
Kummer for Genus One over Prime Order Fields

Sabyasachi Karati1(B) and Palash Sarkar2

1 iCIS Lab, Department of Computer Science,
University of Calgary, Calgary, Canada

sabyasachi.karati@ucalgary.ca
2 Applied Statistics Unit, Indian Statistical Institute,

203, B.T. Road, Kolkata 700108, India
palash@isical.ac.in

Abstract. This work considers the problem of fast and secure scalar
multiplication using curves of genus one defined over a field of prime
order. Previous work by Gaudry and Lubicz in 2009 had suggested the
use of the associated Kummer line to speed up scalar multiplication. In
this work, we explore this idea in detail. The first task is to obtain an
elliptic curve in Legendre form which satisfies necessary security con-
ditions such that the associated Kummer line has small parameters
and a base point with small coordinates. In turns out that the ladder
step on the Kummer line supports parallelism and can be implemented
very efficiently in constant time using the single-instruction multiple-
data (SIMD) operations available in modern processors. For the 128-bit
security level, this work presents three Kummer lines denoted as K1 :=
KL2519(81, 20), K2 := KL25519(82, 77) and K3 := KL2663(260, 139) over
the three primes 2251 − 9, 2255 − 19 and 2266 − 3 respectively. Implemen-
tations of scalar multiplications for all the three Kummer lines using
Intel intrinsics have been done and the code is publicly available. Tim-
ing results on the recent Skylake and the earlier Haswell processors of
Intel indicate that both fixed base and variable base scalar multiplica-
tions for K1 and K2 are faster than those achieved by Sandy2x which is
a highly optimised SIMD implementation in assembly of the well known
Curve25519; for example, on Skylake, variable base scalar multiplica-
tion on K1 is faster than Curve25519 by about 25%. On Skylake, both
fixed base and variable base scalar multiplication for K3 are faster than
Sandy2x; whereas on Haswell, fixed base scalar multiplication for K3 is
faster than Sandy2x while variable base scalar multiplication for both
K3 and Sandy2x take roughly the same time. In fact, on Skylake, K3

is both faster and also offers about 5 bits of higher security compared
to Curve25519. In practical terms, the particular Kummer lines that are
introduced in this work are serious candidates for deployment and stan-
dardisation.

Keywords: Elliptic curve cryptography · Kummer line · Montgomery
curve · Scalar multiplication

S. Karati—Part of the work was done while the author was a post-doctoral fellow
at the Turing Laboratory of the Indian Statistical Institute.
Part supported by Alberta Innovates in the Province of Alberta, Canada.

c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part II, LNCS 10625, pp. 3–32, 2017.
https://doi.org/10.1007/978-3-319-70697-9_1

4 S. Karati and P. Sarkar

1 Introduction

Curve-based cryptography provides a platform for secure and efficient imple-
mentation of public key schemes whose security rely on the hardness of dis-
crete logarithm problem. Starting from the pioneering work of Koblitz [29] and
Miller [33] introducing elliptic curves and the work of Koblitz [30] introducing
hyperelliptic curves for cryptographic use, the last three decades have seen an
extensive amount of research in the area.

Appropriately chosen elliptic curves and genus two hyperelliptic curves are
considered to be suitable for practical implementation. Table 1 summarises fea-
tures for some of the concrete curves that have been proposed in the literature.
Arguably, the two most well known curves proposed till date for the 128-bit
security level are P-256 [37] and Curve25519 [2]. Also the secp256k1 curve [40]
has become very popular due to its deployment in the Bitcoin protocol. All of
these curves are in the setting of genus one over prime order fields. In particular,
we note that Curve25519 has been extensively deployed for various applications.
A listing of such applications can be found at [17]. So, from the point of view
of deployment, practitioners are very familiar with genus one curves over prime
order fields. Influential organisations, such as NIST, Brainpool, Microsoft (the
NUMS curve) have concrete proposals in this setting. See [5] for a further listing
of such primes and curves. It is quite likely that any future portfolio of proposals
by standardisation bodies will include at least one curve in the setting of genus
one over a prime field.

Our Contributions

The contribution of this paper is to propose new curves for the setting of genus
one over a prime order field. Actual scalar multiplication is done over the Kum-
mer line associated with such a curve. The idea of using Kummer line was pro-
posed by Gaudry and Lubicz [22]. They, however, were not clear about whether
competitive speeds can be obtained using this approach. Our main contribution
is to show that this can indeed be done using the single-instruction multiple-
data (SIMD) instructions available in modern processors. We note that the use
of SIMD instructions to speed up computation has been earlier proposed for
Kummer surface associated with genus two hyperelliptic curves [22]. The appli-
cation of this idea, however, to Kummer line has not been considered in the
literature. Our work fills this gap and shows that properly using SIMD instruc-
tions provides a competitive alternative to known curves in the setting of genus
one and prime order fields.

As in the case of Montgomery curve [34], scalar multiplication on the Kum-
mer line proceeds via a laddering algorithm. A ladder step corresponds to each
bit of the scalar and each such step consists of a doubling and a differential
addition irrespective of the value of the bit. As a consequence, it becomes easy
to develop code which runs in constant time. We describe and implement a vec-
torised version of the laddering algorithm which is also constant time. Our target
is the 128-bit security level.

Kummer for Genus One over Prime Order Fields 5

Table 1. Features of some curves proposed in the last few years.

Reference Genus Form Field order Endomorphisms

NIST P-256 [37] 1 Weierstrass Prime No

Curve25519 [2] 1 Montgomery Prime No

secp256k1 [40] 1 Weierstrass Prime No

Brainpool [11] 1 Weierstrass Prime No

NUMS [41] 1 Twisted Edwards Prime No

Longa-Sica [32] 1 Twisted Edwards p2 Yes

Bos et al. [9] 2 Kummer Prime Yes

Bos et al. [10] 2 Kummer p2 yes

Hankerson et al. [26],
Oliviera et al. [38]

1 Weierstrass/Koblitz 2n Yes

Longa-Sica [32],
Faz-Hernández et
al. [18]

1 Twisted Edwards p2 Yes

Costello et al. [15] 1 Montgomery p2 Yes

Gaudry-Schost [23],
Bernstein et al. [4]

2 Kummer Prime No

Costello-Longa [14] 1 Twisted Edwards p2 Yes

Hankerson et al. [26],
Oliviera et al. [39]

1 Weierstrass/Koblitz 2n Yes

This work 1 Kummer Prime No

Choice of the Underlying Field: Our target is the 128-bit security level. To
this end, we consider three primes, namely, 2251−9, 2255−19 and 2266−3. These
primes are abbreviated as p2519, p25519 and p2663 respectively. The underlying
field will be denoted as Fp where p is one of p2519, p25519 or p2663.

Choice of the Kummer Line: Following previous suggestions [3,9], we work in
the square-only setting. In this case, the parameters of the Kummer line are given
by two integers a2 and b2. We provide appropriate Kummer lines for all three
of the primes p2519, p25519 and p2663. These are denoted as KL2519(81,20),
KL25519(82,77) and KL2663(260,139) respectively. In each case, we identify a
base point with small coordinates. The selection of the Kummer lines is done
using a search for curves achieving certain desired security properties. Later we
provide the details of these properties which indicate that the curves provide
security at the 128-bit security level.

SIMD Implementation: On Intel processors, it is possible to pack 4 64-bit
words into a single 256-bit quantity and then use SIMD instructions to simul-
taneously work on the 4 64-bit words. We apply this approach to carefully con-
sider various aspects of field arithmetic over Fp. SIMD instructions allow the
simultaneous computation of 4 multiplications in Fp and also 4 squarings in Fp.

6 S. Karati and P. Sarkar

The use of SIMD instructions dovetails very nicely with the scalar multiplication
algorithm over the Kummer line as we explain below.

H

x2
2 z22

H

x2
1 z21

x2
2 + z22 x2

2 − z22 x2
1 + z21 x2

1 − z21

∗ ∗ ∗ ∗B2 A2 B2 A2

∗ ∗ ∗ ∗

H H

∗ ∗ ∗ ∗z2 x2 b2 a2

∗ ∗ ∗ ∗

x2
4 z24 x2

3 z23

Fig. 1. One ladder step on the
Kummer line.

H

x1 z1

H

x2 z2

x1 + z1 x1 − z1 x2 + z2 x2 − z2

∗ ∗ ∗ ∗

∗ − + −

∗ ∗ ∗(A − 2)/4

+ ∗ x

∗

x3
z3 x4 z4

Fig. 2. One ladder step on the Montgomery
curve.

Scalar Multiplication over the Kummer Line: A uniform, ladder style
algorithm is used. In terms of operation count, each ladder step requires 2 field
multiplications, 6 field squarings, 6 multiplications by parameters and 2 mul-
tiplications by base point coordinates [22]. In contrast, one ladder step on the
Montgomery curve requires 4 field multiplications, 4 squarings, 1 multiplication
by curve parameter and 1 multiplication by a base point coordinate. This had
led to Gaudry and Lubicz [22] commenting that Kummer line can be advanta-
geous provided that the advantage of trading off multiplications for squarings
is not offset by the extra multiplications by the parameters and the base point
coordinates.

Our choices of the Kummer lines ensure that the parameters and the base
point coordinates are indeed very small. This is not to suggest that the Kummer
line is only suitable for fixed based point scalar multiplication. The main advan-
tage arises from the structure of the ladder step on the Kummer line versus that
on the Montgomery curve.

