2

1 denote the first and second subgraph
of Gψ

1 , respectively. These steps are repeated until the Γ1 subgraphs have at most
4 nodes.

In Valiant’s 4-way EUG construction [Val76], a supergraph that creates 4 sub-
graphs in each step is necessary. We require a merging method where a Γ1(n) graph
is merged to a Γ4(�n

4 − 1) graph where 4 nodes build a new node, and 4-color this
graph to retrieve 4 subgraphs. However, this can directly be solved by using the
method described above from [KS16]: after repeating the 2-coloring and the merg-
ing twice, we gain 4 subgraphs (G11

1 , G12
1 , G21

1 and G22
1). These can be used as if

they were the result of 4-coloring the graph obtained by merging every 4 nodes
into one.

However, there is a modification in this case: the first 2-coloring is a pre-
processing step, which does not map to an EUG recursion step. Therefore, we
have to define another labelling ηoutP (v) = ηin(v), since in this preprocessing
step we need to keep node v�n

2 �. Then the creation of the supergraph for the 4-
way EUG construction works as follows: We merge G1 to a Γ2(�n

2) graph with
labelling ηin and ηoutP and get Gm. After that, we split Gm into two Γ1(�n

2)
graphs G1

1 and G2
1. These get merged to Γ2(�n

4 − 1) graphs G1
m and G2

m using
the ηin and ηout labellings. Finally, these two graphs get splitted into 4 Γ1(�n

4 − 1)
graphs G11

1 , G12
1 , G21

1 and G22
1 . These are the relevant graphs for the first recursion

456 D. Günther et al.

Listing 1. Edge-embedding algorithm for Valiant’s 4-way EUG

1 procedure edge−embedding (U , G1 = (V, E))
2 Let S be the s e t o f the 4 Γ1 subgraphs o f G1 in the supergraph
3 Let R be the 4 r e cu r s i on step graphs
4 Let B be the s e t o f b locks in U
5 for a l l e = (vi, vj) ∈ E do
6 Let i′ and j′ denote the p o s i t i o n s o f vi and vj in t h e i r b locks

7 bi ← � i
4 � , bj ← � j

4 � // number of b lock in which vi and vj are
8 Let out [r1] denote the output vec tor [r e cu r s i on po in t s] o f Bbi
9 Let in [r0] denote the the input vec tor [r e cu r s i on po in t s] o f Bbj

10 i f bi = bj do // vi and vj are in the same b lock
11 i f vi
= vj do
12 outi′ ← j′ − 1
13 end i f
14 else // vi and vj are in d i f f e r e n t b locks
15 Let s = (V ′, E′) ∈ S denote the Γ1 graph with e′ = (pbi

, pbj−1) ∈ E′ and

↪→ e′ i s not marked
16 Mark e′

17 Let x denote the number with s = Sx

18 Set the con t r o l b i t o f rx
0 to 1

19 i f bj = bi + 1 do // bj and bi are neighbours
20 y ← 0
21 else
22 y ← 1
23 end i f
24 Set the con t r o l b i t o f rx

1 to y
25 outi′ ← x + 4 , inx ← j′

26 end i f
27 end for
28 Edge−embed a l l b locks in U // edge−embed a l l sub−b locks
29 for i = 1 to 4 do
30 i f Si e x i s t s do
31 ca l l edge−embedding (Ri , Si)
32 end i f
33 end for
34 end procedure

step in Valiant’s 4-way EUG construction. Now we continue for all 4 subgraphs
until we reach the recursion base with 4 or less nodes.

4-Way Edge-Embedding Algorithm. In Listing 1, we combine block edge-
embedding and recursion point edge-embedding:

Let U denote the part of U
(4)
n (Γ1) without recursion steps (the main chain of

blocks) and G1 = (V,E) be the Γ1(n) graph which is to be edge-embedded in
U

(4)
n (Γ1). S denotes the set of the 4 subgraphs of G1 in the supergraph, i.e. S =

{G11
1 , G12

1 , G21
1 , G22

1 }. A recursion step graph of U is one of the graphs having one
of the 4 sets of recursion points as poles (e.g. r11, . . . , r

1
� n

4 −1�) without the recursion
steps. R denotes the set of all 4 recursion step graphs of U , and B denotes the set
of all blocks in U .

We give a brief explanation of Listing 1 that describes the edge-embedding
process. For any edge e = (vi, vj) ∈ E in G1, bi and bj denote the block num-
bers in which vi and vj are. There are 2 cases:

More Efficient Universal Circuit Constructions 457

1. vi and vj are in the same block: bi = bj. The edge-embedding can be solved
within the block and no recursion points have to be programmed for this path.
Therefore, vector out of block Bbi is set accordingly.