An example of the ladder step on the Kummer line is shown in Fig. 1. In the
figure, the Hadamard transform H(u, v) is defined to be (u + v, u − v). Observe
that there are 4 layers of 4 simultaneous multiplications. The first layer consists
of 2 field multiplications and 2 squarings, while the third layer consists of 4
field squarings. Using 256-bit SIMD instructions, the 2 multiplications and the 2
squarings in the first layer can be computed simultaneously using an implemen-
tation of vectorised field multiplication while the third layer can be computed
using an implementation of vectorised field squaring. The second layer consists

Kummer for Genus One over Prime Order Fields 7

only of multiplications by parameters and is computed using an implementation
of vectorised multiplication by constants. The fourth layer consists of two multi-
plications by parameters and two multiplications by base point coordinates. For
fixed base point, this layer can be computed using a single vectorised multipli-
cation by constants while for variable base point, this layer requires a vectorised
field multiplication. A major advantage of the ladder step on the Kummer line is
that the packing and unpacking into 256-bit quantities is done once each. Pack-
ing is done at the start of the scalar multiplication and unpacking is done at the
end. The entire scalar multiplication can be computed on the packed vectorised
quantities.

In contrast, the ladder step on the Montgomery curve is shown in Fig. 2
which has been reproduced from [2]. The structure of this ladder is not as regu-
lar as the ladder step on the Kummer line. This makes it difficult to optimally
group together the multiplications for SIMD implementation. Curve25519 is a
Montgomery curve. SIMD implementations of Curve25519 have been reported
in [7,12,16,19]. The work [16] forms four groups of independent multiplica-
tions/squarings with the first and the third group consisting of four multi-
plications/squarings each, the second group consisting of two multiplications
and the fourth group consists of a single multiplication. Interspersed with
these multiplications are two groups each consisting of four independent addi-
tions/subtractions. The main problem with this approach is that of repeated
packing/unpacking of data within a ladder step. This drawback will outweigh
the benefits of four simultaneous SIMD multiplications and this approach has
not been followed in later works [7,12,19]. These later implementations grouped
together only two independent multiplications. In particular, we note that the
well known Sandy2x implementation of Curve25519 is an SIMD implementa-
tion which is based on [12] and groups together only two multiplications. AVX2
based implementation of Curve25519 in [19] also groups together only 2 multi-
plications/squarings.

At a forum1 Tung Chou comments (perhaps oblivious of [16]) that it would
better to find four independent multiplications/squarings and vectorise them. As
discussed above, the previous works on SIMD implementation of Curve25519 do
not seem to have been able to identify this. On the other hand, for the ladder step
on the Kummer line shown in Fig. 1, performing vectorisation of 4 independent
multiplications/squarings comes quite naturally. This indicates that the ladder
step on the Kummer line is more SIMD friendly than the ladder step on the
Montgomery curve.

Implementation: We report implementations of all the three Kummer lines
KL2519(81,20), KL25519(82,77) and KL2663(260,139). The implementations are
in Intel intrinsics and use AVX2 instructions. On the recent Skylake processor,
both fixed and variable base scalar multiplications for all the three Kummer lines
are faster than Sandy2x which is the presently the best known SIMD implemen-
tation in assembly of Curve25519. On the earlier Haswell processor, both fixed
and variable base scalar multiplications for KL2519(81,20), KL25519(82,77) are
1 https://moderncrypto.org/mail-archive/curves/2015/000637.html.

https://moderncrypto.org/mail-archive/curves/2015/000637.html

8 S. Karati and P. Sarkar

faster than that of Sandy2x; fixed base scalar multiplication for KL2663(260,139)
is faster than that of Sandy2x while variable base scalar multiplication for both
KL2663(260,139) and Sandy2x take roughly the same time. Detailed timing
results are provided later.

At a broad level, the timing results reported in this work show that the avail-
ability of SIMD instructions leads to the following two practical consequences.

1. At the 128-bit security level, the choice of F2255−19 as the base field is not the
fastest. If one is willing to sacrifice about 2 bits of security, then using F2251−9

as the base field leads to about 25% speed up on the Skylake processor.
2. More generally, the ladder step on the Kummer line is faster than the ladder

step on the Montgomery curve. We have demonstrated this by implementing
on the Intel processors. Future work can explore this issue on other platforms
such as the ARM NEON architecture.

Due to page limit restrictions, we are unable to include all the details in this
version. These are provided in the full version [28].

2 Background

In this section, we briefly describe theta functions over genus one, Kummer
lines, Legendre form elliptic curves and their relations. In our description of the
background material, the full version [28] provides certain details which are not
readily available in the literature.

2.1 Theta Functions

In this and the next few sections, we provide a sketch of the mathematical back-
ground on theta functions over genus one and Kummer lines. Following previous
works [22,27,36] we define theta functions over the complex field. For crypto-
graphic purposes, our goal is to work over a prime field of large characteristic.
All the derivations that are used have a good reduction [22] and so it is possible
to use the Lefschetz principle [1,21] to carry over the identities proved over the
complex to those over a large characteristic field.

Let τ ∈ C having a positive imaginary part and w ∈ C. Let ξ1, ξ2 ∈ Q. Theta
functions with characteristics ϑ[ξ1, ξ2](w, τ) are defined to be the following:

ϑ[ξ1, ξ2](w, τ) =
∑

n∈Z

exp
[
πi(n + ξ1)2τ + 2πi(n + ξ1)(w + ξ2)

]
. (1)

For a fixed τ , the following theta functions are defined.

ϑ1(w) = ϑ[0, 0](w, τ) and ϑ2(w) = ϑ [0, 1/2] (w, τ).
Θ1(w) = ϑ[0, 0](w, 2τ) and Θ2(w) = ϑ [1/2, 0] (w, 2τ).

Kummer for Genus One over Prime Order Fields 9

The following identities hold for the theta functions. Proofs are given in the
appendix of the full version [28].

2Θ1(w1 + w2)Θ1(w1 − w2) = ϑ1(w1)ϑ1(w2) + ϑ2(w1)ϑ2(w2);
2Θ2(w1 + w2)Θ2(w1 − w2) = ϑ1(w1)ϑ1(w2) − ϑ2(w1)ϑ2(w2);

(2)

ϑ1(w1 + w2)ϑ1(w1 − w2) = Θ1(2w1)Θ1(2w2) + Θ2(2w1)Θ2(2w2);
ϑ2(w1 + w2)ϑ2(w1 − w2) = Θ1(2w1)Θ1(2w2) − Θ2(2w1)Θ2(2w2).

(3)

Putting w1 = w2 = w, we obtain

2Θ1(2w)Θ1(0) = ϑ1(w)2 + ϑ2(w)2; 2Θ2(2w)Θ2(0) = ϑ1(w)2 − ϑ2(w)2; (4)
ϑ1(2w)ϑ1(0) = Θ1(2w)2 + Θ2(2w)2; ϑ2(2w)ϑ2(0) = Θ1(2w)2 − Θ2(2w)2. (5)

Putting w = 0 in (4), we obtain

2Θ1(0)2 = ϑ1(0)2 + ϑ2(0)2; 2Θ2(0)2 = ϑ1(0)2 − ϑ2(0)2. (6)

2.2 Kummer Line

Let τ ∈ C having a positive imaginary part and denote by P
1(C) the projective

line over C. The Kummer line (K) associated with τ is the image of the map ϕ
from C to P

1(C) defined by

ϕ : w �−→ (ϑ1(w), ϑ2(w)). (7)

Suppose that ϕ(w) = [ϑ1(w) : ϑ2(w)] is known for some w ∈ Fq. Using (4) it
is possible to compute Θ1(2w) and Θ2(2w) and then using (5) it is possible to
compute ϑ1(2w) and ϑ2(2w). So, from ϕ(w) it is possible to compute ϕ(2w) =
[ϑ1(2w) : ϑ2(2w)] without knowing the value of w.

Suppose that ϕ(w1) = [ϑ1(w1) : ϑ2(w1)] and ϕ(w2) = [ϑ1(w2) : ϑ2(w2)] are
known for some w1, w2 ∈ Fq. Using (4), it is possible to obtain Θ1(2w1), Θ1(2w2),
Θ2(2w1) and Θ2(2w2). Then (3) allows the computation of ϑ1(w1 + w2)ϑ1(w1 −
w2) and ϑ2(w1 + w2)ϑ2(w1 − w2). Further, if ϕ(w1 − w2) = [ϑ1(w1 − w2) :
ϑ2(w1 −w2)] is known, then it is possible to obtain ϕ(w1 +w2) = [ϑ1(w1 +w2) :
ϑ2(w1 + w2)] without knowing the values of w1 and w2.

The task of computing ϕ(2w) from ϕ(w) is called doubling and the task of
computing ϕ(w1 + w2) from ϕ(w1), ϕ(w2) and ϕ(w1 − w2) is called differential
(or pseudo) addition.