2. vi and vj are in different blocks: bi �= bj. There exists an edge e′ = (bi, bj−1)
in one of the four Γ1(�n

4 − 1) subgraphs of G1 that is not yet used for an edge-
embedding. This determines that the path in the next recursion step has to
be between poles pbi and pbj−1 . We denote with s ∈ S the subgraph of G1

which contains e′, and x denotes its number in S, i.e. Sx = s. This implies in
which of the 4 recursion step graphs we need to edge-embed the path from pbi

to pbj−1 , and so which recursion points we need to program. We first set the
programming bit of the x-th input [output] recursion points to 1 since the path
between the poles with labelling i and j enters [leaves] the next recursion step
over this recursion point. A special case to be considered here is when blocks Bbi

and Bbj are neighbours (i.e. bj = bi + 1). Then, the path enters and leaves the
next recursion step graph at the same node, whose programming bit thus has
to be 0. The output vector of block Bbi is the i′th value to the xth recursion
point and the input vector of block Bbj is the xth value to the j′th pole in this
block.

We repeat these steps for all edges e ∈ E. Since all in- and output vectors of all
blocks in B are set, they can be embedded with the block edge-embedding. For all
4 subgraphs of G1 in the supergraph and in the EUG, we call the same procedure
with Si ∈ S, Ri ∈ R, 1 ≤ i ≤ 4.

3.2 Edge-Embedding in Lipmaa et al.’s k-Way UC

In this section, we extend the recent work of [LMS16] by providing a detailed
and modular embedding mechanism for any k-way EUG construction described
in Sect. 2.5. We provide the main differences to the edge-embedding of the 4-way
EUG construction detailed in Sect. 3.1.

k-Way Block Edge-Embedding. In this setting, our main block is a pro-
grammable block B of size x with k poles p1, . . . , pk, and k input [output]
recursion points r10, . . . , r

k
0 [r11, . . . , r

k
1]. B is topologically ordered with map-

ping ηU as defined in Sect. 2.1. Vectors in = (in1, . . . , ink) ∈ {0, . . . , k}k, and
out = (out1, . . . , outk) ∈ {0, . . . , 2k − 1}k denote the input and output vectors
of B, respectively. Values k, . . . , 2k − 1 in out denote the recursion point tar-
gets r11, . . . , r

k
1 (cf. Sect. 3.1). We formalize the setting of in and out in Eqs. 10–14.

We denote with P the set of all paths in B, and the PB ⊆ P the paths that get
edge-embedded in B.

∀i ∈ {1, . . . , k} : ini �= 0 →(ri
0, pini

) ∈ PB , (10)

outi �= 0 ∧ outi < k →(pi, p1+outi) ∈ PB ∧ ηU (pi) < ηU (p1+outi) (11)

outi > k − 1 →(pi, r
i−k+1
1) ∈ PB. (12)

∀ini, inj ∈ in : i �= j →ini = 0 ∨ ini �= inj . (13)
∀outi, outj ∈ out : i �= j →outi = 0 ∨ outi �= outj . (14)

458 D. Günther et al.

k-Way Recursion Point Edge-Embedding. G ∈ Γ2(n) denotes the trans-
formed graph of a Boolean circuit Ck

u,v, where n = u + k + v.

1. Splitting G ∈ Γ2(n) in two Γ1(n) graphs G1 and G2: Similarly as in Sect. 3.1,
we first split G into two Γ1(n) graphs G1 and G2 with 2-coloring.

2. Merging a Γ1(n) graph into a Γk(�n
k − 1) graph: G1 = (V,E) ∈ Γ1(n) is

merged into a Γk(�n
k − 1) graph Gm = (V ′, E′) (same for G2). Therefore,

we redefine mapping θV (cf. Sect. 3.1) that maps node vi ∈ V to node vj ∈ V ′.
In this scenario, k nodes in V build one node in V ′, so θV (vi) = v� i

k �. The
mapping of the edges θE is the same as in the 4-way EUG construction, and
(v′

i, v
′
j) ∈ E′ where j < i edges are removed along with v�n

k � in the end. Gm is
then a topologically ordered graph in Γ1(�n

k − 1).
3. The supergraph for Lipmaa et al.’s k-way EUG construction: The next step

is to split Gm ∈ Γ1(�n
k − 1) into k Γ1(�n

k − 1) graphs. This is done with
k-coloring: a directed graph K = (V,E) can be k-colored, if k sets E1, . . . , Ek ⊆
E cover the following conditions:

∀i, j ∈{1, . . . , k} : i �= j → Ei ∩ Ej = ∅. (15)
∀e ∈E : ∃i ∈ {1, . . . , k} : e ∈ Ei. (16)
∀i ∈{1, . . . , k} : ∀e = (v1, v2) ∈ Ei :

¬∃e′ = (v3, v4) ∈ Ei : v2 = v4 ∨ v1 = v3. (17)

According to Kőnig’s theorem [Kő31,LP09], Γk(n) graphs can always be k-
colored efficiently (cf. full version [GKS17, Appendix A] for details). The rest
of the supergraph construction and the way it is used for edge-embedding is
the same as for the 4-way EUG construction as described in Sect. 3.1.

k-Way Edge Embedding Algorithm. The edge-embedding algorithm is the
same as shown in Listing 1, after replacing every 4 with k.