2.3 Square only Setting

Let P = ϕ(w) = [x : z] be a point on the Kummer line. As described above,
doubling computes the point 2P and suppose that 2P = [x3 : z3]. Further, sup-
pose that instead of [x : z], we have the values x2 and z2 and after the doubling
we are interested in the values x2

3 and z23 . Then the doubling operation given by
(8) and (9) only involves the squared quantities ϑ1(0)2, ϑ2(0)2, Θ1(0)2, Θ2(0)2

10 S. Karati and P. Sarkar

and x2, z2. As a consequence, the double of [x : z] and [x : −z] are same. We
have

x2
3 = b2

(
B2(x2 + z2)2 + A2(x2 − z2)2

)2
, (8)

z23 = a2
(
B2(x2 + z2)2 − A2(x2 − z2)2

)2
. (9)

Similarly, consider that from P1 = ϕ(w1) = [x1 : z1], P2 = ϕ(w2) = [x2 : z2]
and P = P1 − P2 = ϕ(w1 − w2) = [x : z] the requirement is to compute
P1 + P2 = ϕ(w1 + w2) = [x3 : z3]. If we have the values x2

1, z
2
1 , x

2
2, z

2
2 and x2, z2

along with ϑ1(0)2, ϑ2(0)2, Θ1(0)2, Θ2(0)2 then we can compute the values x2
3 and

z23 by Eqs. (10) and (11).

x2
3 = z2

(
B2(x2

1 + z21)(x
2
2 + z22) + A2(x2

1 − z21)(x
2
2 − z22)

)2
, (10)

z23 = x2
(
B2(x2

1 + z21)(x
2
2 + z22) − A2(x2

1 − z21)(x
2
2 − z22)

)2
. (11)

This approach requires only squared values, i.e., it starts with squared values and
also returns squared values. Hence, this is called the square only setting. Note
that in the square only setting, [x2 : z2] represents two points [x : ±z] on the
Kummer line. For the case of genus two, the square only setting was advocated
in [3,9] (see also [13]). To the best of our knowledge, the details of the square
only setting in genus one do not appear earlier in the literature.

Let

a2 = ϑ1(0)2, b2 = ϑ2(0)2, A2 = a2 + b2 and B2 = a2 − b2.

Then from (6) we obtain Θ1(0)2 = A2/2 and Θ2(0)2 = B2/2. By Ka2,b2 we
denote the Kummer line having the parameters a2 and b2.

Table 2 shows the Algorithms dbl and diffAdd for doubling and differential
addition. Details regarding correctness of the computation are provided in the
full version [28].

Table 2. Double and differential addition in the square-only setting.

In Ka2,b2 , the point [a2 : b2] (representing [a : ±b]) in the square only setting
acts as the identity element for the differential addition. The full version [28]
provides further details.

In the rest of the paper, we will work in the square only setting over a
Kummer line Ka2,b2 for some values of the parameters a2 and b2.

Kummer for Genus One over Prime Order Fields 11

Scalar Multiplication: Suppose P = [x2
1 : z21] and n be a positive integer. We

wish to compute nP = [x2
n : z2n]. The method for doing this is given by Algorithm

scalarMult in Table 3. A conceptual description of a ladder step is given in Fig. 1.

Table 3. Scalar multiplication using a ladder.

2.4 Legendre Form Elliptic Curve

Let E be an elliptic curve and σ : E → E be the automorphism which maps a
point of E to its inverse, i.e., for (a, b) ∈ E, σ(a, b) = (a,−b).

For μ ∈ Fq, let

Eμ : Y 2 = X(X − 1)(X − μ) (12)

be an elliptic curve in the Legendre form. Let Ka2,b2 be a Kummer line such
that

μ =
a4

a4 − b4
. (13)

An explicit map ψ : Ka2,b2 → Eμ/σ has been given in [22]. In the square only
setting, let [x2 : z2] represent the points [x : ±z] of the Kummer line Ka2,b2 such
that [x2 : z2] �= [b2 : a2]. Recall that [a2 : b2] acts as the identity in Ka2,b2 . Then
from [22],

ψ([x2 : z2]) =

{∞ if [x2 : z2] = [a2 : b2];(
a2x2

a2x2−b2z2 , . . .
)

otherwise. (14)

Given X = a2x2/(a2x2 − b2z2), it is possible to find ±Y from the equation of E,
though it is not possible to uniquely determine the sign of Y . The inverse ψ−1,
maps a point not of order two of Eμ/σ to the squared coordinates of points in
Ka2,b2 . We have

ψ−1(P) =

{
[a2 : b2] if P = ∞;[

b2X
a2(X−1) : 1

]
if P = (X, . . .). (15)

12 S. Karati and P. Sarkar

Notation: We will use upper-case bold face letters to denote points of Eμ and
upper case normal letters to denote points of Ka2,b2 .

Consistency: Let Ka2,b2 and Eμ be such that (13) holds. Consider the point
T = (μ, 0) on Eμ. Note that T is a point of order two. Given any point P =
(X, . . .) of Eμ, let Q = P + T. Then it is easy to verify that

Q =
(

μ(X − 1)
X − μ

, . . .

)
.

Consider the map ψ̂ : Ka2,b2 → Eμ such that for points [x : ±z] represented by
[x2 : z2] in the square only setting

ψ̂([x2 : z2]) = ψ([x2 : z2]) + T. (16)

The inverse map ψ̂−1 takes a point P of Eμ to squared coordinates in Ka2,b2 .
For any two points P1,P2 on Eμ which are not of order two and P = P1−P2

the following properties hold.

2 · ψ̂([x2 : z2]) = ψ̂(dbl(x2, z2));
dbl

(
ψ̂−1(P1)

)
= ψ̂−1 (2P1) ;

diffAdd
(
ψ̂−1(P1), ψ̂−1(P2), ψ̂−1(P)

)
= ψ̂−1 (P1 + P2) .

⎫
⎪⎪⎬

⎪⎪⎭
(17)

The proofs for (17) can be derived from the formulas for ψ̂, ψ̂−1; the formulas for
addition and doubling on Eμ; and the formulas arising from dbl and diffAdd. This
involves simplifications of the intermediate expressions arising in these formulas.
Such expressions become quite large. In the appendix of the full version [28]
we provide a SAGE script which does the symbolic verification of the required
calculations.

The relations given by (17) have the following important consequence to
scalar multiplication. Suppose P is in Ka2,b2 and P = ψ̂(P). Then ψ̂(nP) = nP.
Fig. 3 depicts this in pictorial form.

P P Q

Pn Pn Qn

∗n

ψ +T

∗n

ψ +T

Q P P

Qn Pn Pn

∗n

−T ψ−1

∗n

−T ψ−1

Fig. 3. Consistency of scalar multiplications on Eµ and Ka2,b2 .

Relation Between the Discrete Logarithm Problems: Suppose the Kum-
mer line Ka2,b2 is chosen such that the corresponding curve Eμ has a cyclic

Kummer for Genus One over Prime Order Fields 13

subgroup G = 〈P〉 of large prime order. Given Q ∈ G, the discrete logarithm
problem in G is to obtain an n such that Q = nP. This problem can be reduced
to computing discrete logarithm problem in Ka2,b2 . Map the point P (resp. Q)
to P ∈ Ka,b (resp. Q ∈ Ka,b) using ψ̂−1 Find n such that Q = nP and return n.
Similarly, the discrete logarithm problem in Ka,b can be reduced to the discrete
logarithm problem in Eμ.

The above shows the equivalence of the hardness of solving the discrete log-
arithm problem in either Eμ or in Ka2,b2 . So, if Eμ is a well chosen curve such
that the discrete logarithm problem in Eμ is conjectured to be hard, then the
discrete logarithm problem in the associated Ka2,b2 will be equally hard. This
fact forms the basis for using Kummer line for cryptographic applications.

2.5 Scalar Multiplication in Eµ

Let Eμ be a Legendre form curve and Ka2,b2 be a Kummer line in the square only
setting. Suppose G = 〈P = (XP , YP)〉 is a cryptographically relevant subgroup
of Eμ. Further, suppose a point P = [x2 : z2] in Ka2,b2 is known such that
(XP , . . .) = ψ̂(P) = ψ(P) + T where as before T = (μ, 0). The point P is the
base point on Ka2,b2 which corresponds to the point P on Eμ.

Let n be a non-negative integer which is less than the order of G. The require-
ment is to compute the scalar multiplication nP via the laddering algorithm on
the Kummer line Ka2,b2 . First, the ladder algorithm is applied to the inputs P
and n. This results in a pair of points Q and R, where Q = nP and R = (n+1)P
so that Q − R = −P . By the consistency of scalar multiplication, we have
Q = nP. Let Q = (XQ, YQ). From Q it is possible to directly recover XQ and
±YQ. Using Q,R and P , in the full version [28], we show that it is indeed pos-
sible to determine YQ so that a scalar multiplicationis possible in Eμ. The cost
of recovering XQ and YQ comes to a few finite field multiplications and one
inversion.

3 Kummer Line over Prime Order Fields

Let p be a prime and Fp be the field of p elements. As mentioned earlier, using
the Lefschetz principle, the theta identities also hold over Fp. Consequently,
it is possible to work over a Kummer line Ka2,b2 and associated elliptic curve
Eμ defined over the algebraic closure of Fp. The only condition for this to be
meaningful is that a4 − b4 �= 0 mod p so that μ = a4/(a4 − b4) is defined over
Fp. We choose a2 and b2 to be small values while p is a large prime and so the
condition a4 − b4 �= 0 mod p easily holds. Note that we will choose a2 and b2 to
be in Fp without necessarily requiring a and b themselves to be in Fp. Similarly,
in the square only setting when we work with squared representation [x2 : z2] of
points [x : ±z], the values x2, z2 will be in Fp and it is not necessary for x and
z themselves to be in Fp.

Our target is the 128-bit security level. To this end, we consider the three
primes p2519, p25519 and p2663. The choice of these three primes is motivated

14 S. Karati and P. Sarkar

by the consideration that these are of the form 2m − δ, where m is around 256
and δ is a small positive integer. For m in the range 250 to 270 and δ < 20,
the only three primes of the form 2m − δ are p2519, p25519 and p2663. We later
discuss the comparative advantages and disadvantages of using Kummer lines
based on these three primes.