4 New Universal Circuit Constructions

Here, we describe our ideas for novel, potentially more efficient, UC constructions.
Firstly, in Sect. 4.1, we describe modular building blocks for a 3-way UC. We show
that Valiant’s optimized U3(Γ1) cannot directly be applied as a building block
in the construction due to the fact that it must have an additional node to be a
generic EUG. We prove that the EUG without this node is not a valid EUG by
showing a counterexample. Therefore, it actually results in a worse asymptotic
size than Valiant’s 2-way and 4-way UC constructions. Secondly, in Sect. 4.2, we
propose a hybrid UC construction, utilizing both Valiant’s 2-way and 4-way UC
constructions so that the overall size of the resulting hybrid UC is minimized, and
is at least as efficient as the better construction for the given size.

More Efficient Universal Circuit Constructions 459

4.1 3-Way Universal Circuit Construction

The optimal k value for minimizing the size of the k-way UC was calculated to be
3.147 in [LMS16]. We describe our idea of a 3-way UC construction. Intuitively,
based on an optimization by Valiant [Val76], this UC should result in the best
asymptotic size. The asymptotic size of any k-way UC depends on the size of its
modular body block Bk (e.g., Fig. 4a for the 4-way UC). Once it is determined,
the size of the UC is size(U (k)

n (Γ2)) = 2 · size(U (k)
n (Γ1)) ≈ 2 · size(Bk)

k n logk n =
2· size(Bk)

k log2(k)
n log2 n. The modular block consists of two permutation networks P (k),

an EUG Uk(Γ1), and (k − 1) Y-switching blocks (cf. Sect. 2.5, [LMS16]).

Size of Body Block B3 with Valiant’s Optimized U3(Γ1). According to
Valiant [Val76], an EUG U3(Γ1) with 3 poles contains only 3 connected poles (used
as recursion base in Sect. 2.2). An optimal permutation network P (3) that achieves
the lower bound has 3 nodes as well. This implies that size(B3) = 2 · P (3) +
size(U3(Γ1))+(3−1) = 11. Then, the size of the UC becomes ≈ 2· 11

3 log2 3n log2 n ≈
4.627n log2 n, which means an asymptotically by around 2.5% smaller size than
that of the 4-way UC.

However, there is a flaw in this initial design. Valiant’s U3(Γ1) only works as
an EUG for 3 nodes under special conditions, e.g., when it is a subgraph within
a larger EUG construction. There are 3 possible edges in a topologically ordered
graph G = (V,E) in Γ1(3): (1, 2), (2, 3) and (1, 3). (1, 2) and (2, 3) can be directly
embedded in U3(Γ1) using (p1, p2) and (p2, p3), respectively. (1, 3), however, has
to be embedded as a path through node 2, i.e., as a path ((p1, p2), (p2, p3)). When
U3(Γ1) is a subgraph of a bigger EUG, this is possible by programming p2 accord-
ingly. However, when we use this U3(Γ1) as a building block in our EUG construc-
tion, it cannot directly be applied. A generic U3(Γ1) that can embed (1, 3) without
going through p2 as before has an additional Y-switching block.

We depict in Fig. 5a the 3-way body block that uses Valiant’s optimized U3(Γ1)
in the k-way block design of [LMS16]. Assume that the output of pole p3i+1 has
to be directed to pole p3i+3. Then, it needs to go through pole p3i+2, which means
that the edge going in to p3i+2 is used by this path. However, there might be an
other edge coming from the permutation network as an input to p3i+2, e.g., from
p3i from the preceding block. This cannot be directed to p3i+2 anymore as shown
in Fig. 5a. Therefore, in the 3-way body block construction, it does not suffice to
use Valiant’s optimized U3(Γ1) [Val76].

Size of Body Block B3 with Our Generic U3(Γ1). In Fig. 5b, we show the
3-way body block with the generic U3(Γ1) that allows the output from p3i+1 to be
directed to p3i+3 without having to go through p3i+2. This results in size(B3) =
2 · P (3) + size(U3(Γ1)) + (3 − 1) = 12, which implies that the asymptotic size of
the UC is ≈2 · 12

3 log2 3n log2 n ≈ 5.047n log2 n. Unfortunately, this is worse than
the asymptotic size of the 2-way construction, and we therefore conclude that the
asymptotically most efficient known UC construction is Valiant’s 4-way UC con-
struction.

460 D. Günther et al.

Fig. 5. Body block construction for our 3-way EUG U
(3)
n (Γ1).

4.2 Hybrid Universal Circuit Construction

In this section, we detail our hybrid UC that minimizes its size based on Valiant’s
2-way and 4-way UCs, which are asymptotically the smallest UCs to date. Given
the size of the input circuit Ck

u,v, i.e., n = u + k + v, we can calculate at each
recursion step if it is better to create 2 subgraphs of size �n

2 − 1 and utilize the 2-
way recursive skeleton, or it is more beneficial to create a 4-way recursive skeleton
with 4 subgraphs of size �n

4 − 1.
We assume that for every n, we have an algorithm that computes the size

(size(Uhybrid
n (Γ1))) of the hybrid construction for sizes smaller than n. We give

details on how it is computed in Sect. 5. Then, Listing 2 describes the algorithm
for constructing a hybrid UC, at each step based on which strategy is more effi-
cient. We note that our hybrid construction is generic, and given multiple k-way
UC constructions as parameter K (K = {2, 4} in our example), it minimizes the
concrete size of the resulting UC.