3.1 Finding a Secure Kummer Line

For each prime p, the procedure for finding a suitable Kummer line is the follow-
ing. The value of a2 is increased from 2 onwards and for each value of a2, the value
of b2 is varied from 1 to a2−1; for each pair (a2, b2), the value of μ = a4/(a4−b4)
is computed and the order of Eμ(Fp) is computed. Let t = p+1−#Eμ(Fp). Let
� and �T be the largest prime factors of p + 1 − t and p + 1 + t respectively and
let h = (p+1− t)/� and hT = (p+1+ t)/�T . Here h and hT are the co-factors of
the curve and its quadratic twists respectively. If both h and hT are small, then
(a2, b2) is considered. Among the possible (a2, b2) that were obtained, we have
used the one with the minimum value of a2. After fixing (a2, b2) the following
parameters for Eμ have been computed.

1. Embedding degrees k and kT of the curve and its twist. Here k (resp. kT)
is the smallest positive integer such that �|pk − 1 (resp. �T |pkT − 1). This is
given by the order of p in F� (resp. F�T) and is found by checking the factors
of � − 1 (resp. �T − 1).

2. The complex multiplication field discriminant D. This is defined in the fol-
lowing manner (https://safecurves.cr.yp.to/disc.html): By Hasse’s theorem,
|t| ≤ 2

√
p and in the cases that we considered |t| < 2

√
p so that t2 − 4p

is a negative integer; let s2 be the largest square dividing t2 − 4p; define
D = (t2 −4p)/s2 if t2 −4p mod 4 = 1 and D = 4(t2 −4p)/s2 otherwise. (Note
that D is different from the discriminant of Eμ which is equal to μ4−2μ3+μ2.)

Table 4 provides the three Kummer lines and (estimates of) the sizes of the var-
ious parameters of the associated Legendre form elliptic curves. As part of [20],
we provide Magma code for computing these parameters and also their exact val-
ues. The Kummer line Ka2,b2 over p2519 is compactly denoted as KL2519(a2, b2)
and similarly for Kummer lines over p25519 and p2663. For each Kummer line
reported in Table 4, the base point [x2 : z2] is such that its order is �. Table 4 also
provides the corresponding details for Curve25519, P-256 and secp256k1 which
have been collected from [5]. This will help in comparing the new proposals with
some of the most important and widely used proposals over prime fields that are
present in the literature.

The Four-Q proposal [14] is an elliptic curve over Fp2 where p = 2127 −1. For
this curve, the size � of the cryptographic sub-group is 246 bits, the co-factor is
392 and the embedding degree is (� − 1)/2. The largest prime dividing the twist
order is 158 bits and [14] does not consider twist security to be an issue. Note
that the underlying field for Four-Q is composite and further endomorphisms are
available to speed up scalar multiplication. So Four-Q is not directly comparable
to the setting that we consider and hence we have not included it in Table 4.

https://safecurves.cr.yp.to/disc.html

Kummer for Genus One over Prime Order Fields 15

Table 4. New Kummer lines and their parameters in comparison to Curve25519, P-256
and secp256k1.

For KL2519(81, 20), [15 : 1] is another choice of base point. Also, for p2519,
KL2519(101, 61) is another good choice for which both h and hT are 8, the
other security parameters have large values and [4 : 1] is a base point. We have
implementations of both KL2519(81, 20) and KL2519(101, 61) and the perfor-
mance of both are almost the same. Hence, we report only the performance of
KL2519(81, 20).

The points of order two on the Legendre form curve Y 2 = X(X − 1)(X − μ)
are (0, 0), (1, 0) and (μ, 0). The sum of two distinct points of order two is also
a point of order two and hence the sum is the third point of order two; as a
result, the points of order two along with the identity form an order 4 subgroup
of the group formed by the Fp rational points on the curve. Consequently, the
group of Fp rational points has an order which is necessarily a multiple of 4, i.e.,
p + 1 − t = 4a for some integer a.

1. If p = 4m + 1, then p + 1 + t = 4aT where aT = 2m − a + 1 �≡ a mod 2.
As a result, it is not possible to have both h and hT to be equal to 4, or
both of these to be equal to 8. So, the best possibilities for h and hT are that
one of them is 4 and the other is 8. The primes p25519 and p2663 are both
≡ 1 mod 4. For these two primes, searching for a2 up to 512, we were unable
to find any choice for which one of h and hT is 4 and the other is 8. The next
best possibilities for h and hT are that one of them is 8 and the other is 12.
We have indeed found such choices which are reported in Table 4.

2. If p = 4m + 3, then p + 1 + t = 4aT where aT = 2m − a + 2 ≡ a mod 2. In
this case, it is possible that both h and hT are equal to 4. The prime p2519
is ≡ 1 mod 3. For this prime, searching for a2 up to 512, we were unable to
find any choice where h = hT = 4. The next best possibility is h = hT = 8
and we have indeed found such a choice which is reported in Table 4.

16 S. Karati and P. Sarkar

Gaudry and Lubicz [22] had remarked that for Legendre form curves, if p ≡
1 mod 4, then the orders of the curve and its twist are divisible by 4 and 8
respectively; while if p ≡ 3 mod 4, then the orders of the curve and its twist are
divisible by 8 and 16 respectively. The Legendre form curve corresponding to
KL2519(81, 20) has h = hT = 8 and hence shows that the second statement is
incorrect. The discussion provided above clarifies the issue of divisibility by 4 of
the order of the curve and its twist.

The effectiveness of small subgroup attacks [31] is determined by the size
of the co-factor. Such attacks can be prevented by checking whether the order
of a given point is equal to the co-factor before performing the actual scalar
multiplication. This requires a scalar multiplication by h. In Table 4, the co-
factors of the curve are either 8 or 12. A scalar multiplication by 8 requires 3
doublings whereas a scalar multiplication by 12 requires 3 doublings and one
addition. Amortised over the cost of the actual scalar multiplication, this cost
is negligible. Even without such protection, a small subgroup attack improves
Pollard rho by a factor of

√
h and hence degrades security by lg

√
h bits. So,

as in the case of Curve25519, small subgroup attacks are not an issue for the
proposed Kummer lines.

Let r be a quadratic non-residue in Fp and consider the curve rY 2 = f(X) =
X(X − 1)(X − μ). This is a quadratic twist of the original curve. For any X ∈
Fp, either f(X) is a quadratic residue or a quadratic non-residue. If f(X) is a
quadratic residue, then (X,±√

f(X)) are points on the original curve; otherwise,
(X,±√

r−1f(X)) are points on the quadratic twist. So, for each point X, there
is a pair of points on the curve or on the quadratic twist. An x-coordinate only
scalar multiplication algorithm does not distinguish between these two cases.
One way to handle the problem is to check whether f(X) is a quadratic residue
before performing the scalar multiplication. This, however, has a significant cost.
On the other hand, if this is not done, then an attacker may gain knowledge
about the secret scalar modulo the co-factor of the twist. The twist co-factors
of the new curves in Table 4 are all 8 which is only a little larger than the twist
co-factor of 4 for Curve25519. Consequently, as in the case of Curve25519, attacks
based on the co-factors of the twist are ineffective.

Note that the use of the square only setting for the Kummer line computa-
tion is not related to the twist security of the Legendre form elliptic curve. In
particular, for the elliptic curve, computations are not in the square only setting.

To summarise, the three new curves listed in Table 4 provide security at
approximately the 128-bit security level.

4 Field Arithmetic

As mentioned earlier, we consider three primes p2519 = 2251 − 9, p25519 =
2255 − 19 and p2663 = 2266 − 3. The general form of these primes is p = 2m − δ.
Let η and ν be such that m = η(κ − 1) + ν with 0 ≤ ν < η. The values of
m, δ, κ, η and ν for p2519, p25519 and p2663 are given in Table 5. The value of
κ indicates the number of limbs used to represent elements of Fp; the value of η

Kummer for Genus One over Prime Order Fields 17

Table 5. The different values of κ, η and ν corresponding to the primes p2519, p25519
and p2663.

represents the number of bits in the first κ − 1 limbs; and the value of ν is the
number of bits in the last limb. For each prime, two sets of values of κ, η and
ν are provided. This indicates that two different representations of each prime
are used. The entire scalar multiplication is done using the longer representation
(i.e., with κ = 9 or κ = 10); next the two components of the result are converted
to the shorter representation (i.e., with κ = 5); and then the inversion and the
single field multiplication are done using the representation with κ = 5. In the
following sections, we describe methods to perform arithmetic over Fp. Most of
the description is in general terms of κ, η and ν. The specific values of κ, η and
ν are required only to determine that no overflow occurs.

Representation of Field Elements: Let θ = 2η and consider the polynomial
A(θ) defined in the following manner: A(θ) = a0 + a1θ + · · · + aκ−1θ

κ−1 where
0 ≤ a0, . . . , aκ−1 < 2η and 0 ≤ aκ−1 < 2ν . Such a polynomial will be called a
proper polynomial. Note that proper polynomials are in 1-1 correspondence with
the integers 0, . . . , 2m−1.This leads to non-unique representation of some elements
ofFp: specifically, the elements 0, . . . , δ−1 are also represented as 2m−δ, . . . , 2m−1.
This, however, does not cause any of the computations to become incorrect. Con-
version to unique representation using a simple constant time code is done once at
the end of the computation. The issue of non-unique representation was already
mentioned in [2] where the following was noted: ‘Note that integers are not con-
verted to a unique “smallest” representation until the end of the Curve25519 com-
putation. Producing reduced representations is generally much faster than pro-
ducing “smallest” representations.’