5 Size of UC Constructions

Lipmaa et al.’s k-way UC construction is depicted in a modular manner
in [LMS16, Fig. 12] and discussed briefly in Sect. 2.5 and Fig. 3. They show that
a k-way body block consists of two permutation networks P (k), an EUG for k
nodes, i.e., Uk(Γ1), and additionally, (k − 1) Y-switching blocks. In this section,
we recapitulate the sizes (Table 2) of the k-way EUG and give an estimate for the

More Efficient Universal Circuit Constructions 461

Listing 2. Hybrid construction algorithm

1 procedure hybrid (p1, . . . , pn , K = {2, 4})
2 Let s i z e (Uhybrid

n′ (Γ1)) be the func t i on c a l c u l a t i n g the s i z e o f the

↪→ sma l l e r hybrid c ons t ru c t i on s with s i z e n′ ≤ n
3 for a l l k ∈ K do // Number of po les in the l a s t b lock for a l l k
4 i f n | k do
5 mk ← k
6 else
7 mk ← n mod k
8 end i f
9 sk ← size(Headk(k)) +

(�n
k � − 3

) · size(Bodyk(k)) + size(Bodyk(rk)) + size(Tailk(mk))+

↪→ m2 · size
(
size(Uhybrid

� n
2 −1�(Γ1))

)
+ ((k − mk) · size

(
size(Uhybrid

� n
k

−1�(Γ1))

)

10 end for
11 si ← min(sk : k ∈ K) // Choose the b e t t e r construct ion
12 Create sk e l e t on for i−way cons t ruc t i on with n po l e s

13 ca l l hybrid
(

r1
1 , . . . , r1

� n
i

−1�, K
)
, . . . , hybrid

(
r
mi
1 , . . . , r

mi
� n

i
−1�, K

)

14 i f (i − mi) > 0 do

15 ca l l hybrid

(
r
mi
1 , . . . , r

mi
� n

i
−1�, K

)
, . . . , hybrid

(
ri
1, . . . , ri

� n
i

−1�, K
)

16 end i f
17 end procedure

leading constant for Lipmaa et al.’s EUG construction with size O(n log2 n), for
k ∈ {2, . . . , 8}. For a detailed discussion on the depth of the UCs, the reader
is referred to the full version of this paper [GKS17, Sect. 5]. We conclude that
the best asymptotic size is achieved by Valiant’s 4-way UC. This result does not
exclude the possibility for a more efficient UC in general, but it shows that the
most efficient UC using Lipmaa et al.’s k-way UC from [LMS16] is the 4-way UC.
Two k-way EUGs for Γ1(n) graphs build up an EUG for Γ2(n) graphs as described
in Sect. 2.1. Therefore, the leading constant for the size of the UC is twice that of
the EUG U

(k)
n (Γ1), which is summarized in the same table.

5.1 Asymptotic Size of k-Way UC Constructions

We review the sizes of the building blocks of a k-way body block, i.e., the size of
an EUG Uk(Γ1) for k, and the size of a permutation network P (k) with k inputs
and outputs, as well as the size of the resulting UCs.

Edge-Universal Graph with k Poles. Valiant optimized EUGs up to size 6 by
hand in [Val76]: for k = 2, U2(Γ1) has two poles, for k = 3 we discussed in Sect. 4.1
that an additional node is necessary. For k ∈ {4, 5, 6} the sizes are {6, 10, 13}, as
shown in [KS16, Fig. 1] (note that the nodes noted as empty circles disappear in
the UC). For k = 7 and k = 8, we observe that Valiant’s 2-way UC results in
a better size than that of the 4-way UC due to the smaller permutation network
and less recursion nodes. Therefore, we use these constructions to compute the
size of U7(Γ1) and U8(Γ1). As mentioned in [LMS16], another possibility is to use
the UC of [KS08b] instead of these EUGs since they have better sizes for small
circuits. These UCs UKS08(k) are built from two smaller UKS08(k

2), a P (k
2) and k

2
Y switches. It results in a smaller size of 21 for k = 8.

462 D. Günther et al.

Table 2. The leading factors of the asymptotic O(n log2 n) size for k-way edge-universal

graphs (U
(k)
n (Γ1)) and universal circuits (UC) for k ∈ {2, . . . , 8}. n denotes the size of

the input Γ2(n) circuit, Uk(Γ1) the size of Valiant’s edge-universal graph with k poles,
UKS08(k) the size of the UC of [KS08b], P l(k) the lower bound for the size of a per-
mutation network for k nodes, and PW(k) the size of Waksman’s permutation net-
work [Wak68]. BW

k is the size of the body block.

k Uk(Γ1) UKS08(k) P l(k) PW(k) BW
k U

(k)
n (Γ1) (·n log2 n) UC (·n log2 n)

2 2 2 1 1 5 2.5 5

3 4 6 3 3 12 ≈2.524 ≈5.047

4 6 7 5 5 19 2.375 4.75

5 10 11 7 8 30 ≈2.584 ≈5.168

6 13 14 10 11 40 ≈2.579 ≈5.158

7 19 19 13 14 53 ≈2.697 ≈5.394

8 23 21 16 17 62 ≈2.583 ≈5.167

Permutation Networks. Waksman in [Wak68] showed that the lower bound
for the size of a permutation network is �log2(k!) for k elements. We present this
lower bound in Table 2 as P l(k). The permutation network with the smallest size is
Waksman’s permutation network PW(k) [Wak68,BD02]. For k ∈ {2, 3, 4} its size
reaches the lower bound, but for larger k values, his permutation network utilizes
additional nodes. Since these are the smallest existing permutation networks, we
use these when calculating the size of the UC. Even with the lower bound P l(k), for
k ∈ {5, 6, 7, 8} we would have the respective leading terms {4.824, 4.900, 5.190, 5},
which are larger than 4.75 for k = 4.