Representation of the Prime p: The representation of the prime p will be
denoted by P(θ) where P(θ) =

∑κ−1
i=0 piθ

i with p0 = 2η − δ; pi = 2η − 1; i =
1, . . . , κ−2; and pκ−1 = 2ν −1. This representation will only be required for the
larger value of κ.

4.1 Reduction

This operation will be required for both values of κ.
Using p = 2m − δ, for i ≥ 0, we have 2m+i = 2i × 2m = 2i(2m − δ) + 2iδ ≡

2iδ mod p. So, multiplying by 2m+i modulo p is the same as multiplying by 2iδ
modulo p. Recall that we have set θ = 2η and so θκ = 2ηκ = 2m+η−ν which
implies that θκ mod p = 2η−νδ. Suppose C(θ) =

∑κ−1
i=0 ciθ

i is a polynomial such
that for some m ≤ 64, ci < 2m for all i = 0, . . . , 7. If for some i ∈ {0, . . . , κ − 2},
ci ≥ 2η, or cκ−1 ≥ 2ν , then C(θ) is not a proper polynomial. Following the

18 S. Karati and P. Sarkar

Table 6. The reduction algorithm.

idea in [2,7,12], Table 6 describes a method to obtain a polynomial D(θ) =∑κ−1
i=0 diθ

i such that D(θ) ≡ C(θ) mod p. For i = 0, . . . , κ − 2, Step 3 ensures
ci + si = di + 2ηsi+1 and di < 2η; Step 5 ensures cκ−1 + sκ−1 = dκ−1 + 2νt0 and
dκ−1 < 2ν . In Step 6, t2 is actually not computed, it is provided for the ease of
analysis.

In the full version [28], we argue that there no overflows in the intermediate
quantities arising in reduce. Also, we show that reduce(D(θ)) is indeed a proper
polynomial. In other words, two successive invocations of reduce on C(θ) reduces
it to a proper polynomial. In practice, however, this is not done at each step.
Only one invocation is made. As observed above, reduce(C(θ)) returns D(θ) for
which all coefficients d0, d2, . . . , dκ−1 satisfy the appropriate bounds and only
d1 can possibly require η + 1 bits to represent instead of the required η-bit
representation. This does not cause any overflow in the intermediate computation
and so we do not reduce D(θ) further. It is only at the end, that an additional
invocation of reduce is made to ensure that a proper polynomial is obtained on
which we apply the makeUnique procedure to ensure unique representation of
elements of Fp.

4.2 Field Negation

This operation will only be required for the representation using the longer value
of κ and occurs only as part of the Hadamard operation.

Let A(θ) =
∑κ−1

i=0 aiθ
i be a polynomial. We wish to compute −A(θ) mod p.

Let n be the least integer such that all the coefficients of 2nP(θ) − A(θ) are
non-negative. By negate(A(θ)) we denote T (θ) = 2nP(θ) − A(θ). Reducing T (θ)
modulo p gives the desired answer. Let T (θ) =

∑κ−1
i=0 tiθ

i so that ti = 2npi−ai ≥
0. The condition of non-negativity on the coefficients of T (θ) eliminates the
situation in two’s complement subtraction where the result can be negative.
Later we mention the appropriate values of n that is to be used in different
situations. Considering all values to be 64-bit quantities, the computation of
ti is done in the following manner: ti = ((264 − 1) − ai) + (1 + 2npi) mod 264.

Kummer for Genus One over Prime Order Fields 19

The operation (264 − 1) − ai is equivalent to taking the bitwise complement of
ai which is equivalent to 164 ⊕ ai.

4.3 Field Multiplication

This operation is required for both the larger and the smaller values of κ.
Suppose that A(θ) =

∑κ−1
i=0 aiθ

i and B(θ) =
∑κ−1

i=0 biθ
i are to be multiplied.

Two algorithms for multiplication called mult and multe are defined in Table 7.

Table 7. Field multiplication algorithms.

Table 8. The expand procedure.

Let C(θ) be the result of polyMult(A(θ), B(θ)). Then C(θ) can be written as

C(θ) = c0 + c1θ + · · · + c2κ−2θ
2κ−2 (18)

where ct =
∑t

s=0 asbt−s with the convention that ai, bj is zero for i, j > κ − 1.
For s = 0, . . . , κ − 1, the coefficient cκ−1±s is the sum of (κ − s) products of the
form aibj . Since ai, bj < 2η, it follows that for s = 0, . . . , κ − 1,

cκ−1±s ≤ (κ − s)(2η − 1)2. (19)

Using the representation with the larger value of κ each ct fits in a 64-bit word
and using the representation with the smaller value of κ, each ct fits in a 128-bit
word.

The step polyMult multiplies A(θ) and B(θ) as polynomials in θ and returns
the result polynomial of degree 2κ − 2. In multe, the step expand is applied to

20 S. Karati and P. Sarkar

this polynomial and returns a polynomial of degree 2κ − 1. In mult, the step
expand is not present and fold is applied to a polynomial of degree 2κ − 2. For
uniformity of description, we assume that the input to fold is a polynomial of
degree 2κ − 1 where for the case of mult the highest degree coefficient is 0.

The computation of fold(C(θ)) is the following.

C(θ) = c0 + c1θ + · · · + cκ−1θ
κ−1 + θκ

(
cκ + cκ+1θ + · · · + c2κ−1θ

κ−1
)

≡ c0 + c1θ + · · · + cκ−1θ
κ−1 + 2η−νδ

(
cκ + cκ+1θ + · · · + c2κ−1θ

κ−1
)

mod p

= (c0 + hcκ) + (c1 + hcκ+1)θ + · · · + (cκ−1 + hc2κ−1)θκ−1

where h = 2η−νδ. The polynomial in the last line is the output of fold(C(θ)).
The expand routine is shown in Table 8. For D(θ) that is returned by expand

we have dκ, . . . , d2κ−1 < 2η.
The situations where mult and multe are required are as follows.

1. For κ = 5, only mult is required.
2. For p25519 and κ = 10, mult will provide an incorrect result. This is because,

in this case, some of the coefficients of fold(polyMult(A(θ), B(θ))) do not fit
into 64-bit words. This was already mentioned in [2] and it is for this reason
that the “base 226 representation” was discarded. So, for p25519 and κ = 10,
only multe will be used.

3. For p2519 and p2663, both mult and multe will be used at separate places
in the scalar multiplication algorithm. This may appear to be strange, since
clearly mult is faster than multe. While this is indeed true, the speed improve-
ment is not as much as seems to be apparent from the description of the two
algorithms. We mention the following two points.

– In both mult and multe, as part of fold, multiplication by h is required.
For the case of mult, the values to which h is multiplied are all greater
than 32 bits and so the multiplications have to be done using shifts and
adds. On the other hand, in the case of multe, the values to which h is
multiplied are outputs of expand and are hence all less than 32 bits so
that these multiplications can be done directly using unsigned integer
multiplications. To a certain extent this mitigates the effect of having the
expand operation in multe.

– More importantly, multe is a better choice at one point of the scalar mul-
tiplication algorithm. There is a Hadamard operation which is followed by
a multiplication. If we do not apply the reduce operation at the end of the
Hadamard operation, then the polynomials which are input to the mul-
tiplication operation are no longer proper polynomials. Applying mult to
these polynomials leads to an overflow after the fold step. Instead, multe
is applied, where the expand ensures that there is no overflow at the fold
step.

Due to the combination of the above two effects, the additional cost of the
expand operation is more than offset by the savings in eliminating a prior
reduce step.

Kummer for Genus One over Prime Order Fields 21

Computation of polyMult: We discuss strategies for polynomial multiplication
using the representation for the larger value of κ.

There are several strategies for multiplying two polynomials. For p2519,
κ = 9, while for p25519 and p2663, κ = 10. Let C(θ) = polyMult(A(θ), B(θ))
where A(θ) and B(θ) are proper polynomials. Computing the coefficients of C(θ)
involve 32-bit multiplications and 64-bit additions. The usual measure for assess-
ing the efficacy of a polynomial multiplication algorithm is the number of 32-bit
multiplications that would be required. Algorithms from [35] provide the small-
est counts of 32-bit multiplication. This measure, however, does not necessarily
provide the fastest implementation. Additions and dependencies do play a part
and it turns out that an algorithm using a higher number of 32-bit multiplica-
tions turn out to be faster in practice. We discuss the cases of κ = 9 and κ = 10
separately. In the following, we abbreviate a 32-bit multiplication as [M].

Case κ = 9: Using 3-3 Karatsuba requires 36[M]. An algorithm given in [35]
requires 34[M], but, this algorithm also requires multiplication by small constants
which slows down the implementation. We have experimented with several vari-
ants and have found the following variant to provide the fastest speed (on the
platform for implementation that we used). Consider the 9-limb multiplication
to be 8-1 Karatsuba, i.e., the degree 8 polynomial is considered to be a degree
7 polynomial plus the term of degree 8. The two degree 7 (i.e., 8-limb) polyno-
mials are multiplied by 3-level recursive Karatsuba: the 8-limb multiplication is
done using 3 4-limb multiplications; each 4-limb multiplication is done using 3
2-limb multiplications; and finally the 2-limb multiplications are done using 4[M]
using schoolbook. Using Karatsuba for the 2-limb multiplication is slower. The
multiplication by the coefficients of the two degree 8 terms are done directly.