Body Blocks. A body block BW
k is built of (k − 1) Y-switching blocks, an

EUG for k nodes, and two permutation networks [LMS16] (cf. Fig. 3). The
size of BW

k is the sum of the sizes of its building blocks, i.e., size(BW
k) =

min
(
size(Uk(Γ1)), size(UKS08(k))

)
+ 2 · size(PW (k)) + k − 1.

Edge-Universal Graphs and Universal Circuits with n Poles. The asymp-
totic size of EUG U

(k)
n (Γ1) is determined as size(U (k)

n (Γ1)) = size(BW
k)

k log2 k n log2 n and
the leading factor for a UC is twice this number.

5.2 Concrete Size of UC Constructions

The size of Lipmaa et al.’s k-way universal circuits depends on the size of their
building blocks [LMS16]. More concretely, finding either better edge-universal
graphs for small number of nodes or optimal permutation networks could improve
the sizes of these UCs. Lipmaa et al. calculated the optimal k value for minimizing
the size of a k-way UC to be 3.147 [LMS16].

Table 2 shows that the smallest sizes are achieved by the 4-way, followed by
the 2-way UCs. The 3-way UC, as mentioned in Sect. 4.1, is less efficient due to

More Efficient Universal Circuit Constructions 463

the additional node in U3(Γ1). We observe that the sizes grow with increasing k
values due to the permutation networks and EUGs.

Concrete Sizes of 4-Way and 2-Way UCs. Based on the parity (2-way UC)
and the remainder modulo 4 (4-way UC), not only the size of the outest skele-
ton, but also that of the smaller subgraphs can be optimized. It was considered
in [KS16] for the 2-way UC, and we now generalize the approach for k-way UCs.
We provide a recursive formula for the concrete size of the optimized k-way EUG
as follows. Let mk be defined as

mk :=

{
n mod k if k � n,

k if k | n.
(18)

Then, given the designed Head, Body and Tail blocks with sizes shown in Table 3,
we can compute the size by calculating the size of all the components of the outest
skeleton, and the sizes of the smaller subgraphs with the recursive formula shown
in Eq. 19.4

size(U (k)
n (Γ1)) = size(Head(k)) +

(⌈n

k

⌉
− 3
)

· size(Body(k))

+ size(Body(mk)) + size(Tail(mk))

+ mk · size
(
U

(k)

� n
k

−1�(Γ1)
)

+ (k − mk) · size
(
U

(k)

� n
k

−1�(Γ1)
)

. (19)

Concrete Size of Our Hybrid UC. We provide a hybrid UC in Sect. 4.2 for
minimizing the size of the resulting UC. This construction chooses at each step
the skeleton that results in the smallest size and therefore, we provide the recur-
sive algorithm for determining its size in Eq. 20. size(Headk(i)), size(Tailk(i)) and

Table 3. The sizes of building blocks of the 2-way and 4-way UCs (cf. Figs. 2 and 4).

Block Head Body Tail

k\Poles 4 3 2 1 4 3 2 1 4 3 2 1

Fig. - - 2c - - - 2a 2b - - 2d 2e

2-way - - 4 - - - 5 5 - - 4 1

Fig. 4e 4g 4h 4i 4a 4b 4c 4d 4f 4g 4h 4i

4-way 14 14 13 12 19 19 18 17 14 9 4 1

4 We note that for k ≥ 3, there exist Head(k − 1), . . . , Head(1) blocks. These are used
for one n, e.g., Head(1) when n = k+1, and Head(k−1) when n = 2k. For simplicity,
we consider these as special recursion base numbers in our calculations.

464 D. Günther et al.

size(Bodyk(i)) are the values from Table 3 for k = 2 and k = 4. The size of the
hybrid UC is minimized as

size(Uhybrid
n (Γ1)) = min

(
size(Headk(k)) +

(⌈n

k

⌉
− 3

)
· size(Bodyk(k))

+ size(Bodyk(mk)) + size(Tailk(mk)) + mk · size
(
Uhybrid

�n
k −1�(Γ1)

)

+ (k − mk) · size
(
Uhybrid

n
k −1�(Γ1)

)
; k ∈ {2, 4}

)
, (20)

which can be computed using a dynamic programming algorithm.

Improvement of 4-Way Construction. The bottom (blue) line in Fig. 6 shows
the concrete improvement in percentage of the 4-way UC construction over the
2-way UC construction up to ten million nodes in the simulated input circuit.
From the asymptotic leading factors in Table 2, we expect an improvement of up to
1 − 4.75

5 = 5%. For the smallest n values (n ≤ 15), the 2-way UC is up to 33.3%
better than the 4-way UC. However, from n = 212 on, the 4-way UC construction
is better, except for some short intervals as shown in Fig. 6 (the difference in these
intervals, however, is at most 3.45%). From here on, the 4-way UC is on average
3.12% better in our experiments, where the biggest improvement is 4.48%. More-
over, from n = 10885 on, the 4-way UC always outperforms the 2-way UC.