Case κ = 10: Using binary Karatsuba, this can be broken down into 3 5-limb
multiplications. Two strategies for 5-limb multiplications in [35] require 13[M]
and 14[M]. The strategy requiring 13[M] also requires multiplications by small
constants and turns out to have a slower implementation than the strategy
requiring 14[M].

Comparison to Previous Multiplication Algorithm for p25519: In the
original paper [2] which introduced Curve25519, it was mentioned that for
p25519, a 10-limb representation using base 226 cannot be used as this leads
to an overflow. Instead an approach called “base 225.5” was advocated. This
approach has been followed in later implementations [7,12] of Curve25519. In
this representation, a 255-bit integer A is written as

A = a0+226a1+251a2+277a3+2102a4+2128a5+2153a6+2179a7+2204a8+2230a9

where a0, a2, a4, a6, a8 < 226 and a1, a3, a5, a7, a9 < 225. Note that this repre-
sentation cannot be considered as a polynomial in some quantity and so the
multiplication of two such representations cannot benefit from the various poly-
nomial multiplication algorithms. Instead, multiplication of two integers A and
B in this representation requires all the 100 pairwise multiplications of ai and bj

22 S. Karati and P. Sarkar

along with a few other multiplications by small constants. As mentioned in [12],
a total of 109[M] are required to compute the product.

For p25519, we have described a 10-limb representation using base as θ = 226

and have described a multiplication algorithm, namely multe, using this repre-
sentation. Given the importance of Curve25519, this itself is of some interest.
The advantage of multe is that it can benefit from the various polynomial mul-
tiplication strategies. On the other hand, the drawback is that the reduction
requires a little more time, since the expand step has to be applied.

Following previous work [7], the Sandy2x implementation used SIMD instruc-
tions to simultaneously compute two field multiplications. The vpmuludq instruc-
tion is used to simultaneously carry out two 32-bit multiplications. As a result,
the 109 multiplications can be implemented using 54.5 vpmuludq instructions
per field multiplication.

The multiplication algorithm multe for p25519 can also be vectorised using
vpmuludq to compute two simultaneous field multiplications. We have, how-
ever, not implemented this. Since our target is Kummer line computation, we
used AVX2 instructions to simultaneously compute four field multiplications. It
would be of independent interest to explore the 2-way vectorisation of the new
multiplication algorithm for use in the Montgomery curve.

5-Limb Representation: For κ = 5, there is not much difference in the mul-
tiplication algorithm for p2519, p25519 and p2663. A previous work [6] showed
how to perform field arithmetic for p25519 using the representation with κ = 5
and η = ν = 51. The Sandy2x code provides an assembly implementation of
the multiplication and squaring algorithm and a constant time implementation
of the inversion algorithm for p25519. The Sandy2x software mentions that the
code is basically from [6]. We have used this implementation to perform the
inversion required after the Kummer line computation over KL25519(82, 77). We
have modified the assembly code for multiplication and squaring over p25519
to obtain the respective routines for p2519 and p2663 which were then used to
implement constant time inversion algorithms using fixed addition chains.

Multiplication by a Small Constant: This operation will only be required
for the representation using the longer value of κ. Let A(θ) =

∑κ−1
i=0 aiθ

i be a
polynomial and c be a small positive integer considered to be an element of Fp.
In our applications, c will be at most 9 bits. The operation constMult(A(θ), c)
will denote the polynomial C(θ) =

∑κ−1
i=0 (cai)θi. We do not apply the algorithm

reduce to C(θ). This is because in our application, multiplication by a constant
will be followed by a Hadamard operation and the reduce algorithm is applied
after the Hadamard operation. This improves efficiency.

Field Squaring: This operation is required for both the smaller and the
larger values of κ. Let A(θ) be a proper polynomial. We define sqr(A(θ)) (resp.
sqre(A(θ))) to be the proper polynomial C(θ) such that C(θ) ≡ A2(θ) mod p.
The computation of sqr (resp. sqre) is almost the same as that of mult (resp.
sqre), except that polyMult(A(θ), B(θ)) is replaced by polySqr(A(θ)) where
polySqr(A(θ)) returns A2(θ) as the square of the polynomial A(θ). The algorithm

Kummer for Genus One over Prime Order Fields 23

sqre is required only for p25519 and κ = 10. In all other cases, the algorithm
sqr is required. Unlike the situation for multiplication, there is no situation for
either p2519 or p2663 where sqre is a better option compared to sqr.

4.4 Hadamard Transform

This operation is required only for the representation using the larger value of κ.
Let A0(θ) and A1(θ) be two polynomials. By H(A0(θ), A1(θ)) we denote the pair
(B0(θ), B1(θ)) where B0(θ) = reduce(A0(θ)+A1(θ)) and B1(θ) = reduce(A0(θ)−
A1(θ)) = reduce(A0(θ) + negate(A1(θ))).

In our context, there is an application of the Hadamard transform to the
output of multiplication by constant. Since the output of multiplication by con-
stant is not reduced, the coefficients of the input polynomials to the Hadamard
transform do not necessarily respect the bounds required for proper polynomi-
als. As explained earlier, the procedure negate works correctly even with looser
bounds on the coefficients of the input polynomial.

We define the operation unreduced-H(A0(θ), A1(θ)) which is the same as
H(A0(θ), A1(θ)) except that the reduce operations are dropped. If the inputs are
proper polynomials, then it is not difficult to see that the first κ − 1 coefficients
of the two output polynomials are at most η +1 bits and the last coefficients are
at most ν + 1 bits. Leaving the output of the Hadamard operation unreduced
saves time. In the scalar multiplication algorithm, in one case this can be done
and is followed by the multe operation which ensures that there is no eventual
overflow.

4.5 Field Inversion

This operation is required only for the representation using the smaller value of
κ. Suppose the inversion of A(θ) is required. Inversion is computed in constant
time using a fixed addition chain to compute A(θ)p−2 mod p. This computation
boils down to computing a fixed number of squarings and multiplications. In our
context, field inversion is required only for conversion from projective to affine
coordinates. The output of the scalar multiplication is in projective coordinates
and if for some application the output is required in affine coordinates, then
only a field inversion is required. The timing measurements that we report later
includes the time required for inversion.

As mentioned earlier, the entire Kummer line scalar multiplication is done
using the larger value of κ. Before performing the inversion, the operands are con-
verted to the representation using the smaller value of κ. For p25519, the actual
inversion is done using the constant time code for inversion used for Curve25519
in the Sandy2x implementation while for p2519 and p2663, appropriate modifi-
cations of this code are used.

5 Vector Operations

While considering vector operations, we consider the representation of field ele-
ments using the larger value of κ. To take advantage of SIMD instructions it is

24 S. Karati and P. Sarkar

convenient to organise the data as vectors. The Intel instructions that we target
apply to 256-bit registers which are considered to be 4 64-bit words (or, as 8
32-bit words). So, we consider vectors of length 4.

Let A(θ) = (A0(θ), A1(θ), A2(θ), A3(θ)) where Ak(θ) =
∑κ−1

i=0 ak,iθ
i are

proper polynomials. We will say that such an A(θ) is a proper vector. So, A(θ)
is a vector of 4 elements of Fp. We describe a different way to consider A(θ). Let
ai = (a0,i, a1,i, a2,i, a3,i) and define aiθ

i = (a0,iθ
i, a1,iθ

i, a2,iθ
i, a3,iθ

i). Then we
can write A(θ) as A(θ) =

∑κ−1
i=0 aiθ

i. Each ai is stored as a 256-bit value. We
define the following operations.

– pack(a0, a1, a2, a3): returns a 256-bit quantity a. Here each ai is a 64-bit
quantity and a is obtained by concatenating a0, a1, a2, a3.

– pack(A0(θ), A1(θ), A2(θ), A3(θ)): returns A(θ) =
∑κ−1

i=0 aiθ
i, where ai =

pack(ai,0, ai,1, ai,2, ai,3).

The corresponding operations unpack(a) and unpack(A(θ)) are defined in the
usual manner.

We define the following vector operations. The operands A(θ) and B(θ) repre-
sent (A0(θ), A1(θ), A2(θ), A3(θ)) and (B0(θ), B1(θ), B2(θ), B3(θ),) respectively.

– reduce(A(θ)): applies reduce to each component of A(θ).
– M4(A(θ),B(θ)): uses mult to perform component-wise multiplication of the

components of A(θ) and B(θ).
– S4(A(θ)): use sqr to square each component of A(θ).
– C4(A(θ),d): uses constMult to multiply each component of A(θ) with the

corresponding component of d. Recall that the output of constMult is not
reduced and so neither is the output of C4.

The operations ME4 and SE4 are defined in a manner similar to M4 and S4

with the only difference that mult and sqr are respectively replaced by multe and
sqre.

The operation H2 is defined in Table 9 and computes two simultaneous
Hadamard operations. The Hadamard operation involves a subtraction. As
explained in Sect. 4.2 this is handled by first computing a negation followed
by an addition. Negation of a polynomial is computed as subtracting the given
polynomial from 2nP(θ) where n is chosen to ensure that all the coefficients of
the result are positive. The operation C4 (which is the vector version of con-
stMult) multiplies the input proper polynomials with constant and the result
is not reduced (since the output of constMult is not reduced). The constant is
one of the parameters A2 and B2 of the Kummer line. The output of C4 forms
the input to H2. Choosing n = �log2 max(A2, B2)� ensures the non-negativity
condition for the subtraction operation.

We define unreduced-H2 to be a unreduced version of H2. This procedure is
almost the same as H2 except that at the end instead of returning reduce(C(θ)),
C(θ) is returned. Following the discussion in Sect. 4.2, to apply the procedure
unreduced-H2 to a proper polynomial it is sufficient to choose n = 1.

Kummer for Genus One over Prime Order Fields 25

Table 9. Vector Hadamard operation. For a = (a0, a1, a2, a3), the operations dup1(a) =
(a0, a0, a2, a2) and dup2(a) = (a1, a1, a3, a3)

Let a = (a0, a1, a2, a3) and b be a bit. We define an operation copy(a, b) as fol-
lows: if b = 0, return (a0, a1, a0, a1); and if b = 1, return (a2, a3, a2, a3). The oper-
ation copy is implemented using the instruction mm256 permutevar8x32 epi32.
Let A(θ) =

∑κ−1
i=0 aiθ

i be a proper vector and b be a bit. We define the operation
P4(A, b) to return

∑κ−1
i=0 copy(ai, b)θi.

6 Vectorised Scalar Multiplication

Scalar multiplication on the Kummer line is computed from a base point repre-
sented as [x2 : z2] in the square only setting and an �-bit non-negative integer n.
The quantities x2 and z2 are elements of Fp and we write their representations
as X(θ) and Z(θ). If x2 and z2 are small as in the fixed base points of the Kum-
mer lines, then X(θ) and Z(θ) have 1-limb representations. In general, the field
elements X(θ) and Z(θ) will be arbitrary elements of Fp and will have a 9-limb
(for p2519) or a 10-limb (for p25519 and p2663) representation.

The algorithm scalarMult(P, n) in Table 10 shows the scalar multiplication
algorithm for p2519 and p2663 where the base point [X(θ) : Z(θ)] is fixed and
small. Modifications required for variable base scalar multiplications and p25519
are described later.

An inversion is required at Step 15. The representations of U(θ) and V (θ)
are first converted to the one using the smaller value of κ. Let these be denoted
as u and v. The computation of u/v is as follows: first w = v−1 is computed
and then x = w · u are computed. As mentioned in Sect. 4.5, the inversion is
computed in constant time. The multiplications and squarings in this computa-
tion are performed using the representation with κ = 5 so that both w and x
are also represented using κ = 5. A final reduce call is made on x followed by a
makeUnique call whose output is returned.

26 S. Karati and P. Sarkar

Table 10. Vectorised scalar multiplication algorithm for p2519 and p2663 where the
base point [X(θ) : Z(θ)] is fixed and small. Recall that A2 = a2 + b2 and B2 = a2 − b2.

Modification for Variable Base Scalar Multiplication: The following mod-
ifications are made for variable base scalar multiplications.

1. In Step 13, the operation M4 is used instead of the operation C4.
2. In Step 7, H2 is replaced by unreduced-H2.
3. In Step 9, M4 is replaced by ME4.

The first change is required since for variable base, X(θ) and Z(θ) are no longer
small and a general multiplication is required in Step 13. On the other hand, the
net effect of the last two changes is to reduce the number of operations.

Modifications for p25519:

1. For fixed base scalar multiplications, the operations M4 in Step 9 and S4 in
Step 12 are replaced by ME4 and SE4 respectively.

2. For variable base scalar multiplication, the following are modifications are
done:

– The operations M4 in Step 9 and S4 in Step 12 are replaced by ME4

and SE4 respectively.
– In Step 13, the operation M4 is used instead of the operation C4.
– In Step 7, H2 is replaced by unreduced-H2.

Recall that for p25519, using mult leads to an overflow in the intermediate results
and so multe has to be used for multiplication. This is reflected in the above

Kummer for Genus One over Prime Order Fields 27

modifications where M4 and S4 are replaced by ME4 and SE4 respectively. The
last two changes for variable base scalar multiplication have the same rationale
as in the case of p2519 and p2663.

7 Implementation and Timings

We have implemented the vectorised scalar multiplication algorithm in 64-bit
AVX2 intrinsics instructions. The code implements the vectorised ladder algo-
rithm which takes the same amount of time for all scalars. Consequently, our
code also runs in constant time. The code is publicly available at [20].

Timing experiments were carried out on a single core of the following two
platforms.

Haswell: Intel�CoreTMi7-4790 4-core CPU @ 3.60 GHz running
Skylake: Intel�CoreTMi7-6700 4-core CPU @ 3.40 GHz running

In both cases, the OS was 64-bit Ubuntu-16.04 LTS and the C code was com-
plied using GCC version 5.4.0. During timing measurements, turbo boost and
hyperthreading were turned off. An initial cache warming was done with 25000
iterations and then the median of 100000 iterations was recorded. The Time
Stamp Counter (TSC) was read from the CPU to RAX and RDX registers by
RDTSC instruction.

Table 11 compares the number of cycles required by our implementation with
that of a few other concrete curve proposals. All the timings are for constant time
code on the Haswell processor using variable base scalar multiplication. For Four-
Q, K11,−22,−19,−3 and the results from [25,39], the timings are obtained from
the respective papers. For Curve25519, we downloaded the Sandy2x2 library
and measured the performance using the methodology from [24]. The cycle
count of 140475 that we obtain for Curve25519 on Haswell is significantly faster
than the 156076 cycles reported by Tung Chou at https://moderncrypto.org/
mail-archive/curves/2015/000637.html and the count of about 156500 cycles
reported in [19]. Further, EBACS (https://bench.cr.yp.to/results-dh.html) men-
tions about 156000 cycles on the machine titan0.

Timing results on Haswell and Skylake platforms for Curve25519 and the
Kummer lines for both fixed base and variable base scalar multiplications are
shown in Table 12.

Fixed base scalar multiplication can achieve efficiency improvements in two
possible ways. One, by using a base point with small coordinates and two, by
using pre-computation. We have used only the first method. Using pre-computed
tables, [25] reports much faster timing for NIST P-256 and [12] reports much
faster timing for Curve25519. We have not investigated the use of pre-computed
tables to speed up fixed base scalar multiplication for Kummer lines.

2 Downloaded from https://bench.cr.yp.to/supercop/supercop-20160910.tar.xz. We
used crypto scalarmult(q,n,p) to measure variable base scalar multiplication and
crypto scalarmult base(q,n) to measure fixed base scalar multiplication.

https://moderncrypto.org/mail-archive/curves/2015/000637.html
https://moderncrypto.org/mail-archive/curves/2015/000637.html
https://bench.cr.yp.to/results-dh.html
https://bench.cr.yp.to/supercop/supercop-20160910.tar.xz

28 S. Karati and P. Sarkar

Table 11. Timing comparison for variable base scalar multiplication on Haswell. The
entries are cycle counts. The references point to the best known implementations.
Curve25519 was proposed in [2]; NIST P-256 was proposed in [37]; the curve used
in [39] was proposed in [32]; and K11,−22,−19,−3 was proposed in [23].

Curve Genus Security Field Endo Cycles Pre-comp tab

Curve25519 [12] 1 126 F2255−19 No 140475 No

NIST P-256 [25] 1 128 F2256−2224+2192+296−1 No 291000 No

Four-Q [14]a 1 123 F(2127−1)2 Yes 59000 2048 bits

No 109000 No

K11,−22,−19,−3 [4]b 2 125 F2127−1 No 60468 No

Koblitz [39] 1 128 F4149 Yes 69656 4768 bits

KL2519(81, 20) 1 124 F2251−9 No 98715 No

KL25519(82, 77) 1 125.7 F2255−19 No 137916 No

KL2663(260, 139) 1 131.2 F2266−3 No 143178 No
aImproved timing results of 54000 and 104000 respectively for implementation with and without

endomorphism for Four-Q have been reported in the extended version http://eprint.iacr.org/

2015/565.pdf
bThe original speed reported in [4] was 54389. The Fig. 60468 is reported to be the median cycles

per byte at https://bench.cr.yp.to/results-dh.html for the machine titan0. We refer to http://

eprint.iacr.org/2015/565.pdf for a possible explanation of the discrepancy.

Based on entries in Table 12, we conclude the following. We use the
shorthands K1 := KL2519(81, 20), K2 := KL25519(82, 77) and K3 :=
KL2663(260, 139).

1. K1 and K2 are faster than Curve25519 on both the Haswell and the Sky-
lake processors for both fixed base and variable base scalar multiplications.
In particular, we note that even though Curve25519 and K2 use the same
underlying prime p25519, K2 provides speed improvements over Curve25519.
This points to the fact that the Kummer line is more SIMD friendly than the
Montgomery curve.

2. On the recent Skylake processor, K3 is faster than Curve25519 for both fixed
base and variable base scalar multiplications. On the earlier Haswell proces-
sor, K3 is faster than Curve25519 for fixed base scalar multiplication while
both K3 and Curve25519 take roughly the same time for variable base scalar
multiplication. We note that speed improvements for fixed base scalar mul-
tiplication does not necessarily imply speed improvement for variable base
scalar multiplication, since the code optimisations in the two cases are differ-
ent.

3. In terms of security, K3 offers the highest security followed by Curve25519,
K2 and K1 in that order. The security gap between K3 and Curve25519 is 5.2
bits; between Curve25519 and K2 is 0.3 bits; and between Curve25519 and K1

is 2 bits.

Multiplication and squaring using the 5-limb representation take roughly the
same time for all the three primes p2519, p25519 and p2663. So, the comparative
times for inversion modulo these three primes is determined by the comparative

http://eprint.iacr.org/2015/565.pdf
http://eprint.iacr.org/2015/565.pdf
https://bench.cr.yp.to/results-dh.html
http://eprint.iacr.org/2015/565.pdf
http://eprint.iacr.org/2015/565.pdf

Kummer for Genus One over Prime Order Fields 29

Table 12. Timing comparison of Kummer lines with Curve25519 on Haswell and
Skylake platforms. The entries are cycle counts.