Fig. 6. Improvement of our hybrid and Valiant’s 4-way UC over Valiant’s 2-way UC for
15 ≤ n ≤ 107 with logarithmic x axis. (Color figure online)

More Efficient Universal Circuit Constructions 465

Improvement of Hybrid Construction. The improvement achieved by our
hybrid construction (cf. Sect. 4.2) is depicted in the same Fig. 6, as the top (green)
line. For some n values the hybrid UC achieves the same size as the 2- or 4-way
UCs, but due to its nature, it is never worse. This means that the improvement of
our hybrid UC is always nonnegative, and greater than or equal to the improve-
ment achieved by the 4-way UC. Moreover, in most cases the hybrid UC results
in better sizes than any of the other two constructions: this means that some sub-
graphs are created for an n for which the 2-way UC is smaller, and therefore the
2-way recursive structure is utilized. The overall improvement for all n values is
on average 3.65% and at most 4.48% over the 2-way UC construction.

6 Implementation and Evaluation

The first implementation of Valiant’s 2-way UC, along with a toolchain for
PFE (cf. Sect. 1.1) was given in [KS16]. The 4-way UC has smaller asymptotic
size ∼4.75n log2 n, but has not been implemented before due to its more compli-
cated structure and embedding algorithm.

In this work, we improve the implementation of the open-source framework
of [KS16] by using the 4-way UC construction that can directly be applied in the
PFE framework. Our improved implementation is available at http://encrypto.
de/code/UC. Firstly, the functionality is translated to a Boolean circuit using the
Fairplay compiler [MNPS04,BNP08]. This is then transformed into a circuit in
Γ2(n), i.e., with at most two incoming and outgoing wires for each gate, input
and output. This is done in a preprocessing step of the framework in [KS16]. The
input circuit description of our UC implementation is the same as that of the UC
compiler of [KS16], and we also adapt our output UC format to that of [KS16]
that includes the gate types described in Sect. 2.2. This format is compatible with
the ABY framework [DSZ15] for secure function evaluation.

We discuss our implementation of Valiant’s 4-way UC in Sect. 6.1 and give
experimental results in Sect. 6.2. For a description on how the hybrid UC can be
implemented, the reader is referred to the full version [GKS17, Sect. 6.3].

6.1 Our 4-Way Universal Circuit Implementation

The architecture of our UC implementation is the same as that of [KS16],
and therefore, we describe our UC design based on the steps described in
[KS16, Fig. 6]. Our implementation gets as input a circuit with u inputs, v out-
puts and k gates, and outputs a 4-way UC with size n = u + k + v, as well as the
programming pf corresponding to the input circuit (cf. Sect. 1).

Transforming Circuit Ck
u,v into Γ2(u + k + v) Graph G. As a first step, we

transform the circuit Ck
u,v into a Γ2(n) graph G = (V,E) with n = u + k + v

(cf. Sect. 2.1). Then, we define a topological order ηG on the nodes of G s.t. every
input node vi has a topological order of 1 ≤ ηG(vi) ≤ u and every output node vj

is labelled with u + k + 1 ≤ ηG(vj) ≤ u + k + v.

http://encrypto.de/code/UC
http://encrypto.de/code/UC

466 D. Günther et al.

Table 4. Comparison of the sizes of the UCs (2-way, 4-way, and hybrid) for sample
circuits from [TS15]. Bold numbers denote if the 2-way or the 4-way UC is smaller; the
smallest size is always achieved by our hybrid UC. The UC generation time is given for
both implemented UCs.

Circuit n Circuit size (#AND gates) UC generation (ms)

u+ v + k 2-way UC
[KS16]

Our 4-way
UC

Our
Hybrid UC

2-way UC
[KS16]

Our 4-way
UC

AES-non-exp 46 847 2.96 · 106 2.93 · 106 2.86 · 106 9 008.9 10 325.8

AES-exp 38 518 2.38 · 106 2.38 · 106 2.31 · 106 6 961.7 8 361.3

DES-non-exp 31 946 1.96 · 106 1.92 · 106 1.89 · 106 5 563.8 6 599.5

DES-exp 32 207 19.8 · 106 19.4 · 106 1.90 · 106 5 654.0 6 765.0

md5 66 497 4.42 · 106 4.26 · 106 4.26 · 106 14 805.5 14 897.8

sha-256 201 206 1.49 · 107 1.46 · 107 1.44 · 107 81 889.1 57 439.0

add 32 342 9.58 · 103 9.55 · 103 9.44 · 103 29.6 35.3

add 64 674 2.21 · 104 2.27 · 104 2.17 · 104 53.9 89.6

comp 32 216 5.53 · 103 5.54 · 103 5.49 · 103 17.7 21.2

mult 32x32 12 202 6.54 · 105 6.50 · 105 6.35 · 105 1 639.2 2 177.1

Branching 18 200 4.92 · 103 5.07 · 103 4.88 · 103 21.0 24.2

CreditChecking 82 1.50 · 103 1.51 · 103 1.49 · 103 3.1 12.7

MobileCode 160 3.65 · 103 3.88 · 103 3.61 · 103 10.6 29.0

Creating anEUG U
(4)
n (Γ2) for Γ2(n) Graphs. An EUG U

(4)
n (Γ2) is constructed

by creating two instances of U
(4)
n (Γ1) as shown in Sect. 2.2. The two instances get