Curve Security Haswell Skylake

Fixed base Var base Fixed base Var base

Curve25519 [12] 126 129825 140475 126518 136728

KL2519(81, 20) 124 80925 98715 74984 91392

KL25519(82, 77) 125.7 101358 137916 92694 120446

KL2663(260, 139) 131.2 98649 143178 91674 126770

sizes of the corresponding addition chains. As a result, the time for inversion is
the maximum for p2663, followed by p25519 and p2519 in that order.

Curve25519 is based upon p25519 and so the inversion step for Curve25519 is
faster than that for K3. Further, the scalars for K3 are about 10 bits longer than
those for Curve25519. It is noticeable that despite these two facts, other than
variable base scalar multiplication on Haswell, a scalar multiplication over K3

is faster than that over Curve25519. This is due to the structure of the primes
p2663 = 2266 − 3 and p25519 = 2255 − 19 where 3 being smaller than 19 allows
significantly faster multiplication and squaring in the 10-limb representations of
these two primes.

On the Skylake processor, K3 provides both higher speed and higher security
compared to Curve25519 If one is interested in obtaining the maximum security,
then K3 should be used. On the other hand, if one considers 124 bits of security
to be adequate, then K1 should be used. The only reason for considering the
prime p25519 in comparison to either p2519 or p2663 is that 255 is closer to a
multiple of 32 than either of 251 or 266. If public keys are transmitted as 32-
bit words, then the wastage of bits would be minimum for p25519 compared to
p2519 or p2663. Whether this is an overriding reason for discarding the higher
security and higher speed offered by p2663 or the much higher speed and small
loss in security offered by p2519 would probably depend on the application at
hand. If for some reason, p25519 is preferred to be used, then K2 offers higher
speed than Curve25519 at a loss of only 0.3 bits of security.

We have comprehensively considered the different possibilities for algorithmic
improvements to the basic idea leading to significant reductions in operations
count. At this point of time, we do not see any way of further reducing the
operation counts. On the other hand, we note that our implementations of the
Kummer line scalar multiplications are based on Intel intrinsics. There is a pos-
sibility that a careful assembly implementation will further improve the speed.

8 Conclusion

This work has shown that compared to existing proposals, Kummer line based
scalar multiplication for genus one curves over prime order fields offers compet-
itive performance using SIMD operations. Previous works on implementation

30 S. Karati and P. Sarkar

of Kummer arithmetic had focused completely on genus two. By showing com-
petitive implementation also in genus one, our work fills a gap in the existing
literature.

Acknowledgement. We would like to thank Pierrick Gaudry for helpful comments
and clarifying certain confusion regarding conversion from Kummer line to elliptic
curve. We would also like to thank Peter Schwabe for clarifying certain implementation
issues regarding Curve25519 and Kummer surface computation on genus 2. Thanks to
Alfred Menezes, René Struik, Patrick Longa and the reviewers of Asiacrypt 2017 for
comments.

References

1. Barwise, J., Eklof, P.: Lefschetz’s principle. J. Algebra 13(4), 554–570 (1969)
2. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,

Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

3. Bernstein, D.J.: Elliptic vs. hyperelliptic, part I. Talk at ECC (2006)
4. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes

back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45611-8 17

5. Bernstein, D.J., Lange, T.: Safecurves: choosing safe curves for elliptic-curve cryp-
tography. http://safecurves.cr.yp.to/index.html. Accessed 15 Sept 2016

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed
high-security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-23951-9 9

7. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8 19

8. Bertoni, G., Coron, J.-S. (eds.): CHES 2013. LNCS, vol. 8086. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40349-1

9. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 194–
210. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 12

10. Bos, J.W., Costello, C., Hisil, H., Lauter, K.E.: High-performance scalar multipli-
cation using 8-dimensional GLV/GLS decomposition. In: Bertoni, G., Coron, J.-S.
(eds.) [8], pp. 331–348 (2013)

11. Brainpool: ECC standard. http://www.ecc-brainpool.org/ecc-standard.htm
12. Chou, T.: Sandy2x: new curve25519 speed records. In: Dunkelman, O., Keliher, L.

(eds.) SAC 2015. LNCS, vol. 9566, pp. 145–160. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-31301-6 8

13. Cosset, R.: Factorization with genus 2 curves. Math. Comput. 79(270), 1191–1208
(2010)

14. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve
over the Mersenne Prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 214–235. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 10

https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-662-45611-8_17
https://doi.org/10.1007/978-3-662-45611-8_17
http://safecurves.cr.yp.to/index.html
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-33027-8_19
https://doi.org/10.1007/978-3-642-33027-8_19
https://doi.org/10.1007/978-3-642-40349-1
https://doi.org/10.1007/978-3-642-38348-9_12
http://www.ecc-brainpool.org/ecc-standard.htm
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/978-3-662-48797-6_10

Kummer for Genus One over Prime Order Fields 31

15. Costello, C., Hisil, H., Smith, B.: Faster compact Diffie–Hellman: endomorphisms
on the x -line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 183–200. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-55220-5 11

16. Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the cell broadband
engine. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 368–385.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2 23

17. Curve25519: Wikipedia page on Curve25519. https://en.wikipedia.org/wiki/
Curve25519. Accessed 15 Sept 2016

18. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 1–27. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04852-9 1

19. Faz-Hernández, A., López, J.: Fast implementation of curve25519 using
AVX2. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015.
LNCS, vol. 9230, pp. 329–345. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22174-8 18

20. Code for Kummer Line Computations. Provided as part of the auxiliary supporting
material corresponding to this submission. The code is also publicly available

21. Frey, G., Rück, H.-G.: The strong lefschetz principle in algebraic geometry. Man-
uscripta Math. 55(3), 385–401 (1986)

22. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces and of
elliptic Kummer lines. Finite Fields Appl. 15(2), 246–260 (2009)

23. Gaudry, P., Schost, É.: Genus 2 point counting over prime fields. J. Symb. Comput.
47(4), 368–400 (2012)

24. Gueron, S.: Software optimizations for cryptographic primitives on general purpose
x86 64 platforms. Tutorial at IndoCrypt (2011)

25. Gueron, S., Krasnov, V.: Fast prime field elliptic-curve cryptography with 256-bit
primes. J. Cryptogr. Eng. 5(2), 141–151 (2015)

26. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-Scott
point multiplication method for elliptic curves over binary fields. IEEE Trans.
Comput. 58(10), 1411–1420 (2009)

27. Igusa, J.: Theta Functions. Springer, Heidelberg (1972)
28. Karati, S., Sarkar, P.: Kummer for genus one over prime order fields. IACR Cryp-

tology ePrint Archive 2016:938 (2016)
29. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48(177), 203–209 (1987)
30. Koblitz, N.: Hyperelliptic cryptosystems. J. Cryptol. 1(3), 139–150 (1989)
31. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a

prime order subgroup. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
249–263. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052240

32. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multiplica-
tion. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 718–
739. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 43

33. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

34. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

35. Montgomery, P.L.: Five, six, and seven-term karatsuba-like formulae. IEEE Trans.
Comput. 54(3), 362–369 (2005)

https://doi.org/10.1007/978-3-642-55220-5_11
https://doi.org/10.1007/978-3-642-55220-5_11
https://doi.org/10.1007/978-3-642-02384-2_23
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve25519
https://doi.org/10.1007/978-3-319-04852-9_1
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/BFb0052240
https://doi.org/10.1007/978-3-642-34961-4_43
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31

32 S. Karati and P. Sarkar

36. Mumford, D.: Tata Lectures on Theta I. Progress in Mathematics 28. Birkh äuser,
Basel (1983)

37. U.S. Department of Commerce/National Institute of Standards and Technol-
ogy. Digital Signature Standard (DSS). FIPS-186-3 (2009). http://csrc.nist.gov/
publications/fips/fips186-3/fips 186-3.pdf

38. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Lambda coordi-
nates for binary elliptic curves. In: Bertoni, G., Coron, J.-S. (eds.) [8], pp. 311–330
(2013)

39. Oliveira, T., López, J., Rodŕıguez-Henŕıquez, F.: Software implementation of
Koblitz curves over quadratic fields. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 259–279. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 13

40. Certicom Research: SEC 2: Recommended elliptic curve domain parameters (2010).
http://www.secg.org/sec2-v2.pdf

41. NUMS: Nothing up my sleeve. https://tools.ietf.org/html/draft-black-tls-
numscurves-00

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://doi.org/10.1007/978-3-662-53140-2_13
https://doi.org/10.1007/978-3-662-53140-2_13
http://www.secg.org/sec2-v2.pdf
https://tools.ietf.org/html/draft-black-tls-numscurves-00
https://tools.ietf.org/html/draft-black-tls-numscurves-00

	Kummer for Genus One over Prime Order Fields
	1 Introduction
	2 Background
	2.1 Theta Functions
	2.2 Kummer Line
	2.3 Square only Setting
	2.4 Legendre Form Elliptic Curve
	2.5 Scalar Multiplication in E

	3 Kummer Line over Prime Order Fields
	3.1 Finding a Secure Kummer Line

	4 Field Arithmetic
	4.1 Reduction
	4.2 Field Negation
	4.3 Field Multiplication
	4.4 Hadamard Transform
	4.5 Field Inversion

	5 Vector Operations
	6 Vectorised Scalar Multiplication
	7 Implementation and Timings
	8 Conclusion
	References