merged to U
(4)
n (Γ2) so that one builds the left inputs and outputs and the other

builds the right inputs and outputs of the gates (based on the two-coloring of G).
We create the EUGs with Valiant’s 4-way EUG [Val76] with our optimized blocks
from Sect. 3.1 (cf. Fig. 4).

Programming U
(4)
n (Γ2) to Compute Ck

u,v. We edge-embed graph G into

U
(4)
n (Γ2) as described in Sect. 3.1. [KS16] use their supergraph construction to

define the paths between the poles uniquely for Valiant’s 2-way EUG. We modify
this supergraph as described in Sect. 3.1 for Valiant’s 4-way EUG and perform the
edge-embedding as described in Listing 1. The programming bits of the nodes are
set during the edge-embedding process along the paths between the poles. The
block edge-embedding is done by analyzing the possible input values and defining
the valid paths as described in Sect. 3.1.

Outputting a Universal Circuit with Its Programming. As a final step,
EUG U

(4)
n (Γ2) is topologically ordered and output in the UC format of [KS16].

The programming bits pf defined by the embedding are also output in a separate
file based on the topological order.

More Efficient Universal Circuit Constructions 467

6.2 Our Experimental Results

In order to show the improvement of our method, we ran experiments on a Desk-
top PC, equipped with an Intel Haswell i7-4770K CPU with 3.5 GHz and 16 GB
RAM, and provide our results in Table 4. To compare with the runtime of the UC
compiler of [KS16], we ran the same experiments on the same platform using their
2-way UC implementation.

As [KS16], we use a set of real-life circuits from [TS15] for our benchmarks,
and compare the sizes of the resulting circuits and the generation and embed-
ding runtimes. We can see that from the 2-way and 4-way UC constructions, the
4-way UC, as expected, is always smaller for large circuits than the 2-way UC.
However, it is sometimes better even for small circuits, e.g., for 32-bit addition
with n = 342. The hybrid construction always provides the smallest UC for our
example circuits.

In the last two columns, we report the runtime of the UC compiler of [KS16]
and our 4-way UC implementation for generating and programming the universal
circuit corresponding to the example circuits. Table 4 shows that the differences
in runtime are not significant, and due to its more complicated structure, the 4-
way UC takes more time to generate and program in general. However, we can
see from the largest example with more than 200000 nodes that asymptotically,
the 4-way UC results in a runtime improvement as well, as less nodes need to be
programmed.

Acknowledgements. This work has been co-funded by the German Federal Ministry
of Education and Research (BMBF) and the Hessen State Ministry for Higher Educa-
tion, Research and the Arts (HMWK) within CRISP and by the DFG as part of project
E3 within CROSSING. We thank the reviewers of ASIACRYPT’17 for their helpful com-
ments.

References

[AMPR14] Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure com-
putation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 22

[Att14] Attrapadung, N.: Fully secure and succinct attribute based encryption
for circuits from multi-linear maps. Cryptology ePrint Archive, Report
2014/772 (2014). http://ia.cr/2014/772

[BBKL17] Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Towards practical PFE: an
efficient 2-party private function evaluation protocol based on half gates.
Cryptology ePrint Archive, Report 2017/415 (2017). http://ia.cr/2017/
415

[BD02] Beauquier, B., Darrot, É.: On arbitrary size Waksman networks and their
vulnerability. Parallel Proces. Lett. 12(3–4), 287–296 (2002)

https://doi.org/10.1007/978-3-642-55220-5_22
http://ia.cr/2014/772
http://ia.cr/2017/415
http://ia.cr/2017/415

468 D. Günther et al.

[BFK+09] Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R.,
Schneider, T.: Secure evaluation of private linear branching programs
with medical applications. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 424–439. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04444-1 26

[BNP08] Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure
multi-party computation. In: CCS 2008, pp. 257–266. ACM (2008)

[BOKP15] Banescu, S., Ochoa, M., Kunze, N., Pretschner, A.: Idea: benchmark-
ing indistinguishability obfuscation – a candidate implementation. In:
Piessens, F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol.
8978, pp. 149–156. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15618-7 12

[BPSW07] Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving
remote diagnostics. In: CCS 2007, pp. 498–507. ACM (2007)

[DSZ15] Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient
mixed-protocol secure two-party computation. In: NDSS 2015. The Inter-
net Society (2015). Code: http://encrypto.de/code/ABY

[FAZ05] Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving credit check-
ing. In: Electronic Commerce (EC 2005), pp. 147–154. ACM (2005)

[FGP14] Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on
encrypted data. In: CCS 2015, pp. 844–855. ACM (2014)

[FVK+15] Fisch, B., Vo, B., Krell, F., Kumarasubramanian, A., Kolesnikov, V.,
Malkin, T., Bellovin, S.M.: Malicious-client security in blind seer: a scal-
able private DBMS. In: IEEE S&P 2015, pp. 395–410. IEEE (2015)

[GGH+13a] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all cir-
cuits. In: FOCS 2013, pp. 40–49. IEEE (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based
encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 27

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryp-
tion and rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14623-7 9

[GKS17] Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit con-
structions. Cryptology ePrint Archive, Report 2017/798 (2017). http://ia.
cr/2017/798

[HKK+14] Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.:
Amortizing garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 458–475. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44381-1 26

[Kő31] Kőnig, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119
(1931)

[KM11] Katz, J., Malka, L.: Constant-round private function evaluation with linear
complexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25385-0 30

[KR11] Kamara, S., Raykova, M.: Secure outsourced computation in a multi-
tenant cloud. In: IBM Workshop on Cryptography and Security in Clouds
(2011)

https://doi.org/10.1007/978-3-642-04444-1_26
https://doi.org/10.1007/978-3-642-04444-1_26
https://doi.org/10.1007/978-3-319-15618-7_12
https://doi.org/10.1007/978-3-319-15618-7_12
http://encrypto.de/code/ABY
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9
http://ia.cr/2017/798
http://ia.cr/2017/798
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30

More Efficient Universal Circuit Constructions 469

[KS08a] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

[KS08b] Kolesnikov, V., Schneider, T.: A practical universal circuit construction
and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008.
LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85230-8 7

[KS16] Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9665, pp. 699–728. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49890-3 27

[LMS16] Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal cir-
cuit: improvements, implementation, and applications. Cryptology ePrint
Archive, Report 2016/017 (2016). http://ia.cr/2016/017

[LP09] Lovász, L., Plummer, M.D.: Matching Theory. AMS Chelsea Publishing
Series. American Mathematical Society, Providence (2009)

[LR15] Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with
security for malicious adversaries. In: CCS 2015, pp. 579–590. ACM (2015)

[MNPS04] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party
computation system. In: USENIX Security 2004, pp. 287–302. USENIX
(2004)

[MS13] Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient frame-
work for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 33

[MSS14] Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function
evaluation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 486–505. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 26

[NPS99] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mecha-
nism design. In: ACM Conference on Electronic Commerce (EC 1999), pp.
129–139. ACM (1999)

[NSMS14] Niksefat, S., Sadeghiyan, B., Mohassel, P., Sadeghian, S.S.: ZIDS: a
privacy-preserving intrusion detection system using secure two-party com-
putation protocols. Comput. J. 57(4), 494–509 (2014)

[OI05] Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 14

[PKV+14] Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Geol Choi, S.,
George, W., Keromytis, A.D., Bellovin, S.: Blind seer: a scalable private
DBMS. In: IEEE S&P 2014, pp. 359–374. IEEE (2014)

[Sch08] Schneider, S.: Practical secure function evaluation. Master’s thesis, Uni-
versity Erlangen-Nürnberg, Germany, February 2008

[Sha49] Shannon, C.: The synthesis of two-terminal switching circuits. Bell Labs
Tech. J. 28(1), 59–98 (1949)

[SS08] Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure eval-
uation of private functions with application to data classification. In: Lee,
P.J.,Cheon, J.H. (eds.) ICISC2008. LNCS, vol. 5461, pp. 336–353. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00730-9 21

https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-662-49890-3_27
https://doi.org/10.1007/978-3-662-49890-3_27
http://ia.cr/2016/017
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/11535218_14
https://doi.org/10.1007/978-3-642-00730-9_21

470 D. Günther et al.

[TS15] Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and
FHE (2015). https://www.cs.bris.ac.uk/Research/CryptographySecurity/
MPC/

[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: STOC 1976, pp.
196–203. ACM (1976)

[Wak68] Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
[Weg87] Wegener, I.: The complexity of Boolean functions. Wiley-Teubner (1987)
[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).

In: FOCS 1986, pp. 162–167. IEEE (1986)
[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald,

E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
439–467. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6 15

https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-662-46803-6_15

	More Efficient Universal Circuit Constructions
	1 Introduction
	1.1 Applications of Universal Circuits
	1.2 Related Work on Universal Circuits
	1.3 Outline and Our Contributions

	2 Preliminaries
	2.1 Preliminaries to Valiant's UC Constructions
	2.2 Valiant's UC Constructions
	2.3 Valiant's 2-Way UC Construction
	2.4 Valiant's 4-Way UC Construction
	2.5 Lipmaa et al.'s Generalized k-Way UC Construction

	3 Our Modular Edge-Embedding Algorithm
	3.1 Edge-Embedding in Valiant's 4-Way UC
	3.2 Edge-Embedding in Lipmaa et al.'s k-Way UC

	4 New Universal Circuit Constructions
	4.1 3-Way Universal Circuit Construction
	4.2 Hybrid Universal Circuit Construction

	5 Size of UC Constructions
	5.1 Asymptotic Size of k-Way UC Constructions
	5.2 Concrete Size of UC Constructions

	6 Implementation and Evaluation
	6.1 Our 4-Way Universal Circuit Implementation
	6.2 Our Experimental Results

	References

